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involves minimizing reliance on perception (Quine, 
1977). This worry is allayed when we appreciate the 
adaptability of our perceptual systems (Goldstone & 
Barsalou, 1998; Goldstone, Landy, & Son, 2010). We rig 
up our perceptual systems so that they do the Right 
Thing, formally speaking (Goldstone, de Leeuw, & 
Landy, 2015; Kellman et al., 2010). Perceptual learning 
is a general mechanism by which perception is adapted 
and attention is directed to relevant environmental 
structures (Gibson, 1969). Moreover, perceptual learn-
ing has been explicitly implicated in improving the 
selectivity and fluency with which humans extract 
important regularities in mathematics (Kellman & 
Massey, 2013).

As an example of perceptual learning to support 
mathematics, the visual-attentional system will give 
higher priority to notational operators that have higher 
precedence. For instance, the notational symbol for 
multiplication (“×”) attracts more attention than the 
lower precedence addition operator (“+”), even when 
participants do not have to solve mathematical prob-
lems. People who know algebra show earlier and long
er eye fixations to “×”s than “+”s in the context of math 
problems (Landy, Jones, & Goldstone, 2008). When 
asked simply to determine the center operator in 
expressions like “4 × 3 + 5 × 2,” participants’ attention 
is diverted to the peripheral “×”s: Performance is worse 

than both “4 + 3 + 5 + 2” and “4 + 3 × 5 + 2” trials 
(Goldstone et al., 2010). Thus, in the competition for 
attention, the operator for multiplication wins over the 
operator for addition. This is not due simply to specific 
perceptual properties of the symbols themselves. Simi-
lar asymmetries are found when participants are trained 
with novel operators with arbitrary orders of prece-
dence. These results suggest that attention is attuned 
to formal mathematical knowledge. We attend where 
we should if we are to act in accordance with the order 
of precedence.

Given its adaptability, perception supports high-level 
cognition far more effectively than proponents of low-
level, sensory accounts of perception might surmise. 
Perception is frequently relational, complex, and struc-
tural (Kellman & Massey, 2013). Adherents of a “percep-
tion is (often) misleading” view might predict that 
reliance on superficial perceptual cues should diminish 
with mathematical maturity. Surprisingly, in several cases, 
we have found the opposite pattern. For instance, older 
children rely more on physical spacing as a cue to per-
ceptual organization than younger children (Braithwaite, 
Goldstone, van der Maas, & Landy, 2016). We analyzed 
the solutions of 65,856 Dutch children, from age 8 to 12 
years, for simple math problems in which physical spac-
ing was manipulated to be either congruent (2 + 7 × 5) 
or incongruent (2 + 7 × 5) with the formally defined 

Fig. 1.  Samples from three experiments reported by Landy and Goldstone (2007b). 
Participants were asked to verify whether an equation is necessarily true. Grouping 
suggested by factors such as spatial proximity (top), connectedness of surrounding 
graphical forms (middle), and proximity in the alphabet (bottom) could be either 
congruent or incongruent with the order of precedence of arithmetical operators 
(e.g., multiplications are calculated before additions). When perceptual groups are 
congruent with formal order of precedence, then validity judgments are much more 
accurate than when they are incongruent. For instance, in the top equality, f + z *  
t + b is not necessarily equal to t + b * f + z, but participants often decided otherwise 
in the incongruent version. This is presumably because the narrow spacing around 
the “+” signs encouraged them to form “f + z” and “t + b” units, which exist on both 
sides of the equation. 
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order of operations, where multiplications are executed 
before additions. Incongruent spacing increased the 
selection of incorrect foils, such as responding that 2 + 
7 × 5 equals 45, as if the problem was parsed incorrectly 
as (2 + 7) × 5. If learning to reason mathematically 
involves learning to overrule potentially misleading per-
ception, then this effect should decrease over time—but 
the difference in accuracy between incongruently and 
congruently spaced problems actually increased with 
age and math experience. Becoming proficient in math 
may involve learning to rely more, not less, on percep-
tual grouping routines.

Learning mathematics changes not only the visual 
salience of notational objects but also how they are 
grouped together. When different parts of the visual 
world are perceived by an observer as belonging to the 
same object, comparison of the parts is more effective 
than when they seem to come from different objects 
(Zemel, Behrmann, Mozer, & Bavelier, 2002). We 
applied this same logic to algebraic objects such as 
those shown in Figure 2. When tasked with deciding 
whether two symbols were the same or different color, 
our observers were more accurate when the symbols 
belonged to a high precedence algebraic object, such 
as the “m × j” term of “v + m × j + a” rather than “j + 
a” (Marghetis, Landy, & Goldstone, 2016). However, this 
benefit of within-group over between-group visual 

comparisons was only found for observers who dem-
onstrated understanding of the order-of-precedence 
rules in algebra. Moreover, increased object-based 
attention for algebraic objects was associated with a 
better ability to evaluate algebraic validity. This sug-
gests, again, that mathematical proficiency may rely on 
adapting perception to satisfy formal, mathematical 
requirements.

Mathematical sophistication is associated not just 
with increased reliance on spatially constrained per-
ceptual routines but also spatially constrained action 
routines. Rather than converting algebraic notation into 
a nonspatial, completely formal internal representation, 
proficient reasoners often preserve the spatial format 
of algebraic notation and apply spatial transformations 
within this notation space. Take a moment to try solv-
ing for b in the problem 2 × b = 14. One spatial trans-
formation you may have used for this problem is 
dynamic transposition, in which you imagined moving 
the 2 from the left side of the equality to the right side, 
whereupon you moved it to the denominator of a 14/2 
quotient. Although such spatial strategies are highly 
intuitive, it is noteworthy that they do not appear in 
most prominent models of algebra (e.g., J. R. Anderson, 
2007).

To measure if and when participants adopt a spatial 
transposition strategy for solving simple algebraic equa-
tions, we superimposed equations on top of vertical 
bars that moved continuously to either the left or right 
(Fig. 3; Goldstone et al., 2010). To isolate y on the left 
side of the equation “4 * y + 8 = 24,” for instance, the 
4 and 8 must be moved to the right side; a rightward 
motion of the bars would thus be compatible with a 
transposition strategy. For the formally equivalent equa-
tion “24 = 4 * y + 8,” however, the same rightward 
motion would be incompatible. Participants solved the 
equations more accurately when the grating motion 
was compatible with transposition, suggesting that par-
ticipants were simulating transpositions within the spa-
tial world of the notation. This effect was stronger 
among participants who had taken advanced mathemat-
ics courses such as calculus, compared to students with 
less math experience. This imagined motion strategy, 
therefore, is not a crutch that students adopt while 
learning but abandon as their sophistication increases 
but rather a “smart” strategy that students come to adopt 
through experience with formal notations. Learned per-
ceptual routines are not at odds with strong mathemati-
cal reasoning. They are often the means by which 
strong mathematical reasoning becomes possible. It is 
a smart strategy to take advantage of the scaffolding 
provided by space, using it as a canvas on which to 
project transforming motions.

Fig. 2.  Sample stimuli (a) and results (b) from Marghetis et al. (2016). 
When participants were asked to judge whether two colored symbols 
in a briefly presented mathematical expression shared the same color 
or possessed different colors, they were more accurate (higher d′) 
when the symbols belonged to a proper mathematical object rather 
than straddled two objects. This effect, however, was only found for  
Syntax Knowers—participants who demonstrated understanding of 
the order of precedence in algebra whereby multiplications are cal-
culated before additions. 
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Adapting Cultural Products to Fit 
Perception and Action

The previous sections have described ways in which 
mathematical experience tunes our perceptual systems. 
We also tune our notational systems to fit our percep-
tual systems. Much of the history of mathematical nota-
tion is one of changing notations over time to better fit 
human perceptual systems (Cajori, 1928). For example, 
the historic shift from representing “3 times the vari-
able b plus 5” as “3 × b + 5,” to later representing it as  
“3 • b + 5,” and more recently as “3b + 5,” represents a 
consistent shift toward decreasing the spacing between 
operands that should be combined together earlier. This 
adaptive redesigning of mathematical notations also 
occurs on shorter timescales. Landy and Goldstone 
(2007a) asked participants to write symbolic mathemati-
cal expressions for equations expressed in English such 
as “nine plus twelve equals nine plus three times four” 
(see Fig. 4). From these expressions, we measured the 
physical space around the different operators. On aver-
age, the physical spacing was largest around “=”, con-
sistent with its role as the highest level structural 
grouping for the equation. The physical spacing was 
larger around the “+” than around the “×” in equations 
that had both of these operators. Our account of this 
result is that people produce notations that their own 
perceptual systems are well prepared to process. Stu-
dents discover this adaptive tactic even though most 
textbooks do not use physical spacing to help them 
form useful perceptual groups in algebra. In this way, 
we create notations that are processed aptly by our 
rigged-up perceptual systems—one more reason why 
perceptual systems should often be trusted rather than 
trumped. Well-designed tools can turn error-prone con-
ceptual tasks into robust perceptual ones (Hutchins, 
1995).

We believe this slow cultural evolution of notation 
forms can be accelerated dramatically by modern com-
putational technology. Interactive technologies informed 
by cognitive science can be harnessed to improve the 

fit between our cultural tools for mathematics and 
human perception-action routines. Our investigations 
of RUPAS have led us to implement an interactive alge-
bra notation system called Graspable Math (GM: http://
graspablemath.com) that allows users to interact in real-
time with math notation using intuitive and trained 
perception-action processes. The primary rationale for 
this system is that people often come to be proficient 
reasoners in mathematics not by ignoring perception 
but by educating it (Goldstone et al., 2015; Goldstone 
et al., 2010; Landy, Allen, & Zednik, 2014). Perception 
and action routines are subject to intrinsic constraints 
such as spatial and temporal contiguity (e.g., one can-
not easily attend to two objects without attending the 
object in between them), which the notation must 
honor. However, these constraints can still be honored 
by a variety of perception-action routines that can be 
flexibly shaped by real-time, dynamic feedback. Con-
sequently, our interactive notation support system is 
designed to generate experiences that develop effective 
and intuitive perception and action routines (Ottmar, 
Landy, Weitnauer, & Goldstone, 2015).

GM provides a concrete model of how the content 
of algebraic transformations can be supported by per-
ception and action routines. Rather than translating 
algebraic objects into other concrete objects such as 
blocks, coins, rods, or balance beams, GM is based on 
the appreciation that algebraic objects are also con-
crete, albeit notational objects. Algebraic notation has 
been crafted over time to fit human perception and 
action systems, and computer technology can allow 
notation to fit humans even better, by devising interac-
tive notation that dynamically responds to users’ ges-
tural movements.

Figure 5 shows some common actions related to 
mathematical reasoning that are supported by GM. Each 

Incompatible Motion Compatible Motion

Fig. 3.  As participants solved for the variable in equations like the 
above, a vertically oriented grating continuously moved either to 
the left or to the right. Although irrelevant for the task, when the 
movement of the grating was compatible with the postulated imag-
ined movements of the numbers required by spatial transposition, 
participants were more accurate.

 

“Write the equation for:
nine plus twelve equals nine plus three times four”

Fig. 4.  Written equations use space to indicate the formal precedence 
of arithmetic operations. Here, a hand-drawn equation places less 
space around the “×” symbol—which represents a high-precedence 
operation—and places relatively less space around the “=” and “+” 
symbols. (This particular equation was produced by a participant 
in Landy & Goldstone, 2007a.) Dashed squares illustrate relative 
spacing.

http://graspablemath.com
http://graspablemath.com
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of them is a physical and spatial action that results in 
valid mathematical transformations. For example, if 
constrained properly, the operation of spatially swap-
ping factors (e.g., A × B = B × A) corresponds to the 
formal, commutative property of multiplication. Like-
wise, spatial transposition can also be specified in a 
way that makes it mathematically valid. Still, some 
teachers resist teaching transposition, viewing it to be 
an illegitimate algebraic transformation. They object, 
“You shouldn’t teach students that they can just move 
the 2 of y – 2 = 5 to the right side and change its sign. 
Students should go through the axiomatically justified 
steps of adding 2 to both sides of the equation, yielding 
y – 2 + 2 = 5 + 2, and then simplifying to y = 5 + 2.” 
To this objection, we respond that the teacher’s pre-
ferred solution is one justifiable transformation path-
way, but mathematics is rich enough to permit multiple 
pathways to produce valid mathematical reasoning. The 
spatial transformations shown in Figure 5 provide an 
alternative approach to the traditional axiomatization 
provided by Euclid. For example, Euclid’s second axiom 
states the following: If two quantities are equal and an 
equal amount is added to each, they are still equal. Our 
alternative, spatial transformation is more psychologi-
cally intuitive because it has been designed to be pro-
cessed efficiently by human perception-action systems. 
It is also more efficient, given that students can isolate 
the y in “y – 2 = 5” with two fewer transformations. 
Finally, it is conceptually evocative. As the −2 crosses 
the equal sign and becomes +2, learners experience 
viscerally a deep mathematical relation: if Y is equal to 
a one-to-one function of X, then X is equal to the 

inverse of that function applied to Y. Euclid’s second 
axiom and spatial transposition are coupled to different, 
deep mathematical insights. Doing the “same thing” to 
two expressions that are equal preserves that their 
equality is coupled with Euclid’s second axiom, and x = 
f(a) ⇔ a = f−1(x) is coupled with transposition. We 
suspect that both insights are valuable, and so we advo-
cate a system, like GM, that is ecumenical enough to 
support both transformation pathways. Although we 
have begun to test GM in classrooms (Ottmar, Landy, 
Goldstone, & Weitnauer, 2015; Ottmar & Landy, 2017), 
future research in K-12 mathematics classrooms is 
needed to determine if these promising advantages reli-
ably translate to improved learning of mathematics by 
students.

The coupling of different concrete actions with dif-
ferent conceptual construals raises the large issue of 
what is the relation between procedural and conceptual 
understandings in math. Education research often 
divides knowledge into conceptual knowledge of 
abstract and general principles versus procedural 
knowledge of the steps or actions needed to accom-
plish a goal (Baroody, Feil, & Johnson, 2007). One of 
the motivations for this division is teachers’ common 
frustration that their students seem to just want to know 
the steps needed to calculate the solution to a problem 
without taking the time to develop flexible generative 
models or genuine understandings of why these steps 
lead to the right answer. This phenomenon certainly 
occurs, but our experiences with developing systems 
for instruction in mathematical reasoning have led us 
to believe that procedural and conceptual knowledge 
mutually support and inform one another (see also 
Rittle-Johnson, Schneider, & Star, 2015). We resist char-
acterizing procedural knowledge as necessarily inflex-
ible or “rote.” The promise of technologies like GM is 
that students will develop apt intuitions about what are 
the right ways to perceive or act upon mathematical 
expressions. These introspections are steered by ana-
lytic reasoning but, once established, can act as a cata-
lyst for subsequent analytic insights.

Conclusions

It is widely assumed that, as it develops, mathematical 
reasoning shifts toward abstraction. But our initial 
observations of mathematicians “in the wild” suggest 
that their reasoning depends on spatial perceptual 
grouping strategies and actions over space. Sophisti-
cated reasoners are at least as likely to employ concrete 
actions as novices—they just apply them more effi-
ciently and felicitously. This realization has directly 
informed our development of new technological tools 
for doing and teaching mathematics.

Fig. 5.  Examples of physical transformations within notational space. 
A variety of physical operations are often employed in a cognitively 
efficient and valid fashion by mathematical reasoners. When algebra 
is implemented with pen-and-paper, these operations are typically 
only simulated mentally, with the reasoners projecting their imagined 
operations onto the written equation, until eventually they rewrite the 
transformed equation. In a dynamic algebra system like Graspable 
Math, these operations can be performed literally by interacting with 
the equation. Arrows indicate physical operations; faded symbols 
represent the initial state of the equation; green symbols represent 
the goal state; the red line indicates cancellation. 
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Algebraic reasoning provides an excellent example 
of how our brains come to be able to do things for 
which that they were never prepared by evolution. To 
harness the powers of math to make valid real-world 
inferences, we deploy three strategies: (1) reusing exist-
ing mental processes that developed over millions of 
years for nonalgebraic purposes by cobbling them 
together as novel routines for newfangled, algebraic 
purposes; (2) adapting those perception-action routines 
to fit the formal requirements of mathematics; and (3) 
inventing cultural tools that better fit the cognitive con-
straints and potential of perception and action. This 
account intertwines three temporal scales of adaptation 
from long to short: the slow evolution of bodies, includ-
ing brains, to accommodate persisting biological needs; 
the creation of cultural innovations like pencils, calcula-
tors, and GM that can be joined with people to create 
cognitive systems with capabilities out of the reach of 
independent humans; and rigging up our perception 
and action systems (RUPAS) over our life span. These 
last two mechanisms offer particular promise for mutu-
ally reinforcing adaptations, because they occur on 
similar timescales—and those timescales are becoming 
more similar as our tools for creating tools improve, 
further accelerating the rate of cultural change. Humans 
adapt to technology while, ever more rapidly, technol-
ogy can adapt to us.
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