

Teaching the Mechanisms of Evolution Through the Use of Genetic Algorithms in LEGO©
Mindstorms™ Robots

Linda Smith
Teresa Pegors

Indiana University

Abstract
It is often difficult for students to grasp how nature is able to evolve
creatures with complex survival strategies without a pre-planned design.
This curriculum presents a one-class-period workshop on using genetic
algorithms to demonstrate the basic mechanisms of evolution. The
workshop begins with a lecture on the role of genes in evolution across
generations and how genetic algorithms exploit these same principles in
goal-seeking strategies. Then, by one or more LEGO© Mindstorms™
robots, students participate in a simulated evolutionary process of evolving
a strategy for a pre-specified goal. The students experience first-hand
how selection, reproduction, and development can take place in nature.
Students also learn how genetic algorithms are being used in many fields
an as alternative method of problem solving, and they gain experience
working with the popular LEGO© Mindstorms™.

Teaching the Mechanisms of Evolution Through the Use of Genetic Algorithms in LEGO©
Mindstorms™ Robots

The world contains an incredible variety of living organisms, from massive, slow-moving blue

whales in the Pacific, to small spiders that scuttle away at the slightest disturbance, or eagles, which

soar in spectacular majesty above the earth. Most students have been taught a bit about the theory

of evolution, which proposes that the variety in species of animals comes about through a process of

selection, reproduction, and mutation. Because this process takes place over such a great amount of

time, students have a difficult time conceptualizing the ways in which evolution can find simple

solutions to issues of survival.

In 1975, John Holland first devised genetic algorithms (GA’s) as a way in which the biological

processes of evolution could be modeled computationally. In the last quarter century, the use of

genetic algorithms has become a popular way of using many of the simple mechanisms of evolution

to practically evolve solutions to problems.

This workshop allows the students to participate in the use of a genetic algorithm strategy to

evolve the structure of LEGO robots for achieving a specific goal. The students are first introduced to

the basics of how genes are involved in biological evolution and how genetic algorithms use these

processes computationally. Groups are then formed in which members are responsible for the tasks

associated with evolving their group’s robot. The robots’ performance in the environment is

measured according to a pre-specified goal, and selection and reproduction take place manually

between the groups.

Not only do students become more aware of the capabilities of evolution, but they get a

different perspective on how problems can be solved, and gain experience working with LEGO©

Mindstorms™.

Methods

 Resources

The optimal class size for this workshop is 20-25 students. This allows for small group sizes,

depending on the number of robots being used. It is expected that only one LEGO© Mindstorms™ kit

will be available in the classroom. (See note at end of Methods section if more kits are available).

These kits are normally priced at around $199 (www.legomindstorms.com), and each includes an

onboard computer, light and touch sensors, motors, and a large variety of building pieces.

Programming and building instructions are included as well. While only one robot at a time will be in

physical form, there should be 5 or 6 groups of students, each responsible for keeping their own

robot’s traits on paper.

A flat area, such as a table top, should be allocated for the robot to move about in. Cardboard

or some sort of boundary or barrier walls should be set up around the perimeter of the space. A

stopwatch, a tape measure, and dice are also needed.

 Setup

The robot will be given two programs on its brick which can be switched as gene choice

dictates throughout the demonstration. The LEGO© Mindstorms™ kit comes with the necessary

software and hardware for creating and transferring programs. These programs are similar and can

be created with the included software (See Appendix C). Because the basic structure of each robot

will be the same, making it easy to switch each robot to its physical form. The variability between

robots will be in the wheel type, sensors used, and the order of connection wires. (See Appendix A

for more detail on robot structure, building instructions, and trait differences.) Use dice to determine

the beginning traits of each robot, and record these on the table found in Appendix B.

Procedure

 Ask students at the beginning of the lecture how they might design a robot which is able to

continually move in its environment without becoming stuck and needing outside help. Have students

discuss various strategies and write them down on the board for future reference. Characteristics of

these robots should include some type of sensors, a program which interprets these signals, and

motor devices.

 Students, depending on their background knowledge, should then be introduced to or given a

review of such concepts (in a very simplified form) as chromosomes, genes, traits, genotypes,

phenotypes, recombination, mutation, and fitness. Compare the differences between the ways an

engineer might design a solution and how nature might find a solution.

Explain the idea of a fitness function and state space and how an optimization strategy

attempts to climb the largest “hill” within this space. Discuss how random mutation allows strategies

to not become stuck on sub-optimal solutions.

Give a basic idea of what will be done in the workshop and that the genetic algorithm will be

using the fitness function of the total amount of time the robot is active before it is incapacitated.

 Form groups and assign each group a number or name for their robot and give them one of

the tables on which a pre-determined set of traits has been recorded. Each group will be responsible

for measuring their robot’s fitness, keeping a chart of its genotype, and helping in the selection and

reproduction process.

 Even though in theory, all robots in a generation should be run at once, each robot will have to

be run separately. Begin a run by placing the robot in the environment and letting it run for one

minute. Record should be kept of the amount of time each robot spends in movement. When all

robots have been run, rank the robots from longest to shortest times (best to worst.)

 “Mating” among individuals should take place in a process more specifically described in

Appendix B. After a new generation is formed, these robots will be measured on their performance

also. Continue cycling through the process of selection and reproduction six or seven times.

 If time allows, other fitness functions could be proposed and tested, such as total distance

moved from starting place or total amount of time touching another robot (this can only be done with

multiple robots).

Note: If more than one robot is available, they can be run at the same time. Simply place them at

intervals in a larger environment and have each group keep track of the time for their own robot. The

optimal demonstration would have 5 or 6 kits available so that an entire generation could run at once.

In this situation, other fitness functions could be devised which rely on interactions between robots.

Discussion

In the beginning trials, most robots will probably have very low fitnesses. Over generations,

students should be able to observe that the average length of time the robots move increases. Ask

the students which, if any, traits were removed from the gene pool and why this might be. Compare

the final strategies that the robots exhibited to those strategies which the students proposed at the

beginning of the workshop to accomplish the same goal. Mention that the program in each robot was

the exact same, but how the robot’s structure had a significant effect on how the program played out

in the robot’s behavior.

Also point out that while the robots in this demonstration moved towards one solution, the vast,

almost limitless variability in nature allows for millions of strategies to arise, hence the thousands of

species found around the world. Subtle environmental differences may cause great changes in the

types organism needed to survive in those circumstances.

It should be emphasized that the fitness function in nature is the ability to pass on genes, or

reproduce, and that it is implicitly enforced simply by the fact that the genes of an organism which

cannot reproduce do not get carried on. In genetic algorithms, the fitness function is usually explicitly

stated.

By interacting and being a part of a process using evolutionary techniques, students will

develop a greater understanding of the mechanisms in natural search strategies. They are also given

an introduction to genetic algorithms and the uses of LEGO© Mindstorms™. Students will discover

that having a better understanding of evolutionary techniques allows them to come up with more

creative solutions to all sorts of problems they come across in the future.

References

Holland, John. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor,

MI: University of Michigan Press.

Further Readings/Resources

http://geneticalgorithms.ai-depot.com/ - a good collection of books, tutorials, papers, etc. on genetic

algorithms.

http://www.mae.cornell.edu/bongard/MorphEngine/ - a very neat program which allows the user to

build a structure, define a fitness function, and watch it evolve the controllers necessary.

http://www.biota.org/ksims/ - contains some great demonstrations of Karl Sims’ work with evolving

simulated creatures through genetic algorithms.

http://www.spiderland.org/breve/ - A simulated environment built from the ODE physics simulator,

which has genetic algorithm capabilities built into the code.

These pictures show the basic de-
sign of a robot which can be used
for the workshop. All traits men-
tioned in Appendix C can be applied
to this model. (Instructions for
building the back of the robot can
be found in the building instructions
book which comes with a basic kit).
The most significant change takes
place when switching wheels to a
“ski.” A central support in the front,
such as a wheel connected to the
joint shown, should be changed to
two supports, one on each side. An
example would be two wheels simi-
lar to the back wheels, or yellow
“skis” instead of wheels. The
“tentacles” trait refers to having ei-
ther long, yellow feelers a pair of
black axles in the front. The “touch
sensor” trait refers to having one
sensor moved slightly more forward
than the other as opposed to being
symetric. The “light sensor” trait
places the sensor in either the front
or back of the robot.

Appendix A - Robot Design/Building Instructions

From this step, add or remove traits to complete each separate robot.

Appendix B – Mating Instructions

Give each team a chart where they can keep track of their robot’s traits for each successive
generation. When students are first given their robot, have them mark down their robot’s original
traits in the “Generation 1” column. After a generation is run, students should record the perform-
ance of the robot in distance/time/etc., and based on those values then record its rank compared
with the other robots.

Robot ______
 Generation 1 Generation 2 Generation 3 Generation 4 Generation 5 Generation 6 Generation 7
Program
Tentacles
Front wheel/ski
Touch Sensor
A wire
C wire
Light Sensor

Performance
Rank

Once a generation of robots has been ranked according to the specific fitness function, use a
pre-specified set of mating rules to determine which robots reproduce with whom. In most cases,
each couple will have one “kid,” and the “parent” which takes on the new properties is determined by
rolling a die. Below are some examples of mating rules. (Numbers correspond with rank).

Mating Rules - Option 1 Mating Rules - Option 2

1 with 2 1 with 2 (two kids)
1 with 3 3 with 4
1 with 5 2 with 5
2 with 6 1 with 6
3 with 4 roll die for last couple
roll die for last couple

After couples are decided, give each pair a chart with a set of randomly chosen traits to take
from either parent. There should be a large number of these combinations available. Once a team
gets a paper with a chart such as the following on it, they should role to decide for kid 1 or kid 2. In
very few combinations, a mutation will appear, which is a trait different that those normally available.

Kid 1 Kid 2
1 Program 1
1 Tentacle 2
2 Front 2
1 Touch Sensor 1
2 A wire 1
1 C wire 1
1 Light Sensor 2

*mutate C wire to side

Once all reproductions have taken place, the next generation is

Appendix C – RCX Program

Commands

Default
If no sensors are activated, the robot moves forward and turns at random intervals. The left wheel
turns off at random intervals between 1 and 4 seconds and continues to remain off for a random in-
terval of between 1 and 6 seconds. (The only difference in the second program is switching the in-
terval lengths between these two variables)

Sensors
• When a touch sensor is activated, the opposite wheel turns off.
When the light sensor reaches a certain threshold, the robot will move straight forward.

Sounds
• When the left wheel turns off, both in the random case and in the case of the right touch sensor
being activated, the robot emits a pair of low tones.
When the light sensor reaches a certain threshold, the robot emits a warbling sound.

Produced Observable Behavior

Avoid Obstacles
• The touch sensors make robot turn away from obstacles.
Exception: If something is straight ahead, neither “whisker” will activate a touch sensor.

Explore
The robot turns at random intervals when nothing else is happening.

Attraction to Light
When the light is strong, the robot moves straight.

