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ABSTRACT
We propose the foundations of a computer model of scientific discovery
that takes into account certain psychological aspects of human observation
of the world. To this end, we simulate two main components of such a
system. The first is a dynamic microworld in which physical events take
place, and the second is an observer that visually perceives entities and
events in the microworld. For reason of space, this paper focuses only on
the starting phase of discovery, which is the relatively simple visual inputs
of objects and collisions.
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1. Introduction

This paper concerns the first part of a larger project of the modelling of scientific discovery with a
computer. Although discovery is an area that has been explored for several decades (for instance,
Klahr & Dunbar, 1987; Langley, Simon, Bradshaw, & Zytkow, 1987; Schmidt & Lipson, 2009), the current
study offers a number of new ideas, the most important of which is the development of a computer
model that is intended to emulate the perceptual activity occurring during the process of scientific
thought.

The second part of our project, which will be presented in a different paper, focuses on scientific
discovery as a consequence of the perceptual activity. This is in contrast with previous AI approaches,
where discoveries are derived either from numerical tables (which contain predefined variables that
are given hand-coded values) or from equation-solving (for instance, Bridewell, Sánchez, Langley, &
Billman, 2006; Langley et al., 1987; Schmidt & Lipson, 2009). To achieve this goal (at least partially), our
model incorporates, as much as possible, a number of current theories about perception and scientific
discovery. The project is akin to projects such as Copycat (Mitchell, 1990) and Seqsee (Mahabal, 2009),
in the sense that these aremodels that involveperception anddiscovery of regularities in amicroworld.

Perception in the context of discovery is thus the focus of this paper, which is limited to describing
the first part of our project. We propose that how a human perceives gives rise to interpretation. There-
fore, two or more different discoveries may arise from observations of a single situation, depending
on the way some aspect of the situation has been observed by the interpreter. We illustrate this claim
with an example.

An observer sees two identical objects, A and B, approaching each other at the same constant
speed, following the trajectories seen in Figure 1. The nature of the objects is unknown; they could
be in the sky or on a computer screen, but they appear to the observer as dots and the observer can
see the motion. The objects start out at the bottom of the diagram, approach each other and wind
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2 F. LARA-DAMMER ET AL.

A B

Figure 1. Trajectories of objects A and B initially approaching each other and then moving away from each other.

up as shown at the top. During this period, the observer watches them. At the end of this period, the
observer wishes to know where object A is, and where object B is.

Using the formula distance = velocity · time, the observer can determine the pair of positions
occupied by the two objects at any instant of time after their apparent crossing. What remains
unknown, however, is which object, A or B, is on the top left and which is on the top right of the
diagram. This depends on whether the objects collided when they met, or passed through each other
(e.g. if the objects are made of gas). The observer’s answer thus will depend on whether the objects
were seen as colliding or as passing through each other. This project involves this type of ambiguous
phenomenon.

Situations like these, where what is discovered depends on what is perceived, are not rare.
For instance, Louis Pasteur (1822–1895) discovered that micro-organisms cause diseases. However,
Claude Bernard (1813–1878) disagreed with Pasteur. According to Bernard’s theory of the Internal
Environment: ‘The stability of the internal environment is the condition for free and independent life.’
(To use an analogy, animals, including humans, evolved in such away that we have a portion of the sea
inside our bodies, and so we live in a similar environment to that in which our ancient predecessors
used to live. If our inner sea’s chemical structure is altered, we perish.)

Thus, for Bernard, the presence of micro-organisms in an animal is a consequence of its disrupted
environment (i.e. this presence occurs after the natural chemical structure of the animal’s inner fluids
has been altered); for Pasteur, this environment is disrupted bymicro-organisms. Our point here is not
to question these French scientists’ conclusions, but to illustrate the idea that interpretation plays a
key role in discovery. According to Charles Gross (a neuroscientist at Princeton), Bernard’s theory of the
constancy of the internal environment eventually led to a theory of thedevelopment of (self-regulated)
complex nervous systems, and subsequently, to cybernetics and the development of self-regulating
machines (Gross, 1998). In contrast, Pasteur’s theory seems akin to the development of systems (e.g. a
traffic light) whose internal representations are created in response to external objects.

In essence, the phenomenon of perception in the case of ambiguous situations arises when there
are two or more states of the world that are perceived by our senses, but the mechanisms that cause
the transition from one state to the other are hidden to us. In the example of the twomoving balls, the
missing information is what happens between frames, and in the example of the disease, the missing
information is what happens between the animal’s wellness and the animal’s illness. The two states are
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Figure 2. A diagram representing the transition from one state of the world to another. Both states can be described qualitatively.
The cloud in the middle represents missing information not present in the qualitative description.

illustrated in Figure 2, where the ‘cloud’ in the middle symbolises the fact that there is some missing
information between the states. Note that the states are observed at one level of description (e.g. as
seen by the naked eye), while what is in the cloud occurs at a lower level. What is on the first level of
observation corresponds to what Forbus (1984) calls a ‘qualitative state.’

Since visual perception is central to this project, part of the project focuses on the missing-
information cloud at the visual level and how humans can make discoveries in spite of this limitation.
The computer model at the heart of our study has two parts: the world emulator and the interpreter.
The world emulator shows a situation to be observed by the interpreter. The interpreter simulates an
observer perceiving the situation visually. The emulatedworld is populated by objects that aremoving
while they are being observed by the interpreter. Thus, one of the key tasks of the interpreter is to keep
track of individual objects. It uses a mechanism of visual object-tracking (described later) based on
theories of apparent motion proposed by Marr (1982) and Ullman (1979). Object-tracking, however, is
only a starting point that helps the interpreter to find relations between the objects, and ultimately to
make discoveries in the world.

Since perceptual activity is central to this project, we have striven to avoid, whenever possible, the
style of the AI approaches briefly referred to above. Our model attempts to be more psychologically
realistic. In summary, the interpreter part of our model was designed, at least theoretically, to do the
following tasks:

• track objects in a dynamic environment;
• discover relations among the objects (such as collisions);
• make qualitative and quantitative estimates of aspects of the world, such as the volume of a

container;
• derive ‘laws of nature’ from relations perceived by the system;
• make modifications of certain variables defining the world to see if the discoveries still hold in

modified worlds (e.g. if number of collisions and area of a container are found to be inversely
proportional in a circular container, is this still true in a square container?). This aspect of the
programme can also be used for the purpose of generalisation.

This paper focuses on the first and second tasks. Our second paper will focus on the other tasks.
Additionally, our model takes into account the crucial influence of context in perception, and thus in
discovery. We hope that by incorporating these elements into our model, we can make a contribution
to real-world problem-solving. In fact, the tasks just mentioned are related to quintessential activities
involved in the making of scientific discoveries in the real world.

Of course, making a computer model of all the psychological aspects of human discovery is too
ambitious a goal. One reason is the fact that many of the mental processes involved in perception and
understanding are still unknown (especially when these processes involves deeper processing than
just the initial layers of perception through the senses). Nonetheless, there is still some hope ofmaking
progress if we remember that much research has already been done, and many theories have been
developed. This project resulted from our adapting and combining such research and theories. Our
model was built in order to be able to deal with ambiguity in perception and interpretation. In contrast
to models such as AM (Lenat, 1979), where ambiguity was explicitly avoided, we welcome ambiguity
as an aspect of discovery that is truly human.
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4 F. LARA-DAMMER ET AL.

Figure 3. The model running a simple simulation. The right side shows a world consisting of three balls moving about in a circular
container. The left side shows NINSUN’s view of the world. Additional information (such as the number of collisions per minute) can
be seen in other windows (not shown here).

2. Overview of the computer model

As was mentioned in the introduction, our computer model consists of two parts: the world emulator
and the interpreter. The world emulator (called Tricycle) works independently of the interpreter,
although the interpreter has the ability to manipulate certain parameters in Tricycle, thus modifying
the simulated world. The simulated world is a collection of interacting objects with some similarity to
real objects and their interactions. The interpreter, which is the cognitive part of our computer model,
was designed to engage in observation of the world and to derive relations among the objects in it.
We have been inspired byMichotte’s theory of the perception of causality (Michotte, 1963) to emulate
an approximation to the perception of physical properties of real objects.

The interpreter programme is called NINSUN, after the goddess in Sumerian mythology who
interpreted her son’s dreams. It can also be understood as an acronym for Novel INterpretations
of Scientific UNderstanding. We will refer to the interpreter by this name.

Figure 3 shows our computer model at a particular moment during a simulation. In this figure,
NINSUN (left side) is observing a simple world (right side) consisting of three moving balls. The arrows
and dots on the interpreter side indicate its representation of motion over a short amount of time.
This representation and more details about the interpreter’s side will be explained more fully as we
proceed.

For those who are interested in watching the programme in action, simulations can be run using a
set of commands that can be typed in a command line placed on each side of the big window, shown
at the bottomof Figure 3. For convenience, the set of commands for each specific simulation described
in this paper is stored in a specific script file. These simulations will be referred to by the name of the
appropriate script file.

There are two types of scripts: those that can be read by Tricycle and those that can be read by
NINSUN. The former is a collection of Tricycle commands that create a world that can be observed by
NINSUN with settings that can be specified by the user. The latter consists of a file with interpreter
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 5

commands that usually specify parameters that control how NINSUN observes the world. An example
is the parameter direction, which reflects how much importance NINSUN gives to the direction of
motion of an object that it is trying to track.

One way to refer to a simulation is by the name of the script. Another way to refer to a simulation
is to watch a pre-recorded video of it. The videos have the advantage that they focus in on specific
aspects of a simulation, which would takemuch longer to see if we were to run the full simulation. The
recordings are available on the archives at the following website:

http://www.indiana.edu/~pcl/2016/03/ninsun/

and will be referred to throughout this paper. The scripts are available as part of the programme. For
instance, the script that creates the world in Figure 3 is in the file ‘threeSmallBalls.txt’ and the video
that shows the corresponding simulation is in the archives under the link ‘Overview V1.’

2.1. The necessity of keeping theworlds simple

In this paper, scientific thinking can be described roughly as the mode of thought people adopt when
they are trying to understand some aspect of the world. The thoughts leading someone to a scientific
discovery and the cognitive activities a student may carry out while learning a specific topic in science
are two examples of scientific thinking.

Much of scientific thinking involves condensing situations into a small number of simple concepts.
The visual system and visual imagination play a fundamental role in this process. For example, moving
objects often can be considered to be moving dots, allowing the thinker to ignore the shape of the
object, when shape is irrelevant to the understanding of the situation. Diagrams and abstractions
facilitate scientific thinking. When the thinking is productive in the sense of Wertheimer (1945), it
has been recognised as being characterised by its logical economy (called the Efficiency Principle in
Lara-Dammer (2009)) (Klahr & Simon, 1999; Lara-Dammer, 2009; Miller, 1987). This is one reason why
we have striven for simplifying our microworlds as much as possible.

Static diagrams, although often useful, lack motion and they are not what we are modelling.
Tricycle was created in order to show objects in genuinemotion, not just still snapshots. It is, however,
limited to two dimensions. Thus our system is a model of scientific perception and discovery in a 2-D
environment.

The worlds built by Tricycle involve simple rules and simple shapes, such as lines, circles and
triangles. There is set of tools that can turn a geometric shape into an object with physical properties,
such as a circle into a ball, or a line segment into a wall. Certain physical properties, such as friction and
attraction, can also be added to some of the objects.

The following sequence of Tricycle actions results in a circular container with three moving balls
inside it, similar to the one in Figure 3.

(1) draw a large circle;
(2) make the circle a wall;
(3) create three small non-intersecting circles inside the container;
(4) make the small circles balls; and
(5) give random velocities to the balls.

Notice that even though a world is created by following a set of relatively simple rules, the world
itself can become arbitrarily complex through repeated application of the rules.

2.2. NINSUN and Tricycle

NINSUN visually observes a world created by Tricycle. By ‘visually observes,’ we mean that NINSUN
infers some spatial relations or properties that normally can be visually perceived by a human – for
instance, proximity of two objects, the direction of motion of an object, the speed of an object and the
size of an object.
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6 F. LARA-DAMMER ET AL.

Interpreter Tricycle

Position, color, shape, size of objects

Commands to add or delete objects, modify properties of objects 
such as size, shape, color,  position, and velocity.

Identifies objects,
Observes relations,
Modifies world searching for general laws,
Notices changes in the world,
Executes commands to modify world.

World is built by adding objects such as walls 
and balls,
Objects can move,
Objects can be added or deleted at any time.
Object properties can be modified at any time.

Figure 4. Connections between NINSUN and Tricycle.

NINSUN could have been created to receive visual input data from a camera, just as humans
receive visual data through their eyes. However, the process of manipulating such complex images
was computationally too demanding for this project. Instead, the coordinates, size, shape and colour
of simulated objects are passed toNINSUNon amoment-to-moment basis. It is up toNINSUN to decide
which coordinates correspond to which objects. In some cases, some attributes of objects, such as size
and colour, are not given to NINSUN. This is because we have radio buttons corresponding to these
attributes, some of which can be deselected, in which case they are not passed to NINSUN.

It is important to emphasise that the identities of objects created in Tricycle are not passed to
NINSUN. A particularly difficult problem is therefore to distinguish and keep track of two objects that
have the same (or close) coordinates. This topic is addressed in Section 3 (especially Section 3.4).

It is vitally important that NINSUN exploit raw data as much as possible. For example, if two objects
are moving, NINSUN should be able to judge which of the two is faster based only on what it has been
observing (in this case, the coordinates of the objects, supplemented by a short-term memory that
remembers how an object was moving in the last milliseconds), without being helped by an external
aid (such as having Tricycle calculate the objects’ speeds and then pass them to NINSUN). A diagram
of relationships between NINSUN and Tricycle is given in Figure 4.

3. Tracking of objects

The derivation of a mathematical law happens only after NINSUN has done several preliminary tasks,
such as object tracking, relation detection andmanipulation of theworld. The first thingNINSUNneeds
to do is object-tracking. In a static world, this task is trivial, but in a dynamic world it is difficult. NINSUN
tackles object-tracking using the motion correspondence problem (MCP) theory of Ullman (1979) and
Dawson’s implementation of an auto-associative connectionist network (Dawson, 1991).

Before we continue with the description of our connectionist approach to object-tracking, we
would like to address briefly other approaches. Consider Milan, Roth, and Schindler (2016) or Nayak,
Zhu, and Roth (2015). Although mathematically very sophisticated and even biologically inspired,
these works focus on computer vision rather than on psychological aspects of human vision. These
systems are more oriented towards practical applications than towards the modelling of human
motion perception.
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 7

Figure 5. (a) Three moving balls going from the positions on the left to the positions on the right. Each of the segments suggests a
possible match and represents a unit for the network. (b) Another representation for the units with circles. Each circle represents a
unit for the net and the lines connecting the units are connectionist weights. There are 9 units and 81 weights for this network. (For
n balls, there are n2 units and n4 weights.) There is a square matrix of size 9× 9 associated with this neural net, whose 81 values are
the connectionist weights.

In contrast and in a nutshell, Dawson’s model is a connectionist auto-associative neural network,
which models human motion perception. The weights in this neural network are determined by
consistency. Inconsistent nodes inhibit each other; consistent nodes excite each other. What it means
for two objects to correspond to each other is that they are the same object over time.

To illustrate the basic architecture of Dawson’s network, consider a small example of three small
balls moving inside a container. Figure 5 summarises and shows the basic (non-extended) architecture
and terminology for this network (for the three balls).

Dawson’s model, although useful, needs to be extended to address certain tricky aspects of the
generated worlds. We will explain the details of the proposed extension in the next section.

3.1. Extensions to Dawson’smodel

First, it is assumed that balls do not split or merge during the simulation. Of course, in real life merging
or splitting might occur, such as with water drops, but NINSUN is built without such sophisticated
knowledge.

Second, Dawson’s model is based on exactly two frames: the current frame and the oncoming
frame. Since our model needs to deal with more complicated situations, it is necessary to store more
frames. The number of frames to be stored is a parameter that in principle depends on the degree
of attention. (See below and Figure 7.) However, this number cannot be smaller than five (at least
in the domain of bouncing balls) because this is the minimum required for collision detection. (See
Section 4.1.) Most of this project has been carried out using exactly seven frames.

Third, in an auto-associative neural network to solve the MCP, the selection of the winner units is
of paramount importance. In Dawson’s simple examples, a threshold works fine. However, in a more
complex world, a single threshold is not sufficient to decide on the winners, because the positions
of the objects, the speeds of the objects, the sizes of the objects, etc. may change at any time, and a
threshold that worked well at one time may not work at another time.
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8 F. LARA-DAMMER ET AL.

Fourth, it is necessary to specify the observables (called ‘constraints’ in Dawson (1991)) to be
considered in the network. In addition to the three specified by Dawson (proximity, relative velocity,
and integrity), NINSUN also uses the direction of a moving object. We call this the direction observable.

In most cases, direction is a very useful piece of information to help solve the MCP, since a ball’s
new direction is likely to be close to its most recent direction.

One might worry that in the case of a collision, NINSUN could get confused because the objects’
directions change abruptly. This worry would be justified if NINSUN relied solely on direction, but in
most cases other observables help NINSUN to keep track correctly of objects in motion.

The choice of direction as a relevant observable seems intuitive, since people have the illusion that
a moving object leaves a ‘line’ behind it, like an airplane in the sky. There is also scientific evidence
that ‘direction’ is a primitive concept not only in humans but in other animals. Certain populations of
neurons respond to a stimulus associated with a specific direction (see Georgopoulos, 1988).

It should bementioned that an object’s velocity could be used as an observable for object-tracking,
since the velocity vector includes the direction of the object, but speed (the magnitude of the velocity
vector) is derivable from the distance between the object’s current position and its previous positions
(as stored in earlier frames), so velocity would be redundant information. (Actually, the velocity
observable was temporarily implemented, and we learned that keeping track of the direction alone
was slightly better than keeping track of the velocity vector for object-tracking.)

Color, shape, and size are also sources of information used in object-tracking. However, Dawson’s
model does not consider these features Dawson (1991), since they do not involve the motion and
position of the objects. (According to certain researchers, position rather than appearance is the most
relevant information for object-tracking Dawson (1991).) Whether or not appearance is less important
than motion, NINSUN can use these aspects of appearance to help it track objects.

If the objects to be tracked have some appearance attribute, (say, colour) that is identical for them
all, then this attribute will obviously play no role in object-tracking, since its contribution to the neural
network will be the same for each object.

It should be mentioned that all observables are multiplied by weights that can be modified by
humansorbyNINSUN.Auser can set theseweights and thushelpNINSUNfindaway to identify objects.
As theweight of an observable increases, that observablewill have a larger impact on observedmotion
correspondences. For example, a green square would bemore likely to be perceived as corresponding
to a red square than a green circle if shape is given a greater weight than colour. In the rest of this
paper, the term ‘weight’ will refer to theweight associatedwith an observable, not to the connectionist
weights in Figure 5(b).

NINSUN, of course, takes advantage of situations where there is variation of a given appearance
attribute. If all the objects have different colours, for example, the only attribute needed to identify
an object would be its colour, and the rest of the weights could be set to zero without changing
the behaviour of the network. In general, when at least one appearance attribute exhibits a range
of different values, then there is less ambiguity, and so object-tracking is easier; NINSUN is more
challenged when the appearance attributes are identical for all objects.

All in all, NINSUN currently can use seven observables to identify objects: nearest neighbour, relative
velocity, integrity, direction, colour, shape, and size. These all contribute to the tracking of objects by
the neural network. If, at some point during a run, some attribute is conjectured to bemore important
than others, the values of the weights can be modified easily. Moreover, if, during the evolution
of the programme, it is conjectured that some other attribute of objects might be useful, a new
corresponding observable can be added easily. Conversely, if, some attribute is seen to be unuseful,
the corresponding observable can be removed easily.

Once NINSUN is able to track objects consistently, it is ready to tackle higher levels of perception,
involving patterns and relations among the moving objects. These range from the detection of a
collision all the way up to mathematical conjectures of laws holding in the microworld. Roughly
speaking, we could say that the processing of information flows from one layer to the next. However,
we will see that this is only a simplistic way to describe the model. The actual flow is not so simple,
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world visualization

object tracking (a-a net)

compression of information

event memorization

pattern detection

world modification

relation identification

conjecture of laws

Figure 6. A broad overview of the flow of information in NINSUN, described as layers of processing information. Notice that there is
feedback from the perception of relations (which is influenced by context) to the auto-associative neural network that allows object
tracking.

as some processes occur in parallel with others and the flow can move bidirectionally, as is shown in
Figure 6.

One thing that needs to be mentioned is that the machinery that does object-tracking has certain
subtleties that go beyond Dawson’s design. Without them, object-tracking simply would not work.
One of these features is the updating of frames, and another is the calibration of weights. The current
position is stored in a structure that we call ‘frame 1.’ When frame 1 needs to be updated, the
information that was in frame 1 becomes frame 2, and the information that was in frame 2 becomes
frame 3, and so on. What was in the oldest frame is lost. The number of frames can theoretically be
adjusted at run time, but currently this number is set to the fixed value of seven. Therefore, the oldest
frame is frame 7.

This is represented schematically in Figure 7, where four consecutive frame updates have been
made while an object moves from position A towards a wall, and after bouncing off the wall, moves
towards positionB. Each circle shows themovingobject at an instant. Frame1 is at the top and contains
the latest information; frame 7 is at the bottom and contains the oldest information. Currently, updates
take place every 50ms, but this parameter can be adjusted. In the leftmost snapshot, the circle that is
highlighted indicates themost recent position (A) of the observed object. In the figure, this state of the
world is replaced by a new state three times. The highlighted frame always has the same information
but its number changes from 1 to 4. In the rightmost snapshot, frame 1 contains the information that
the current position is B.

From this seven-frame data structure, information about the object can be derived, such as its
velocity vector and its acceleration vector, by subtraction. In this way, this data structure holds
information that can be used by NINSUN to draw conclusions andmake conjectures about themotion
of objects.

3.1.1. Calibration of weights
As was mentioned in Section 3.1, there are currently seven numerical weights (distance, relative
velocity, integrity, direction, colour, shape and size) that are used to calculate the n4 neural-net
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Figure 7. The seven-frame data structure belonging to an object that is moving from a position A towards a wall, and then, after
bouncing off the wall, towards position B.

weights, and all seven of these lie in the interval [0, 1]. It is crucial to seek optimal settings of all
these weights. This is a very difficult matter, since the number of possible combinations of weights is
extremely large. Luckily, human intuition is pretty good at guessing effective settings for the weights.
Occasionally, however, human intuition is misleading. For instance, it might seem reasonable to set all
the weights to 1 (the maximum value), but NINSUN does a better job when certain weights are lower
than that.

Exploring each weight on its own, with all the others set to zero, is a way to explore the effects of
each weight on object-tracking. In a simple world set-up with three balls moving inside a container,
if all weights are set to zero except the relative-velocity weight, identification works. This agrees with
Dawson’s claim that this parameter does well in most cases. Moreover, a low value of this parameter
works just as well as a high value.

What about otherweights? The distanceweight all by itself behaves similarly to the relative-velocity
weight. However, the integrity weight (the one that gives importance to the fact that objects do not
merge or split) works only when it is in certain ranges (around 0.3 and above 0.7). Furthermore, the
integrity weight does not work well when there are five or more balls. The direction weight alone
works similarly to the relative-velocity weight, except (as expected) when the balls undergo collisions.
The direction weight is very important, however, and will be discussed later in the paper. A few
videos showing the influences of certain weights can be found in the archives under the links ‘Object
Identification Vi’ (i = 1, . . . , 4). Interpreter scripts are also available. These are ‘singleParameterTest.txt,’
‘singleParameterTestSize.txt,’ and ‘singleParameterTestDirection.txt.’)

Another interesting challenge involving the calibration of parameters arises when two or more
objects have identical appearances andmove in an identical manner. For instance, suppose three balls
with identical appearance aremoving with the same speed, one next to the other, and in parallel lines.
In this case, the identical attributes of the objects do not aid NINSUN in identifying the objects. Instead,
NINSUNmust rely on those parameters that make a difference, and if these weights are set to zero or a
very low value, the identification of the objects will be poor. A simulation of this kind of situation with
poor object-tracking is found in the archives under the link ‘Object Identification V5.’ An interpreter
script that allows this simulation to be run is found under the name ‘identicalDirectionsTest.txt.’

3.2. A case study for theMCP: the world of walls and bouncing balls

The 2-Dmicrodomain of walls and bouncing balls can be varied inmanyways, and this richnessmakes
the microdomain especially useful for testing the models of cognitive processes in the interpreter
model. The controlling parameters can be easily modified for specific tests and purposes. For example,
at any time the objects’ sizes can be changed, an arbitrary number of objects can be inserted or
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Figure 8. Trajectory of the red ball over 5–10 s.

removed, and walls with specific angles and positions can be inserted. In this way, the world can be
tuned to range from easy to hard to interpret.

The events in this microdomain look so random that the average person will think at first sight that
there is no possible way to make scientific conjectures and discoveries. Figure 8 shows five identical
balls, one of which is red, that are moving at medium speeds inside a circular container. The red ball
has been tracked for about 5–10 s. In this relatively short amount of time, the lengths of the straight
lines constituting its trajectory do not suggest a regular pattern. Yet careful attention allows a curious
mind to discover regular patterns over longer periods of time. The very fact that this microdomain
seems so random is what it makes it a highly appealing microdomain for study. We are also interested
in other microdomains, but this one had sufficient richness to keep us busy for a long time.

Additionally, this microdomain allows us to make discoveries of relations such as that connecting
the frequencyof bouncing against awall and the speedsof theballs. This typeof discovery corresponds
roughly to the discovery of relations in the field of ideal gases. In that case, the balls are very small and
the number of balls is very large (simulating the fact that a gas is composed of billions of molecules).
Hopefully, from these relations some of the laws of gases can be derived.

Wedistinguish twomodes in themicrodomainofbouncingballs andwalls. In onemode, balls collide
when they coincide in position (at least as perceived by the eye), and in the other mode, balls pass
through each other. The first mode resembles a billiard table with balls rolling on it and occasionally
hitting each other. The second mode resembles a TV screen showing a juggler performing with balls:
occasionally some balls seem to pass through others from certain angles. (Of course, humans know
that there is actually a third dimension and that some of the balls are in fact passing behind others.)

If all the objects are identical in appearance, the second mode is slightly more difficult for the
object-tracking challenge. This is because there is a chance that the interval of time when the two
balls are having contact (which includes overlapping) might occur during NINSUN’s creation of the
two corresponding consecutive frames. In a case like this, the distance between the centres of the
objects remains smaller than the smallest of the distances between each of the objects’ corresponding
consecutive frames. (See Figure 9.) This fact is a cause of ambiguity, which is an interesting topic from
the cognitive point of view. Essentially, in this case we need to deal with occlusion (one or more balls
‘hiding’ behind another). The detection of collision and pass-through-each-other events is explored in
Section 4.1.
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12 F. LARA-DAMMER ET AL.

Figure 9. Threemoving balls inside a circular container, seen fromNINSUN’s standpoint. (a) The two top balls have just collidedwith
each other, and NINSUN is sending a signal of a collision event (bigger circles on the third frame). (b) The two top balls are passing
through each other and NINSUN is sending a signal of a pass-through-each-other event (crossing lines). The distance between the
objects can be smaller than the average distance between each object’s consecutive frames. This makes object-tracking harder in
the second case.

3.3. The selection of winners in the neural network

The neural network has a current frame with positions that are already identified and it is given a
new frame with positions that are not yet identified. For each position in the current frame, the neural
network has to select a position in the new frame to match this position. This selection is based on
competition of the units emanating from a single position in the old frame. (See Figure 5(a).)

The winner of this competition (i.e. the unit with highest value) is the unit that is selected. A very
important constraint in the bouncing-balls context is the Integrity Principle (see Dawson, 1991), which
states that a 1–1 correspondence must be established between the positions in the old frame and the
positions in the new frame. To help in tracking identification, NINSUN can make use of the knowledge
that balls do not merge.

For the sake of clarity, we will explain the mechanism of the selection of the winner with numerical
examples. Let us suppose there are three identical balls moving. NINSUN sees no difference among
them except for their positions and velocities. In order to distinguish these balls, let us label them
A, B and C . (These labels are not part of NINSUN’s algorithms.) Each of the three cases in Figure 10
corresponds to three frames of three bouncing balls.

The three cases were generated by a separate programme that runs as part of Tricycle and that
uses the neural network to solve the MCP. All weights in this neural network were set to 1, except for
those of colour, shape and size, which were set to 0. Henceforth we will call the current frame ‘old
frame.’ The smallest dots represent a frame that is older than old frame (we can call it ‘older frame’), the
medium-size dots represent old frame, and the largest dots represent new frame. (Colours are used in
this diagram instead of labels. The magenta dots represent object A, the orange dots represent object
B and the cyan dots represent object C . The auto-associative neural network knows neither the sizes
nor the colours of the dots.)

Older frame can be used to make direction a member of the set of observables of this neural
network; direction is not part of Dawson’s model. (The direction weight, like any other weight, can be
reset to zero, in which case direction would have no effect on the output of the neural network.)
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 13

Figure 10. Three Frames.

There are nine units in the network, one standing for each possible match. The units are labelled
by the label of one ball in old frame followed by the label of one ball in new frame. For example, unit
BC corresponds to the match identifying ball B in old frame with ball C in new frame. There is usually
no ambiguity as long as the objects do not get too close, but problems can arise when some objects
approach others. The cases illustrated in Figure 10 will be considered below.

In Figure 10(a), there is no ambiguity, and column (a) in Table 1 shows very strongwinningmatches.
In Figure 10(b), there is ambiguity due to the proximity of two balls in new frame. Column (b) of Table
1 shows a winning match that was preferred by the network, although the matches A −→ A and
B −→ B are also possible under the Principle of Integrity, if a threshold such as 0.13 were taken (as
suggested in Dawson, 1991).

In Figure 10(c), two balls in old frame overlap and two balls in new frame are swapped. The
corresponding unit values that were preferred by the network are shown in column (c) of Table 1.
However, in this case the correspondence is not 1–1. This would be acceptable if splitting andmerging
of balls were possible, but not in the microdomain of walls and balls.
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14 F. LARA-DAMMER ET AL.

Table 1. Unit values of the three cases in Figure 10.

Unit values and winning matches of three cases in Figure 10

case (a) case (b) case (c)

Unit Value Winning match Value Winning match Value Winning match

AA 0.5700
A −→ A

0.3345
A −→ B

0.2193
A −→ BAB −0.0545 0.3986 0.3338

AC −0.2610 −0.4067 −0.2799
BA −0.0432

B −→ B
0.2184

B −→ A
0.1189

B −→ BBB 0.4520 0.1506 0.4119
BC −0.0432 0.0309 −0.2033
CA −0.2610

C −→ C
−0.2199

C −→ C
0.0235

C −→ CCB −0.0545 −0.2306 −0.3560
CC 0.5700 0.6252 0.6400

The fact that the unit values in case (c) of Table 1 are not suitable for our microdomain does not
mean that the neural network is giving us the wrong values. They are correct, and they would be
suitable in a domain where objects can merge or split, like water drops. In the microdomain of walls
and balls, however, we have the extra knowledge that balls cannot split or merge, and we would like
to use this knowledge.

An output like case (c) in Table 1 is rare but it can happen. Such cases seriously confuse NINSUN. In
a worst-case scenario, two objects would be seen as having the same position and they would thus
become merged. Since the next frame depends on the current frame, the next values assigned to
these objects have a high probability of being once again nearly identical, and thus a chain of wrong
assignments can be generated, until the network recovers, either by changing parameters settings
(this can be done by a human) or by an auxiliary mechanism of NINSUN. However, while the chain of
wrong output lasts, NINSUN does not see three objects, but just two, or possibly even one. A human
observing the interpreter’s and Tricycle’s windows would see NINSUN seeing objects as overlapping
while at the same time the actual balls in the world of Tricycle are not overlapping. This kind of
behaviour of themodel of course has to be avoided becausewhen humans see three non-overlapping
objects, they do not get confused and think they are seeing two objects.

Theoretically, the problem could be solved by increasing theweight attached to integrity. However,
in practice this is not easily achieved at run time, as will be explained in Section 3.4. Once two rows
in the connection matrix (See Figure 5.) are nearly identical, they need some time to become distinct
again. In order to solve this problem, we need to find a disambiguation strategy that will guarantee
efficient 1–1 identification. NINSUN canbe set to choose among several paradigms to select thewinner
whenever an ambiguous situation is presented. The paradigms are briefly described below.

3.4. One-to-one policies

It was mentioned before that if the objects do not split or merge, NINSUN can make use of this
knowledge to improve its perception of the world. Humans too use heuristic or intuitive reasoning
when they know that objects conserve their integrity but when one or more objects seem to be
missing. In our system, we may need to add further strategies to the neural network in order to
produce reliable object-tracking, but for the time being the strategies below are what we use.

3.4.1. Adjustment of the integrity weight
Theoretically, if the integrity weight is well adjusted, NINSUN will not see one object when there are
really two (or three). The problem is that in general it is not easy to find the ‘right’ value, as this value
depends on the other weights. If the integrity weight is set too low, NINSUN will be prone to guessing
that objects havemerged. If it is too high, it might enforce one-to-one–ness by creating what looks, to
an external observer, like a random assignment of positions to the objects An intermediate setting is
needed.
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JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE 15

Furthermore, certain settings of thisweightmightworkwell in oneworld, but changesmade to that
world might make those values completely inappropriate. Of course, the weight can be readjusted at
run time, but this might take too long. In short, relying solely on this parameter is not reasonable. In
some worlds it might suffice for object-tracking, but in others it will not.

3.4.2. Adding noise to the positions of the objects
If random noise is added to the positions of the objects, then two objects that are very close to each
othermight get some ‘separation’. As a result, those objectswould have less chance of being confused.
A disadvantage of this method is that there is no guarantee that merging will not occur, and of course
the objects will be seen at slightly different positions from their true positions, and of course, the word
‘slightly’ has some amount of blur. In practice, though, this method seems to work fairly well, and can
be combined with the previous policy for better results.

3.4.3. Dependent-selection algorithm
In this method, nothing is modified in the network. In the case shown in Figure 10(c) (also in Table 1),
the network did not give up the second-placewinner, because the balls are very close, almost on top of
each other. As a consequence, they have essentially the same coordinates, and more than one winner
is eligible for a single unit emanating from the same position in old frame.

In such cases, the strategy is to pick one of the winners at random. However, once one winner has
been chosen for a given object, it is necessary to make sure that the winners for other objects do not
conflict with each other (i.e. never select a winner that was previously selected).

In the example of Figure 10(c), either unit AA or unit AB is eligible for the first correspondence.
Suppose AB is selected. It will then be necessary to choose from the remaining set of unit winners
{BA, BB} in such a way that we do not end up choosing the same extension of two different positions
in old frame. The only possibility is thus to select unit BA, as BB conflicts with the previous selection AB.
Choosing BA leads to the correct solution: A −→ B, B −→ A, and C −→ C . The choice BB leads to the
inconsistent solution shown in column (c) of Table 1.

In developing this model, we observed a pattern in the units every time that the values of two or
more units in the network. (see Figure 5(a)), starting at the same position in old frame, exceeded a
threshold value. Under this condition, the same number of units corresponding to matches starting at
another position in old frame had values that exceeded the threshold too. (This was a consequence
of underlying symmetries in the network.) For example, the threshold could be taken as 0.1; two
corresponding units would be AA, AB, and the other two corresponding units would be BA, BB in the
column labelled ‘value’ of case (c) of Table 1. If this symmetry did not exist, this method could fail.

The case we have considered contains only one possible conflict, but when there are more balls in
the world, there are situations where several conflicts might appear. In such cases, every new selection
must be made as a function of previous selections.

It is interesting to note that if all the weights are set to zero in the neural network, the algorithm
creates a one-to-one mapping between objects in old frame and new frame. Unfortunately though,
this mapping is only onemapping amongmany possible ones, and is not guaranteed to be consistent
with the observations.

In short, when the network offers two or more winners for a set of units corresponding to matches
emanating from the sameposition in old frame, the first selection ismade randomly, and the remaining
selections depend on the previous selections.

3.4.4. Occlusion algorithm
For this strategy, as in the just-described dependent-selection algorithm, nothing is modified in the
network. The strategy is based on the assumption that if two objects, say A and B, have very close
coordinates, then it does not matter which coordinates correspond to A and which coordinates
correspond to B, for the purpose of identifying the objects.
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16 F. LARA-DAMMER ET AL.

More generally, when two or more objects overlap or are very close, NINSUN knows that they are
not one object, and it creates an equivalence relation of occlusion. At such times, all the objects that
are on top of each other (or are very close to each other) are identified as a single class.

In order to disambiguate, select the position in old frame corresponding to one object in the
occlusion class. All the values of the units corresponding to matches emanating from the selected
object in old frame are taken into consideration. The values of other units corresponding to positions
in old frame that are in the same class as the selected one are ignored. Each unit corresponding to a
match emanating from a position in old frame that belongs to the occlusion class is given the values
of the units emanating from the selected position in old frame in descending order.

It is interesting to note that if all the weights are set to zero in the neural network, this algorithm
makes NINSUN see all objects as overlapping – in other words, it is as if all the objects in the world
were hidden by other objects (except for one in the very front). This behaviour is the exact opposite of
the dependent-selection algorithm.

3.4.5. Which algorithm?
In general, any algorithm could be used, but in certain cases, for simulations that pose special chal-
lenges, one has to choose between the occlusion algorithm and the dependent-selection algorithm.

4. Relation identification

Once objects have been identified in a dynamic world, NINSUN then has a chance to observe relations
among them. A preliminary identification of the objects in a dynamic world will give NINSUN a
chance to observe relations among them, which in turn can have an effect on their identification, in
a retroactive way. Relations are of two types: local and global. The former refers to a relation that an
object has with another object, or other objects. The latter refers to those relations that involve the
environment as a whole. For example, the relation ‘hits’ is local because an object P can hit another
object Q. By contrast, the relation ‘number of balls in world’ is global.

Collisions and pass-through-each-other (henceforth, ‘pass-through’) events are the only local rela-
tions that the programme currently supports, but a future version is planned to include others, such
as attraction, repulsion, stickiness, splitting and fusing. This section will explain how NINSUN detects
collisions and pass-through events.

4.1. Collision detection

To simplify, let us assume that all ballsmovewith constant velocity and in a straight line until a collision
occurs. Two types of collisions can occur: collisions with walls and collisions with other balls. From a
computational standpoint, the two types have similarities but they also have subtle differences.

Collision detection takes into account conditions that always occur in collisions (but that are not
sufficient to guarantee that a collision occurred). These conditions should be selected in such a way as
to be as independent of each other as possible. Among these are abrupt change of the velocity vector
(which we refer to as acv, and which includes the direction of a moving ball), proximity to another
object, a ‘v-shape’ pattern that arises in the sequence of frames, angle of reflection, and interchange of
momentum. An explanation of how the system handles each of these conditions is given below.

The collision-detection mechanism of our system was designed in such a way that the larger the
number of conditions that are satisfied, the greater is the likelihood that an actual collision occurred.
Specifically, each of the conditions satisfied adds a contribution to a running total specified for each
object involved in the collision. We call this contribution a reward or a punishment, depending on
whether it is positive or negative, respectively. (The number can also be zero, in which case there
is neither reward nor punishment). A reward increases the likelihood of a collision detection, while
a punishment decreases it. However, it is worth mentioning that this is not the only influence. The
object correspondence influences collision detections and conversely, collisions detections influence
the object correspondence.
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If, for example, most of the conditions are satisfied and one or two are not satisfied, the running
total may well exceed a certain specified threshold. In that case, the system concludes that it has seen
a collision between two objects. If the total is below the threshold, then the system concludes that no
collision took place. The threshold value was chosen to be 0.5.

There was no fundamental reason behind the choice of the value 0.5. That value was simply
chosen as an intuitive reference value. The idea was that if the collision detection algorithm uses four
conditions, and if 1.0 is themaximumvalue that the running total can take, then each of the conditions
can provide a maximum reward of 0.25 (assuming all conditions are equally weighted). Therefore,
the threshold value 0.5 was chosen so that it is equally likely that a collision happened or not. More
information about the threshold is included in the section about the conditions.

We close this section by suggesting the complexity of collision detection in themicroworld of balls.
If n balls can collide with m walls, then there are nm possible collisions. Hence, at each moment, nm
wall–ball collision variables have to be updated. In a similar fashion, if n balls can collide with each
other, then there are n(n−1)/2 relations to be observed (due to the symmetry of the ball–ball relation).
Hence, at each moment, n(n − 1)/2 ball–ball running totals have to be updated.

4.2. Ourmethod of collision detection

Our solution to the collision-detection problem involves the idea of rather than giving fixed values to
each of the conditions, we allow variable values. Let us clarify this with a concrete case. Perhaps the
most intuitive condition for the perception of a collision is the presence of a short-distance observation.
(We discuss this idea in greater depth in Section 4.5.) If two objects are far from each other, the running
total involving this pair will receive a large negative value, which will inhibit the observation of a
collision involving them. As before, we call this inhibition a ‘punishment’ to the collision relation of the
two objects.

This punishment will fight against the effect of other positive values, if there were some conditions
favouring the observation of a collision. For objects that are closer, the punishment is milder and
milder, but for objects that are sufficiently close, there is no more punishment. If the objects get even
closer, the opposite phenomenon occurs. That is, the collision relation of these two objects will receive
a positive value (a ‘reward’) that increases the likelihood of the observation of a collision. However, no
matter how close the objects are, the reward cannot be so large that other conditions can be ignored,
because of course two objects can zip right by each other without colliding. This gives rise to the idea
of a reward/punishment function, an example of which is illustrated in Figure 11. Many mathematical
functions can model the biological principle just described as reward/punishment for the distance
observation, all of them having a shape similar to the one illustrated in Figure 11. Further explanation,
along with the actual function used in NINSUN, can be found in Section 4.5.

As was suggested in Section 4, the final decision for collision detection is a function of the sum of
all the reward/punishment values. If this sum exceeds a certain threshold, then NINSUN decides it has
seen a collision; otherwise, it sees no collision. The reward/punishment functions and the threshold
constitute a delicate system that depends on weights, all of which must be adjusted to work properly.
There is a fine equilibrium among all these weights and the threshold, and, in general, all of them are
sensitive to small changes.

In order to realise this type of collision detection, our strategy was to start with the threshold set at
0.5 and then to design reward/punishment functions taking this threshold into account. Themaximum
value that the sum can take is a relatively small number (e.g. 2.5 for wall–ball collisions), suggesting an
ideal observation of a collision. The sum does not have a lower bound, and can take negative values
of any magnitude. The idea is that of strongly punishing absurd misperceptions, such as a collision
of two objects when the objects are very far away from each other, or a collision with a wall where a
ball bounces off at an angle that is extremely different from the angle of incidence. Also, for collision
detection, it is desirable that the sumof the reward/punishment functions should stay as far as possible
from the critical value. Figure 12 summarises these principles about the sum-threshold system.
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18 F. LARA-DAMMER ET AL.

Figure 11. A model of a reward/punishment function based on the distance observed between two objects. The actual function
used in the model is presented in Section 4.5.

b

Figure 12. Scheme for the sum-and-threshold system for collision detection. The red arrow indicates reward values, and the blue
arrow indicates punishment values. The value b is an upper bound for the sum, which is a small positive number (2.5 for wall–ball
collisions).

If the fine equilibrium of this system has not yet been reached (usually one of the weights causes
excessive rewards for some condition), it is typical that when the system detects a collision, it detects
yet another collision on the next frame update. This is due to the similar frame configuration shared by
consecutive updates. If this happens, we say that the system is ‘hyper-sensitive’ to collisions. Similarly,
when the fine equilibrium is broken (usually one of the weights causes excessive punishment for
some condition), then the system often fails to detect a genuine collision. If this happens, we say that
the system is ‘hypo-sensitive’ to collisions. It may even happen that a non-calibrated system is both
hyper-sensitive and hypo-sensitive.

Homing in on a fine equilibrium state for the interpreter system requires a long and patient effort,
as combinations of several parameters have to be tested. A fine equilibrium is reached when the
system’s collision detection is similar in sensitivity to that of a human, at least for unambiguous cases.
A minimum test that the system needs to pass robustly is the reliable detection of collisions of a ball
with a wall.

The next subsections are devoted to describing in greater detail the conditions that are used to
detect collisions in the domain of balls and walls. All of these conditions have been implemented in
the interpreter.

4.3. The V-shape

The v-shape condition applies to a single, usually small, moving object. If the trajectory of the moving
object has this shape, the object may or may not have collided with something, but if it had a collision,
there is a high probability that this shapewill arise as part of its trajectory. A v-shape is likely to indicate
a change of direction of a colliding object. Typical cases of simple v-shapes are illustrated in Figure 13.
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Figure 13. Typical v-shapes arising from the collision of a ball with a wall.

The cases in Figure 13(a) and (b) do not present ambiguity. (Notice that a v-shape arises independently
of the shape of the wall.) However, the case in Figure 13(c), is ambiguous, since the ‘v’ angle is close to
180◦ and thus could easily be confused with a straight line.

Even though the term ‘v-shape’ suggests a specific visual form, some v-shapes are atypical in the
sense that they may not look like a ‘v.’ Such atypical v-shapes may or may not be ambiguous in
terms of indicating collisions. Some atypical v-shapes are illustrated in Figure 14. In Figure 14(a), the
v-shape is not ambiguous (even though its interpretation could be ambiguous, since it is not clear
how many collisions happened at the corner of the square). A situation like that in Figure 14(b) might
produce an ambiguous v-shape if the two consecutive collisions against the horizontal and vertical
walls happen too fast. One of the two v-shapes might be difficult for NINSUN to see. A situation like
that in Figure 14(c) is hard to disambiguate, as it might not be clear how many times the ball close to
the wall hit the wall after being hit by the other ball.

V-shapes producedwhen a ball hits a wall aremultiplied by a different weight than those produced
when a ball hits a ball. The reason for this is that when a collision occurs between balls, it is fairly
frequent that at least one of the two resulting v-shapes is ambiguous. For example, this is the case if
two balls are moving in almost the same direction, but the trailing ball is going faster than the leading
one, and hits it frombehind. In this case, neither of the ballsmakes a clear v-shape. In general, there are
subtle differences between the psychological processes for detecting collisions with walls and those
for detecting collisions with other balls.

In order to detect a v-shape, it is preferable to use as few frames as possible. This is because a ball
can hit a wall and shortly thereafter a second wall (as in Figure 14(b)), or hit a wall and a ball almost
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20 F. LARA-DAMMER ET AL.

Figure 14. Atypical v-shapes.

simultaneously, as in Figure 14(c). In cases like these, it is desirable that the v-shape be produced
before the second bounce. If the bounces occur too close in time to each other, the observation of one
of the v-shapes may fail to be noticed.

The current design uses five frames to determine whether an object’s trajectory has a v-shape or
not. The pattern that NINSUN detects is determined by the last five frames, labelled 1, 2, 3, 4 and 5 (1
being the most recent), with P1, . . . , P5 being the object’s positions in those frames. Specifically, for
a typical v-shape (a non-degenerate case), the segments P1P2 and P3P4 do not lie in the same line,
the angle ∠P2P3P4 is a non-180-degree angle, and the angle ∠P3P4P5 is a 180-degree angle. (See
Figure 15(a).) For a degenerate case, such as when there is a collision perpendicular to the wall, the
v-shape is determined taking into account the fact that the returning path of the ball is on the same
line.

A v-shape seen in an object’s trajectory also gives rise to a spatial point of interest – namely, the
vertex of the ‘v,’ which is called the ‘v-point,’ and which is actually a small circle. A v-point is usually
not one of the frame positions. It is a calculated or imagined point. If a ball hits a wall, the distance
between the point of contact and the centre of the v-point would be the same as the radius of the ball.
(See Figure 15(b).)

A v-point may be useful for certain computations, such as the determination of the distance
between a ball at some instant and the ball’s point of contact with a wall. For such purposes, the
v-point gives a better estimate of this distance than an estimate using one of the frame positions.
However, v-points are not always available and the system should not be too reliant on them, because
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Figure 15. Patterns in the v-shape (Frame 1 is the latest). (a) ∠P2P3P4 is a non-180-degree angle, and angle ∠P3P4P5 is a
180-degree angle; (b) The v-point, represented in red, is imagined by the observer.

v-shapes are not always produced when collisions occur, and on occasion a v-shape will be ‘seen’
when in fact no change in direction occurred, which gives rise to the possibility of a false detection of
a collision. Of course, v-points are most likely unavailable because of NINSUN’s sampling rate, which
makes it see the world in snapshots that in general do not include the vertex of the ‘v.’

It is important to synchronise the observation of a v-shape with other observations, such as an
abrupt change of velocity (see Section 4.4). They must be produced simultaneously. If this is not the
case, the reward/punishment sum totals would be modified at different ticks of the clock, resulting in
erroneous observation of a collision. Since the system currently uses seven frames, there are several v-
shapes that can result from a collision. For non-degenerate cases, the current model creates a v-shape
whenever angle∠P2P3P4 is less than 180◦ and angle∠P3P4P5 is a 180-degree angle (as was explained
before). If another condition were observed at another instant, say for example, if angle∠P2P3P4 were
less than 180◦, then the criterion of simultaneity would not be met, and NINSUN would not see a
v-shape, and as a result, no collision would be seen. Conversely, sometimes two collisions are detected
when only one really took place.

In our model, if a v-shape is observed in the trajectory of one of the balls, a reward is added to the
collision relations associated with that ball. If a v-shape is not observed, there is no punishment. This is
because the production of a v-shape is an all-or-nothing phenomenon (unlike ‘short distance,’ which
has a wide range of ambiguity). Also, the absence of punishment when no v-shape is produced gives a
chance for those collisions that occur without a clear v-shape to be observed. For a wall–ball collision,
the reward value is 0.5 (the same as the threshold). For a ball–ball collision, the reward value is 0.25 if
a v-shape is observed for just one of the two balls, and 0.5 if v-shapes are observed for both balls.

4.4. Abrupt change of velocity (acv)

Like the v-shape condition, the abrupt change of velocity (acv) condition involves a single object. This
means that NINSUN might observe a ball having acv without observing that it collided with a second
ball or a wall. Since our model is stochastic, acv is occasionally observed when there is actually no
change of velocity; and, for the same reason, sometime acv is not detected even though there was a
change of velocity.
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22 F. LARA-DAMMER ET AL.

Given a sequence of ball positions P1, P2, . . . , Pn, the ball’s velocity vector vi is given by the vector
connecting two successive positions

−−−→
Pi+1Pi (its magnitude, Pi+1Pi , gives the ball’s perceived speed).

In order for a collision to be detected, the acv observation must be simultaneous with the v-shape
observation. We compute the vector difference �v = v1 − v3 (not v2 − v3) for the detection of a
change of velocity.

Notice that for an accurate computation of the change of velocity, vector v2 is less reliable than v3,
since v2 is not parallel to either of the two lines of the ‘v’ shape, at the instant of observation of the
v-shape. (See the positions of frames 2 and 3 in Figure 15(b).)

Intuitively, the perceived change of velocity �v has to be a large vector if there is a collision. This
statement can be formulated in terms of an inequality involving the average distance between two
frames (towhich, in this case, P2P1 gives a goodapproximation). Thus, the statement canbe formulated
by a condition of the form

||�v|| = ||v1 − v3|| > α · P2P1, where α is a constant.

However, in order to synchronise it with the v-shape, two more conditions are added. One is that the
vector difference v3 − v4 should be close to zero and the other is that the vector difference v2 − v3
should not be close to zero. Once again, these conditions are expressed in terms of P2P1. They are:

||v3 − v4|| < β · P2P1

and

||v2 − v3|| > γ · P2P1
The constants α, β , and γ were determined by trial and error. Values close to 0.1, 0.3, and 0.8,
respectively, work satisfactorily.

It is worth noticing that these computations require five frames. The computations above suggest
that human beings must have a mechanism equivalent to that of storing several frames, and most
likely at least five.

The reward/punishment values associated with acv are similar to those associated with v-shape.
There is a reward when it is observed, and there is no punishment when it is not observed. For a
wall–ball collision relation, the reward value is 0.5 (the same as the threshold). For a ball–ball collision
relation, it is 0.25, even if both balls are observed as having undergone acv. Giving a reward value of
0.5 if both balls are observed as having undergone acv might seem reasonable, but it actually turns
out that the system then becomes hyper-sensitive.

4.5. Proximity

If two objects collide, there is an instant at which the distance between them is zero. However, most
likely NINSUN will miss this instant, as its input comes only from the few discrete frames that it can
store, unless a frame were, by chance, created at the exact instant of contact of the two objects.
Nonetheless, using the condition of proximity, NINSUN can ‘cast a vote’ in favour of or against a certain
event as constituting a collision.

In this section, we are concerned with how close two separate objects are when at least one of
them is moving, and how this influences NINSUN’s perception of a collision. Let us assume that we
have two balls that, after moving towards each other, collide, and then move away from each other.
(See Figure 16.)

At any instant, NINSUN has seven frames, each of which stores the positions of the two balls.
The distance between the objects is measured at each frame update. (Three of these distances are
indicated by the three double-headed arrows, joining the two positions labelled ‘2,’ those labelled ‘3,’
and those labelled ‘6.’) These distances are likely to influence the perception of a collision in situations
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Figure 16. A diagram suggesting the proximity of two objects. The short distances in frame 2 and possibly frame 3 (solid
double-arrowed lines) have a good chance of enhancing the perception of a collision, but not the distance in frame 6 (dashed
double-arrowed line). The positions shown in red are not seen by NINSUN.

when the majority of other conditions are met. Additionally, when the distances are too large, these
distances have an inhibitory effect on the perception of a collision, even if other conditions were met.

Given the fact that there is missing information between consecutive frames, most of the time the
objects appear to have no contact, whether or not there was actual contact. Interestingly, sometimes
we humans seem to perceive a zone or point of contact between the objects. However, the contact
is most likely not directly observed but created in the brain. (See the red circles in Figure 16.) Other
times, we do not have such a perception of contact, but we still judge that there was a collision based
on the proximity of the objects. Therefore, ultimately, our perception of a collision is influenced by the
proximity of the objects if their positions are very close for at least one instant.

The notion of proximity in NINSUNwas designed towork in away that resembles animal behaviour.
In order to detect a collision, NINSUN tends to reward short distances andpunishes non-short distances
or long distances.

An analogy may help explain how proximity is intended to work in NINSUN. Consider a dog
approaching a skunk starting from a very long distance. While the dog is sufficiently far away, the
skunk behaves in its usual way (this is a zone of ‘non-closeness’ for the skunk). If the dog gets closer,
the skunk becomes alert. (This is a zone of blurriness: not far but not close either.) If the dog gets even
closer, the skunk prepares to spray by adopting a certain body position. At this point the skunk is in a
tense state, and the tensionmight last while the dog approaches a little more. If the dog backs off, the
skunk waits until the dog is sufficiently far away, and only then is its tension released, and it reverts to
its usual shape. However, if the dog gets closer, the skunk will become tenser, making it highly likely
to spray at any time. (At this point, the dog is in a zone of ‘closeness’ for the skunk.)

In our model, there is no sharp demarcation line between ‘close’ and ‘far.’ Instead, the reward/
punishment function in NINSUN gets positive values (reward) for short distances, and negative values
(punishment) for large distances.

The main difference between the mechanisms for observation of a v-shape (and also acv) and the
mechanism for observation of distance is the nature of their reward/punishment functions. In the case
of v-shapes and acv, a two-valued function is involved, whereas for proximity, a continuous function
is used. Similar distances get similar rewards or punishments.

If the reward/punishment function for the observation of proximity were calculated using a two-
valued function, it would give the same reward to any distance that was considered ‘close.’ (In the
example of the skunk and dog, the skunk would spray only and always if the dog approached within a
certain radius, which would result in a rigid system.) Animal behaviour is more flexible, in that it gives
some chance to both prey and predator to avoid a fatal ending. The problem with treating proximity
as a two-valued function is that a psychological sense of closeness depends on many factors, not just
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24 F. LARA-DAMMER ET AL.

precise distance. For example, a fast-approaching dog might create higher tension in the skunk than
a slow-approaching dog at the same distance.

Keeping inmind this example, we now explain how proximity is implemented in NINSUN. Suppose,
for simplicity, that an object is approaching a wall perpendicularly. (The same type of reasoning is
valid for the more general situation of two objects approaching each other at random angles.) The
judgement of proximity will depend on the Euclidean distance, but this number alone will not suffice.
If the distance between positions in consecutive frames (which gives the speed of the moving object)
is greater than the distance between the object and the wall (something that can happen when the
object is moving fast), the object is perceived as very close to the wall. This is in agreement with the
notion of proximity described in the dog–skunk situation, where a fast-approaching dog is more likely
to raise the skunk’s tension than a slow-approaching dog.

The proximity of two objects is used by NINSUN in deciding whether the objects collided or not.
Since this judgement is based on a threshold (as was explained in Section 4.2), the distance needs to
be normalised according to this threshold. Direct use of the Euclidean distancemeasured in units such
as pixels is not sufficient.

The average distance between successive positions of the object plays the role of a basic unit of
length that is used for the normalisation. The normalised distance between a moving object and a
wall is defined to be the Euclidean distance between the wall and the object divided by the average
distance between the object’s successive positions. The normalised distance between two moving
objects is computed similarly. It is defined to be the Euclidean distance between the objects divided
by half the sum of the average distance between successive positions for each of the two objects.
There are of course other sensible ways to define proximity, as long as they take into account not only
the spatial separation of the objects but also how fast the objects are approaching each other.

Since the average distance between successive positions represents an average speed, proximity in
NINSUNrepresents, in a certain sense, anapproximationofhowmuch time theobjectwill need to reach
thewall. This follows from the formula speed = distance/time. The validity of this approximation of the
time to reach the wall is due to the fact that in a short amount of time, the velocity is approximately
constant, especially in the domain of balls and walls.

Notice that this normalised distance of a ball from a wall depends on the ball’s speed. The faster it
is going, the greater the perceived proximity. Unlike the other two conditions for collision detection,
which are unary relations, proximity is a binary relation.

An introductory idea for the observation of proximity was described at the start of Section 4.2.
The reward/punishment function for proximity is modelled by a function with the shape illustrated in
Figure 11. A function that behaves acceptably for wall–ball collisions is f (x) = −x2 + 1, where x is the
normalised Euclidean distance (or proximity) between thewall and the ball, and the constant 1 is twice
the threshold. For ball–ball collisions, the function is f (x) = −x2 + 0.25, where x is the normalised
Euclidean distance (or proximity) between the balls. These functions have the advantage that if two
objects are not close to each other, they strongly inhibit the detection of a collision, which, in some
cases, would otherwise be very likely, thanks to the observation of other necessary conditions. (Our
choice of these functions is of course not unique. Another function that was tried in the model and
worked equally well was of exponential type.)

4.6. Equal angles

This is a condition for helping to decide whether there was a collision between a ball and awall. It does
not apply to collisions between balls. The main idea is that if the angle of incidence is the same as the
angle of reflection (or if they are close), this favours the observation of a collision with the wall; and if
the angles are not the same (or are not close), this discourages NINSUN from seeing a collision of the
ball with the wall.

Since humans are sensitive to direction, a relatively small discrepancy between these two angles
can affect the likelihood of perception of a collision of a ball with a wall. The larger the discrepancy
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between the angles, the larger the likelihood that the event was not a collision of a ball with a wall.
This condition is similar to the distance function, in that both involve continuous variables. In NINSUN,
the angle function is modelled by a continuous quadratic function, similar to the function used for
distance.

What about a situation where a ball hits a wall and moves away from the wall following exactly
the same path, thus reversing its tracks? Such a situation does not involve equal angles of incidence
and reflection, because the angle made by the returning pathway is not a 45-degree angle, but a
135-degree angle.

The function we chose is:
f (θ) = 0.5 − θ2||P1 − P2||2,

where θ is the difference between the angle of incidence and the angle of reflection, and P1 and P2 are
consecutive frame positions. This function is used when there is a v-shape. When there is no v-shape,
the value −2 is returned (which is enough to prevent the perception of a collision).

NINSUN uses the four most recent frames to estimate the angles of incidence and reflection. When
there is a v-shape, NINSUN uses the v-point to determine the angles (recall that the v-point is most
likely not in the four frames, but is ‘imagined’). In the event that the v-point cannot be determined (e.g.
when the first four frames make an angle close to 180◦) NINSUN uses frame 3 as an approximation to
the v-point.

If a ball is moving in a very narrow region surrounded by walls, then many bounces will occur in a
short amount of time. In such a situation, it is difficult to detect the angles and the number of collisions.
NINSUN cannot give reliable answers in cases like these because of the irregularity of the trajectory
fragment.

We ran numerous simulations of collision detections when a ball bounced off a wall with expected
andnon-expected angles. (Simulationswith thewrong angle of reflectionwere createdwith thehelp of
the Tricycle command blow, which imitates the action of wind on a ball.) When the angle of incidence
was too different from the angle of reflection, NINSUN did not recognise the event as a ball–wall
collision. A video for this simulation can be found in the archives under the name ‘Same Angle V1.’ The
file ready to run the simulation is wrongAngle.txt.

Onewould think that if most of the conditions for the observation of a collision are present, NINSUN
should see a collision. However, this is not necessarily the case, since the conditionsmay not have been
seen by NINSUN. An example of this is recorded in a video (see archives ‘Same Angle V2’) where there
is a slight ambiguity as to whether the event involved a ball rolling along a circular wall or colliding
with the wall at a very obtuse angle. In this video, NINSUN does not see any collisions.

4.7. Conservation ofmomentum

This condition is used only to detect ball–ball collisions. For detection of ball–wall collisions, we follow
the ‘same-angle’ approach just described. This is an attempt at psychological realism. If two balls
appear to interchange their momenta, this favours the observation of a collision. Psychologically,
seeing a swap of momenta suggests that some part of the velocity vector of one ball was passed to
the other ball, and vice versa.

The reward/punishment function for conservation of momentum is modelled by guessing or
predicting the outcome of a collision, in a manner similar to how a billiards player tries to imagine
the trajectories of the balls that are involved when the player is about to hit a ball with the cue.
This idea is related to the ideas of dynamic mental representation (suggested in Freyd (1993)) and
representational momentum (suggested in Perry, Smith, and Hockema (2008)). We check momentum
conservation of two colliding balls by looking at the three last frames. Frames 2 and 3 are used to
compute the velocities of the two colliding balls, and this information is then used to predict the
velocity of the balls, based on the principle of momentum conservation. Once the new velocities have
been guessed, they are matched against the actual velocities (as determined from frames 1 and 2). If
the actual velocities are sufficiently close to the predicted velocities, NINSUN favours a collision vote.
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26 F. LARA-DAMMER ET AL.

If they are too far apart, NINSUN is discouraged from taking the event as a collision. In the former
case, collision detection is rewarded by 0.25, whereas in the latter case, collision detection is punished
by −0.25.

Why is it necessary to punish in such situations? Suppose two balls pass close to each other without
colliding and both hit a wall at about the same time. Then both balls have good chances of having
rewards for v-shape, short distance, and abrupt change of velocity. Thismight leadNINSUN to perceive
a collision between the two balls. However, adding the possibility of punishment to the conservation-
of-momentum condition prevents this from happening.

In general, when there is no collision, there is a high probability of getting punished by the
conservation-of-momentum condition, and when there is a collision, there is a high probability of
getting rewarded by the conservation-of-momentum condition. Therefore, one might well ask if this
condition alone would be sufficient to detect collisions. The answer is no, although it is true that the
condition alone takes care of many cases. An example of when conservation-of-momentum does not
suffice is when two balls are moving parallel to each other with (nearly) identical velocity vectors. In
this situation, it is the distance that allows NINSUN to recognise that the balls are not colliding.

One can also ask whether, if the conservation-of-momentum condition were only a punisher (i.e.
never rewarding, even when there is an actual collision), the other conditions would be sufficient
to identify a collision. The answer is once again negative. Since certain collisions are hard to detect
(for example, some v-shapes are almost straight lines), and since the positions in frames are inexact,
an incorrect collision detection has a non-zero probability when the conservation-of-momentum
condition is ignored.

4.8. An overview of reward and punishment

In thepreceding sectionswegavedescriptions of themechanismsof reward andpunishmentprovided
by various conditions. However, decisions about collisions depend upon the result of adding the
rewards and punishments coming from all the different conditions. This section is devoted to clarifying
the reward/punishment mechanism as a whole. We will look at two examples.

Suppose a red ball and a blue ball aremoving far fromeach other inside a container and both hit the
wall simultaneously. NINSUN sees this event as in Figure 17(a). According to the reward/punishment
assignments discussed above, their ball–ball collision sum totals are both likely to receive 0.5 for v-
shape and 0.5 for acv, resulting in a sum total of 1.0 for each ball, which is the maximum score a ball
can receive for collision detection. Should this situation be interpreted as a collision between the two
balls? Not at all.

Luckily, the sum totals for other conditions keep this from happening. In fact, the distance condi-
tion’s sum total has a large negative value which, when added to 1.0, still gives a negative number.
If, in addition, the collisions with the wall occurred very near each other, then the distance condition
might have been rewarded. However, this reward is likely to be a small positive value (less than 1). The
momentum condition’s sum total is also very likely to be a negative value, and that also will help to
prevent a collision from being seen. Therefore, a collision is not likely to be observed when two balls
by chance hit the wall simultaneously. It is worthwhile pointing out that the sum-total mechanism is
effectively a form of abduction or reasoning from best explanation.

The second example involves a circular container that has a vertical wall passing through it. (See
Figure 17(b).) Inside the container is a ball moving at constant speed, but an external agent (such as
the wind) makes the ball change direction at a 45-degree angle when the ball is very close to the
vertical wall. Therefore, the ball appears to collide with the wall but with an inappropriate angle of
reflection. Does NINSUN see this event as a collision? It depends on the angle of incidence. If the angle
of incidence is 45◦ (or close to it), the answer is yes. However, if the angle of incidence is very different
from 45◦, such as 90◦ (as is shown in Figure 17(b)), the answer is no.
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Figure 17. (a) A case that is not collision a ball–ball collision. (b) A case that is not a ball–wall collision.

The reason for this is the punishment given when the difference between the two angles is large.
Because this difference is far fromzero for the angles in the example, thepunishment is a largenegative
number, which cancels out all the rewards coming from other conditions.

5. The ambiguity of collisions as opposed to pass-through-each-other events

In Tricycle, balls can be created so that they can either pass through each other (like two shadows on a
wall) or collide with each other. Moreover, a 2-D world can be created as if two layers of balls existed.
The balls in a single layer may or may not collide with each other, but balls in different layers do not
collide. This creates various sets of possibilities that can affect NINSUN in unexpected ways, since it
is not informed about of the existence of the two layers. This type of world resembles an everyday
situation where some objects are occluded by others or appear to pass by each other. In the simulated
world, a human will observe two types of events (collision events and pass-through events).

Curiously enough, when two balls coming from certain directions meet at certain speeds, humans
tend to confuse these two types of events. Humans tend to switch quite randomly between seeing
collisions and pass-throughs, independently of what actually happened. This was verified in our
experiments with human subjects which will be described in another article. The choice of which
type of event is perceived is a result of neural competition between two types of perceptual activity
fighting for the observation of one relation or the other, similar to the internal fight involved in the
perception of the Necker cube. Just as only one interpretation at a time is perceived in the Necker
cube illusion, only one event is perceived when two balls moving with certain velocities coincide in
space (at least as perceived by the eye) and then move away from each other. The following section
examines this type of internal perceptual competition.

5.1. Why two balls appear to collide or pass through each other

Suppose two balls are approaching each other with equal speeds from the upper and lower left
corners of a square towards its centre. (See Figure 18.) Assume we do not know if they will collide
or pass through each other when they meet. The critical moments are just before and just after the
spatial coincidence of the two balls. Suppose that in these two instants we have recorded the two
positions (before and after, but not between) of the two balls. We will call them Frame 2 and Frame 1,
respectively.
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Frame 1Frame 2

A

B

C

D

P

Q R

S

T

Frame 1Frame 2

Figure 18. A diagram to explain the collision illusion. Circles A and B are in Frame 2, and circles D and C are in Frame 1. A and B
represent the balls before they coincide in space, and C and D represent the balls after the coincidence. If the match given by the
solid arrows is chosen, a collision will be perceived. If the match given by the dashed arrows is chosen, balls passing through each
other will be perceived.

If NINSUN chooses the correspondence AC and BD from Frame 2 to Frame 1 (solid arrows), then
the event has a very high likelihood of being seen as a collision. On the other hand, if NINSUN chooses
the correspondences AD and BC (dashed arrows), then the event has a very high likelihood of being
seen as a pass-through event. It all depends on howNINSUNwinds up tracking the two balls – namely,
either by selecting AC and BD or by selecting AD and BC . As we will see, context has a significant
influence on which of these two ways of tracking the balls are more likely to be chosen.

In Figure 18, we see that if the event is perceived as a collision, the ball coming from point P is
seen as following the v-shaped path PATCS, and the ball coming from point Q is seen as following the
v-shaped path QBTDR, where T is imagined as the point of collision of the two balls. However, if the
event is perceived as a pass-through, then the paths of the balls are seen as the straight lines PATDR
andQBTCS. Between frames 2 and 1, there is critical missing information, and this missing information
needs to be filled in by NINSUN to make sense of the situation and get rid of the ambiguity.

Two questions arise. (1) What would increase the likelihood of obtaining the missing information?
(2) Are the collision and pass-through events the only two interpretations for a situation like that in
Figure 18?

5.1.1. Increasing the probability of an illusion
Of course, sometimes the crucial information is available. Consider, for example, the situation of two
objects that actually do pass through each other. In order for NINSUN to detect a pass-through event,
the frames might provide crucial pieces of information about the moment of spatial coincidence. For
instance, the objects might coincide in space for a relatively long time, thus giving NINSUN a chance
to obtain key pieces of information directly from the frames. Ambiguity arises when such information
is not available.

Certain conditions make the unavailability of the disambiguating information more likely. In the
case of two objects passing through each other, if they move very fast or are very small, then chances
are that the observer will not see the actual coincidence of the two objects. In this case, the event may
well be perceived by NINSUN either as ‘balls colliding’ or as ‘balls passing close to each other.’

We can use these facts to our advantage during certain simulations. We can temporarily modify the
speeds of the objects to enhance the likelihood of interpretations that we know are more probable
when the objects move at certain speeds.
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5.1.2. More than just two types of perceived events
In the example of the two balls approaching each other (Figure 18), we mentioned only two interpre-
tations, since Tricycle can only generate worlds in which two balls collide or pass through each other.
However, it is conceivable that wemight allow Tricycle to create other kinds of worlds featuring events
that look like the one in Figure 18. For example, the objects might approach each other and suddenly
change their trajectories without ever touching each other.

Although this project does not focus on such worlds, NINSUN can nonetheless perceive a two-ball
event that is neither a collision nor a pass-through event. Moreover, there are times when even human
interpreters are not sure ofwhat happened, even though the event occurred right in front of their eyes.
This means that we are left with a third possible interpretation: neither a collision nor a pass-through
event.

Two short simulations of situations intended to show this third kind of interpretation are available.
In them, two balls very close to each other move in the same direction and at the same speed in a
single line. In the first simulation, after one ball hits the wall, the balls collide with each other. In the
second simulation, after the ball hits the wall, the balls pass through each other. In both simulations, it
looks to a human as if the balls are moving at an equal distance all the time and only one ball hits the
wall. It is very difficult both for a human and for NINSUN to see this event as it actually happens. The
simulations are shown in videos in the archives under the names ‘Ambiguous Event V1/V2.’ The world
for the two simulations can be run from a Tricycle script named ‘twoCloseSmallBalls.txt.’

5.2. The crucial role of the direction condition

When NINSUN is faced with a situation that might be either a pass-through event or collision, the
neural competition described above is influenced by the direction condition. (See in Section 3.1.) This
is because a telltale sign of a pass-through event is the lack of a change of direction, whereas most
collisions involve a change of direction. In order to demonstrate this computationally, we set up a
simple simulation.

Two balls were made to pass through each other at a 90◦ angle at the centre of a circular container,
and they were given exactly the same speed, so that they periodically passed through each other
at the centre after bouncing off of the circular wall. NINSUN was put in a mode in which it did not
modify the world, and also the direction condition remained unchanged unless manually changed by
a human. We explored various settings of the weight of the direction condition, in order to figure out
what values would make NINSUN observe more pass-through events than collisions, and vice versa.
A video of this simulation can be found in the archives under the link ‘Direction Parameter V1.’ In
Section 5.4, we describe other simulations, in which we let the direction condition calibrate itself.

When the direction condition’s weight is manually set to a high value, NINSUN tends to see pass-
through events. This happens because when NINSUN relies heavily on this condition, it will tend to
interpret ambiguous events as not involving a direction change, which means it will tend towards the
pass-through interpretation. Conversely, when the direction condition’s weight is manually set to a
low value, changes in direction are of little relevance, and NINSUN relies mostly on other conditions.
As a result, ambiguous events are more likely to be seen as collisions.

5.3. The influence of speed

Suppose a human is observing a Tricycle simulation of the two identical balls described in Section 5.2.
Our experiments with human subjects show that if the balls are going at a medium speed, the human
interpretation might vacillate between a collision and a pass-through event. However, if the speeds of
the balls are reduced, humans will tend to favour pass-through-each-other events, and if the speeds
are very low, the ambiguity vanishes totally, and humans will see only pass-through events. (Recall
that the simulation is set up so that the balls are actually passing through each other.) Conversely, if
the speeds of the balls are gradually increased, humans will start seeing collisions once again.
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We now let NINSUN observe the same simulation. Suppose that NINSUN’s weight of the direction
condition has been set to an intermediate value. Interestingly, NINSUN acts similarly to a human.
If we start out with the balls moving at a medium speed, NINSUN will vacillate between the two
interpretations. If we gradually slow down both balls, NINSUN will start seeing more pass-through
events than collisions. And conversely, when the speeds are gradually increased, NINSUN starts
detecting mostly collisions. A Tricycle script to run this experiment is testWithSquare2.txt.
A video of this simulation can be found in the archives under the link ‘Direction Parameter V2.’

The simulation in this video has essentially four stages.

(1) We start with high speeds (0.8) and a relatively low setting of the weight of the direction
condition (0.1). As expected, we see mostly collisions.

(2) We reduce the speeds of theballs to 0.1, keeping theweight of the direction condition constant.
NINSUN does not see collisions here. (This was a surprise because we expected that a low value
of the weight of the direction condition would bring about the perception of mostly collisions.)

(3) We raise the weight of the direction condition to 0.9 (a high value). Now NINSUN sees no more
collisions.

(4) Finally, with the weight of the direction condition still at 0.9, we increase the speeds of the balls
once again. Now NINSUN sees only pass-through events.

In addition to being an interesting cognitive phenomenon, reducing the speed to disambiguate
ambiguous events can also be used as a strategy in certain simulations to counter the lingering effect
of an earlier context. By reducing the speed of the balls, the effects of the old context are (at least
partially) diminished, and if we then rapidly increase the speed from slow to fast, NINSUN will start
seeing the desired effect more quickly.

5.4. Disambiguating by context

Context has a strong influence on human perception. The Ebbinghaus illusion (the perception of the
size of a central circle surrounded by circles is influenced by the size of the surrounded circles), the
Ponzo illusion (the perception of the size of an object is influenced by its background), and the moon
illusion (themoon appears bigger when on the horizon than in other positions) illustrate the influence
of context on the perception of size. Context is also a crucial aid in disambiguation. For example, a
listener might hear either I like themall or I like them all depending on the context. In a similar manner,
context influences the perception of balls as colliding or passing through each other.

If NINSUN has seen m collisions and n pass-through-each-other events in a short interval of time,
then the chance that a new event will be perceived as a collision or as a pass-through will depend on
the values ofm and n. The larger the number of collisions, the more likely the perception of a collision,
and the larger the number of pass-through events, the more likely the perception of a pass-through
event.

Figure 19 illustrates a simulation given to NINSUN (a video of this simulation can be found under
‘Direction Parameter V3’). The two pictures represent different stages of the simulation. The red balls
are set up to bounce simultaneously off of the circular wall, after which they pass through each other
at a 90-degree angle at the centre of the container. This pattern repeats over and over again, like
clockwork. At the same time, during the first part of the simulation, the blue balls are made to collide
with each other. The blue balls are made larger in order to raise the probability of a collision with each
other, but their larger size plays no role in object-tracking, since the weight of the size condition of the
neural network is set to zero. Also, the weight of the colour condition is set to zero, so colour plays no
role in NINSUN’s tracking of the objects.

Initially, all balls are given the same medium speed. Under these circumstances, the blue balls
undergo a large number of collisions, and their distribution looks random. Later on during the
simulation, the blue balls are made to pass through each other, as shown in Figure 19(b). As a
consequence, the number of collisions of blue balls that NINSUN ‘sees’ per minute is lower than
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Figure 19. A set-up to manipulate the perceived frequency of collisions among blue balls from many collisions (a) to few collisions
(b). In both cases the red balls are made to pass through each other at the centre of the circular container. In (a), the blue balls are
made to collide with each other. In (b), the blue balls are made to pass through each other. In both cases the blue balls move in an
apparently randommanner.

in the first stage. Also, the number of perceived collisions per minute of red balls is lower than in the
first stage. This is quite remarkable, since the properties of the red balls were not changed at all.

This simulation can be run by opening the script directionParTest2.txt and then letting
NINSUN observe the world with the commands

autoModifyWorld false;
activateDirectionController true.

The first command ensures that NINSUN makes no changes to the world. The second command
ensures that the weight of the direction condition is no longer controlled by a human, but is self-
adjusted by NINSUN as a function of the context. (See Section 5.6 for more detail on context and
self-adjustment.) By clicking on the network button, one can see the direction condition’s weight
changing often in value, as the numbers of perceived collisions and pass-through events change. (The
direction condition’s weight can also be seen in the text area on the interpreter side.) In the second
stage, the world is manually set to disallow bouncing among the blue balls by executing the Tricycle
command setBallBouncing false. (NINSUN does not know of this change.) The weight of the
direction condition will then slowly drift upwards.

This simulationwas designed in such away that therewould be a larger number of collisions among
blue balls in the first stage than in the second stage. This was done by making the blue balls larger
in size and by putting them in a different layer from the red balls. The blue balls thus do not interact
with the red balls. This, of course, yields a large number of pass-through-each-other events in the first
stage, since the red balls and blue balls pass through each other. However, in the first stage, evenmore
collisions among the blue balls are perceived than in the second stage.

The simulation showed that there is a tendency for NINSUN to see the red balls as colliding with
each other in the first stage. In the second stage, when the blue balls are made to pass through each
other, the situation is dominated by pass-through events, andNINSUN’s tendency is to see the red balls
also as passing through each other. There are moments in this simulation where too many balls were
close to the centre, resulting in many overlaps. This seemed to confuse the object-tracking process,
and as a result, the red balls were occasionally seen as colliding with each other or even with the blue
balls, even though no such event ever actually occurred.

This surprising result inspired us to explore other variations on the original experiment. One
possibility was to invert the actual event, making the red balls collide with each other instead of
passing through each other. Also, since colour plays no role, wemade all balls the same colour (green).
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32 F. LARA-DAMMER ET AL.

Instead of using a 90-degree angle, we used a 180-degree angle, with the balls moving horizontally
back and forth on the diameter of the circular container. We were interested in seeing how humans
and NINSUN would perceive this event when the speeds of the balls were manipulated.

It turns out once again that the situation is perceived to consist mostly of collisions or of pass-
through-each-other events, depending on the speed of the balls. In this variation, the balls that move
along the diameter of the circle are made to collide with each other at the centre, while the others all
pass through each other. The balls on the diameter are made to move very slowly for several seconds,
and NINSUN sees them as passing through each other, under the influence of the many pass-through
events generated by the other balls. Then the balls on the diameter are sped up. After a few seconds,
NINSUN’s perception starts to change. It starts seeing occasional collisions, and then the number of
collisions increases very strongly. This rapid rise in the frequency of perceived collisions affects the
weight of the direction condition, and soon NINSUN sees the balls on the diameter as colliding.

Notice that the high speed of the balls occasionally affects object-tracking. The fact that all balls
are identical makes the identification of them rather challenging for NINSUN (and for a human, too).
(A Tricycle script of this variation is found in the file twoSmallBalls4.txt. A video can be found
in the archives under the link ‘Direction Parameter V4.’)

5.5. Other influences

If we greatly increase the size of the balls in the experiment described in Section 5.2, chances are that
pass-through events will be observed if they are actually passing through each other. This is because
in Figure 18, the radii of the balls can be greater than the distance between the positions in frame 2
and frame 1 (of a single ball), and NINSUN (and, of course, a human aswell) can then detect the overlap
of the two balls. In general, the size of the balls affects the likelihood of seeing a pass-through event
or a collision. However, for the sake of simplicity, our research was orientedmore towards the study of
smaller balls, and since the balls are in general very small, their size can essentially be neglected.

We can also observe the effects of manipulating the size of the container. If we start with a large
container with balls moving at a medium-low speed and actually passing through each other, we are
likely to see balls passing through each other. If we then gradually decrease the size of the container,
the frequency of collisions with the wall will increase. When the size of the balls is very small, the
number of collisions with the wall can be so high that people might well perceive ball–ball collisions
instead of pass-through events. (This hypothesis has not been tested with human subjects.) In any
case, the frequency of perceived collisions with the wall may have an effect on the perception of the
current situation. However, the influence of ball–ball collisions seems to be smaller than the influence
of ball–wall collisions. Although they are very provocative, these kinds of perceptual effects, due largely
to having a very small container, are not a major focus of our research.

5.6. Feedback from collision detection to object correspondence

This section concerns how context affects the likelihood of perception of a collision or pass-through
event. We begin with an analogy to everyday life. Consider people’s subjective estimates of the
danger of certain environments. For example, most people will tend to imagine a church and a
dark alley as presenting very different levels of danger. What matters would seem to be how many
unpleasant experiences (e.g. assaults) have happened before in the given environments. However,
what is even more important than the number is the relative frequency of unpleasant experiences in a
given environment. Similar ideas hold for the detection of relations in the world of balls and walls. The
number of perceived relations of one particular type should be compared to the number of relations
of other types. This comparison yields a relative frequency.

One way to define this relative frequency is as follows:

r = ptpm /(ptpm+ colpm ),
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where ‘ptpm’ is the number of pass-through events per minute and ‘colpm’ is the number of collisions
per minute. The denominator is of course the total number of events.

A slightly different approach to defining r involves the psychological impact that a collision has
compared to that of a pass-through event. This can be done by attaching weights to the two event
numbers. In this case r would be defined as follows:

r = ptpm /(ptpm+w colpm ), (1)

wherew is aweight thatwe can assign to a collision relative to a pass-through event. NINSUNappeared
to work best in the simulations described above by making w = 10. (This means that NINSUN gives a
collision 10 times the importance that it gives to a pass-through event.)

We can try to justify the insertion of the factorw by returning to our analogy of danger assignment
to various places. We could more accurately model a person’s sense of a place’s danger if we had a
measure of the emotional costs of the experiences in various places (e.g. in a church or a dark alley). A
single bad experience in a dark alley might far outweigh many tranquil experiences in a church.

The factorw can also be understood in a different way. Humans aremore sensitive to an experience
when it is recent. For instance, when a frightening event has just happened, people get scared and
may well take precautions. After some time, however, when the event has receded sufficiently far into
the past, most people gradually lose their fears and no longer take precautions. The hypersensitivity
tends to fade.

In the case of people watching Tricycle simulations of balls moving inside a container, whenever
there is a perception of a collision, this perception seems to stay in short-term memory for a short
amount of time (say a couple of seconds), a little like the well-known auditory-reverberation phe-
nomenon known as the ‘phonological loop.’ If another event (collision or pass-through) occurs during
this brief period, it will most likely also be perceived as a collision. What happens in our model in such
a situation? NINSUN keeps track of the number of events of each type in the last 5 s; after that, these
numbers are simply merged with older statistics. All this information is used by NINSUN to build up
a global sense for certain aspects of the simulation. By adding the factor w, we are simulating the
psychological effect of a recent collision (meaning less than 5 s old).

Additionally, as was mentioned in Section 3, the object-tracking process contains several parame-
ters that reflect the degree of importance or trust that NINSUN attaches to certain events. We earlier
showed that one parameter that is critical in the detection of collisions is the weight associated with
the direction condition. This is because at the instant of a collision there is usually an abrupt change
in direction of motion (while the amount of proximity, for example, does not change much). The
relative frequency r described above in equation 1 is a crucial factor in determining the importance
of the weight of the direction condition. NINSUN updates the weight of its direction condition x (see
Section 3.1) by making the assignment

x = 1 − r.

This assignment is carried out anew every 5 s, in parallel with other NINSUN’s processes. Notice that r
is a probability value. Therefore, the weight of the direction condition is related to this probability.

If the number of collisions is large compared to the number of pass-through events, then x will be
small (close to zero). This makes NINSUN pay little attention to the direction condition, and it will thus
tend to seemore collisions. Conversely, if x is large, which happens when the number of pass-through
events is large compared to the number of collisions, then NINSUN has a higher propensity to see
pass-through events. In this fashion, the perception of events is biased so that ambiguous events will
tend to be interpreted in amanner consistent with how previous recent events have been interpreted.

We close this section with a simulation featuring a world that consists of six balls moving in three
horizontal lines inside a square container, with onepair of balls in each line. They allmovewithmedium
speed, and they all bounce back and forth between the container’s left and right walls, as is shown in
Figure 20.
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34 F. LARA-DAMMER ET AL.

Figure 20. Three pairs of balls.

At first, all pairs of balls aremade to pass through each other, andNINSUN sees pass-through events
because of the large influence of this type of event. Then we change the top and bottom pairs to a
collidingmode. Interestingly, just after the changehas takenplace, NINSUN still sees only pass-through
events at first, as it is still under the influence of the dominant type of event in the first stage. It takes
some seconds to before it starts to see collisions. Then the perception of collisions slowly rises for a
few seconds. At the same time, the weight of the direction condition starts to fall. We also increase the
speed of the balls to accelerate the process (it is very slow otherwise) and to increase the chance of
collision perception. After some time, the upper and lower pairs are seen mainly as colliding, and the
central pair of balls also starts to be seen as undergoing some collisions. Eventually, when theweight of
the direction condition goes down even more, the dominant type of perceived event is just collisions.
(A video is found under ‘Direction Parameter V5,’ and a Tricycle script that contains the world set-up
for this simulation is found in the file ‘twoBalls6.txt.’)

6. Conclusion

We have created a novel model of scientific discovery that takes into account human perceptual
activity. Our system’s simulation of scientific discovery follows the pathway of perception, startingwith
the visualisation of the world, when certain objects catch the eye, to object tracking, to identification
of relations (such as collisions), to making modifications of the world, to memorisation of events,
to compression of information, to detection of patterns among the objects, all the way up to the
conjecture of a mathematical law. Our simulation of these different stages of brain activity is based on
selected cognitive theories of perception and scientific discovery. This paper concerns only the first
four stages, leaving the remaining ones to be presented in another paper.

The world we live in is uncertain most of the time and our perception of it is context based. As
long as science has existed, scientists have had to forge pathways of discovery under this constraint.
And yet, they have been able to find patterns and make discoveries. Human perceptual activity is
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simulated by the part of our computer model that we call NINSUN, which is able to interpret our
very simple simulated world in a context-depending manner. The world is simulated in a second
computer program that we call Tricycle. We deal with uncertainty and context by focusing mainly on
the microworld of walls and balls, where balls move and collide with the walls and with each other (or
pass through each other) in a way that has a high degree of randomness to a human perceiver.

Acknowledgements

The majority of this research was carried out at Indiana University, mostly in the Percepts and Concepts Laboratory of the
Department of Psychological and Brain Sciences, but also partly at the Center for Research on Concepts and Cognition
(CRCC). The most recent phases of the project were carried out at the Escuela Politécnica Nacional in Quito, Ecuador.
Roughly 70% of the funding for this project came from National Science Foundation REESE grant 0910218, 20% from
CRCC, and the remaining 10% from the Escuela Politécnica Nacional.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Science Foundation REESE [grant number 0910218]; CRCC; Escuela Politécnica
Nacional.

References

Bridewell, W., Sánchez, J., Langley, P., & Billman, D. (2006). An Interactive environment for the modeling and discovery of
scientific knowledge. International Journal of Human-Computer Studies, 64, 1099–1114.

Dawson, M. (1991). The how and why of what went where in apparent motion: Modeling solutions to the motion
correspondence problem. Psychological Review, 98, 569–603.

Forbus, K. (1984). Qualitative process theory. Artificial Intelligence, 24, 85–168.
Freyd, J. (1993). Five hunches about perceptual processes and dynamic representations. In D. Meyer & S. Kornblum (Eds.),
Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience (pp.
99–119). Cambridge: MIT Press.

Georgopoulos, A. (1988). Neural integration of movement: Role of motor cortex in reaching. The FASEB Journal, 2, 2849–
2857.

Gross, C. (1998). Claude Bernard and the constancy of the internal environment. The Neuroscientist, 4, 380–385.
Klahr, D., & Dunbar, K. (1987).Dual space search during scientific reasoning (Tech. Rep. No. AIP-13). Pittsburgh, PA: Carnegie-
Mellon University.

Klahr, D., & Simon, H. (1999). Studies of scientific discovery: Complementary approaches and convergent findings.
Psychological Bulletin, 125, 524–543.

Langley, P., Simon, H., Bradshaw, G., & Zytkow, M. (1987). Scientific discovery. Computational explorations of the creative
processes. Cambridge: The MIT Press.

Lara-Dammer, F. (2009). Modeling human discoverativity in geometry (Unpublished doctoral dissertation). Indiana
University.

Lenat, D. (1979). On automated scientific theory formation. A case study using the AM program. In J. Hayes, D. Michie, &
L. I. Mikulich (Eds.),Machine intelligence (pp. 251–283). Chichester: Hellis Horwood

Mahabal, A. (2009). Seqsee: A concept-centered architecture for sequence perception (Unpublished doctoral dissertation).
Indiana University.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information.
San Francisco: W.H. Freeman and Company.

Michotte, A. (1963). The perception of causality. London: Methuen.
Milan, A., Roth, S., & Schindler, K. (2016). Multi-target tracking by discrete-continuous energy minimization. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 38, 2054–2068.

Miller, A. (1987). Imagery in scientific thought. Cambridge: MIT Press.
Mitchell, M. (1990). Copycat: A computer model of high-level perception and conceptual slippage in analogy-making
Unpublished doctoral dissertation. Universityof Michigan.

Nayak, N., Zhu, Y., & Roth, S. (2015). Hierarchical graphical models for simultaneous tracking and recognition in wide-area
scenes. IEEE Transactions on Image Processing, 24, 2025–2036.

D
ow

nl
oa

de
d 

by
 [

In
di

an
a 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

51
 2

8 
Se

pt
em

be
r 

20
17

 



36 F. LARA-DAMMER ET AL.

Perry, L., Smith, L., & Hockema, S. (2008). Representational momentum and children’s sensori-motor representations of
objects. Developmental Science, 11(3), F17–F23.

Schmidt, M., & Lipson, H. (2009). Distilling free-form natural laws from experimental data. Science, 324, 81–85.
Ullman, S. (1979). The interpretation of visual motion. Cambridge: MIT Press.
Wertheimer, M. (1945). Productive thinking. Chicago: The University of Chicago Press.

D
ow

nl
oa

de
d 

by
 [

In
di

an
a 

U
ni

ve
rs

ity
 L

ib
ra

ri
es

] 
at

 1
0:

51
 2

8 
Se

pt
em

be
r 

20
17

 


	1. Introduction
	2. Overview of the computer model
	2.1. The necessity of keeping the worlds simple
	2.2. NINSUN and Tricycle

	3. Tracking of objects
	3.1. Extensions to Dawson's model
	3.1.1. Calibration of weights

	3.2. A case study for the MCP: the world of walls and bouncing balls
	3.3. The selection of winners in the neural network
	3.4. One-to-one policies
	3.4.1. Adjustment of the integrity weight
	3.4.2. Adding noise to the positions of the objects
	3.4.3. Dependent-selection algorithm
	3.4.4. Occlusion algorithm
	3.4.5. Which algorithm?


	4. Relation identification
	4.1. Collision detection
	4.2. Our method of collision detection
	4.3. The V-shape
	4.4. Abrupt change of velocity (acv)
	4.5. Proximity
	4.6. Equal angles
	4.7. Conservation of momentum
	4.8. An overview of reward and punishment

	5. The ambiguity of collisions as opposed to pass-through-each-other events
	5.1. Why two balls appear to collide or pass through each other
	5.1.1. Increasing the probability of an illusion
	5.1.2. More than just two types of perceived events

	5.2. The crucial role of the direction condition
	5.3. The influence of speed
	5.4. Disambiguating by context
	5.5. Other influences
	5.6. Feedback from collision detection to object correspondence

	6. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References



