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Abstract

Although current exemplar models of category learning are flexible and can capture how different
features are emphasized for different categories, they still lack the flexibility to adapt to local changes
in category learning, such as the effect of different sequences of study. In this paper, we introduce a new
model of category learning, the Sequential Attention Theory Model (SAT-M), in which the encoding
of each presented item is influenced not only by its category assignment (global context) as in other
exemplar models, but also by how its properties relate to the properties of temporally neighboring items
(local context). By fitting SAT-M to data from experiments comparing category learning with different
sequences of trials (interleaved vs. blocked), we demonstrate that SAT-M captures the effect of local
context and predicts when interleaved or blocked training will result in better testing performance
across three different studies. Comparatively, ALCOVE, SUSTAIN, and a version of SAT-M without
locally adaptive encoding provided poor fits to the results. Moreover, we evaluated the direct prediction
of the model that different sequences of training change what learners encode and determined that the
best-fit encoding parameter values match learners’ looking times during training.
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1. Introduction

Our categorization decisions are often based on a subset of potential features. For example,
when at the supermarket trying to pick the perfectly ripe avocado for dinner, we look for
a softer, darker avocado. Although avocados can differ on many properties, color seems to
be particularly relevant for ripeness. Not all features are equally important, and humans are
particularly good at discerning what matters from what does not. Moreover, discerning the
features that matter is context dependent. For example, when looking for a book among
bowls, shape is a critical feature. However, when looking for a particular book among
other books that is unlikely to be the case. How do we flexibly learn what to attend to and
encode?

Extant theories and models of human and artificial category learning try to answer this
question by taking the attentional flexibility of human categorization into account (e.g.,
Bareiss, Porter, & Wier, 1990; Nosofsky, 1986). One common way to address the variable
importance of different features is to assume that different properties of to-be-categorized
items have different weights that modulate their overall impact on categorization decisions
(Anderson, Matessa, & Lebiere, 1997; Ashby, Paul, & Maddox, 2011; Hintzman, 1984;
Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky, 2011; Thiessen & Pavlik, 2013).

For example, the Generalized Context Model (GCM; Nosofsky, 1986) proposes a set of
selective-attention weights that represent the learned strategy of attending more to some
properties than others when making decisions about stimuli represented in a multidimen-
sional space. In GCM, the attentional weights are either free parameters fit to the data or
assigned plausible values to approximate human behavior in a categorization task. Although
the assumption is that these attentional weights to different dimensions are learned, GCM is
a high-level representation model, not meant to model trial-by-trial changes and as such does
not include an explicit process for how attention changes over time during learning.

Other models, however, have addressed this question. For example, the Attention Learn-
ing COVEring map (ALCOVE) model of categorization (Kruschke, 1992) includes a pro-
cess through which attentional weights are learned during learning. On each learning trial,
ALCOVE computes the discrepancy between the classification provided and the correct clas-
sification and adjusts the attention weights to reduce the classification error. Other models
provide similar mechanisms for learned attentional weights: SUSTAIN (Love et al., 2004)
includes an attentional tuning algorithm, whereby attentional weights are updated to provide
greater salience to relevant feature dimensions and MINERVA 2 (Hintzman, 1984) includes
an abstraction mechanism through which items are re-encoded emphasizing learning-relevant
information (for a further specification of attentional processes in MINERVA, see iMIN-
ERVA, Thiessen & Pavlik, 2013).

2. Global and local pressures on category learning

Although taking steps toward a mechanism by which we learn what to attend to and flexibly
adapt to the properties of the task and the stimuli being learned, these models still fall short
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when considering learning as a process through time. Broadly speaking, even in models with a
learning process, such as ALCOVE and SUSTAIN, attention is updated to change the salience
of dimensions based on their overall relevance for categorization, that is, considering the
global context of all of items in the same category.

Thus, current formal and informal models of categorization assign attentional weights dur-
ing learning to facilitate human flexibility in categorization. However, there are two major
issues with this approach. First, it implies that learners have access to the entire set of pre-
viously seen examples when making a local categorization decision and that all items and
all their features are equally important, which at face value seems unlikely. Indeed, previ-
ous research has demonstrated a “recency effect” in categorization, whereby more recently
studied items have a larger impact on categorization decisions than earlier ones (Jones &
Sieck, 2003; Jones, Love, & Maddox, 2006). One extrapolation of these findings is that, at
the extremes, some previously seen items might have a small or negligible effect on catego-
rization decisions. Second, it implies that category learning is guided only by overall attention
weights that might or might not be relevant for the task at hand. That is, when deciding which
features to attend during learning, existing models optimize for overall categorization deci-
sions: is feature x predictive of category X? Although feature x might, overall, predict category
X, in the moment-to-moment context of the other items studied (as in the book/bowl example
above), that might not be the case: a feature that generally predicts X might not be relevant in
the local context of a series of items that do not have that feature. Although feature X might
be relevant to categorization, if that is not the case at the local context level of the recent few
items seen, then it is unlikely to receive much attention.

Empirically, although some work has suggested that the attention parameters in ALCOVE
(Rehder & Hoffman 2005a) and GCM (Rehder & Hoffman 2005b) are related to looking time
and can account for learners’ patterns of looking and encoding, others have suggested that its
power is limited. For example, Blair, Watson, Walshe, and Maj (2009) showed that different
stimuli can elicit different attentional allocations, a result that, as the authors point out, is not
captured by current models. Similarly, Matsuka and Corter (2008) have proposed that learners
take situationally specific constraints into account when allocating their attention, something
not captured by current models.

If, instead, we think of category learning as a process through time in which the learner
is concerned only in solving the local task of making sense of how a current item and its
temporal neighbors are grouped and in which every item has local contextual pressures on
attention and encoding (from other stimuli, variation in task, etc.), we can create more flexi-
ble and informationally leaner models of learning. In this view, human learning as a process
through time is the result of pressures at a small timescale. The local context of categoriza-
tion is not only what category an item belongs to, but how that item fits with items recently
categorized into one or another category. For example, a feature that overall predicts cate-
gorization (global context) might be missing from a specific exemplar or be present in an
exemplar of the opposite category just presented in the previous trial (local context), in which
case a different feature might be more relevant locally. This is a critical distinction in a world
where categorization decisions are potentially seldomly based on all the information available
about each category but instead only a few cases, possibly because of memory or expertise
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constraints (Elio & Anderson, 1984; Jones & Sieck, 2003). While models like EBRW (Nosof-
sky & Palmeri, 1997) selectively sample a restricted set of previously seen examples accord-
ing to their similarity to an item to be categorized, we are proposing to selectively sample
examples according to their temporal proximity to the item, regardless of their similarity to
the item.

Consistent with this view, there is evidence that what information is attended to and
encoded depends not only on its global context (what category it belongs to), which current
models of categorization focus on, but also on its local context (neighbor items), which most
current formal and informal models of categorization ignore. For example, Aha and Gold-
stone (1992) demonstrated that humans are able to learn categories that require attributes to
be weighted differently for different category exemplars. Across two category learning exper-
iments, participants showed sensitivity not only to the global context (the category bound-
aries), but also local context, by selectively attending different dimensions in different regions
of the space of stimuli. That is, human categorization is sensitive to the local context of an
exemplar relative to its stimulus space. Indeed, other models and researchers have proposed
that a psychological plausible model of human learning should categorize items in a context-
sensitive manner (e.g., Barsalou & Medin, 1986; Tversky, 1977).

Another example of how human learning is sensitive to not only the global context of
which category an item belongs to but also the local context of which other items are stud-
ied in proximity comes from a wealth of studies demonstrating sequencing effects in cate-
gory learning. The sequence of events has been shown to have an impact on what we learn
(Goldstone, 1996; Schyns & Rodet, 1997) and how well we learn it (Kornell & Bjork, 2008;
Wahlheim, Dunlosky, & Jacoby, 2011). There is a wide array of evidence that the sequence
in which information is presented influences how we perceive (Goldstone, 1996; Schyns &
Rodet, 1997), remember (Jones & Sieck, 2003), represent (Clapper, 2014; Corcoran, Epstude,
Damisch, & Mussweiler, 2011; Qian & Aslin, 2014), discriminate (Lipsitt, 1961; Samuels,
1969; Sandhofer & Doumas, 2008; Zotov, Jones, & Mewhort, 2011), and learn (Bloom &
Shuell, 1981; Elio & Anderson, 1984; Helsdingen, van Gog, & Van Merri€nboer, 2011; Li,
Cohen, & Koedinger, 2013; Mack & Palmeri, 2015; McDaniel, Fadler, & Pashler, 2013; Zei-
thamova & Maddox, 2009) new information. These effects are both evidence that human
categorization is sensitive to local variation and an ideal test situation to test the impact of
local context in category learning because it is a situation where different sequences will
result in the same item having different temporal neighbors for each learning event (i.e., dif-
ferent local but not global contexts). Moreover, because, as discussed above, existing models
of categorization consider only the global context of categorization (how diagnostic each fea-
ture is for category assignment), each item will be encoded in almost the same way regardless
of the local context of the items just seen. In practice, this means that the sequence of learn-
ing is unlikely to have a strong impact on learning. We start by confirming this prediction in
ALCOVE and SUSTAIN.

To account for some of the findings that the sequence of learning changes what is learned,
Carvalho and Goldstone (Carvalho & Goldstone, 2014b, 2015a, 2015b, 2017) have pro-
posed the Sequential Attention Theory (SAT; Carvalho & Goldstone, 2017). According to
SAT, one of the ways in which the sequence of learning influences learning is by creating
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pressures on what information is attended and encoded. Specifically, Carvalho and Goldstone,
proposed—and empirically demonstrated (Carvalho & Goldstone, 2014a, 2014b, 2015a)—
that studying items of the same category consecutively (blocked study) makes similarities
among temporally neighboring items more salient and more likely to be used for categoriza-
tion, whereas studying items of different categories consecutively (interleaved study) makes
their differences more salient and more likely to be used for categorization. This proposal is
able to capture many findings in the literature showing, for example, that interleaved study of
categories improves learning of similar categories (for which detecting differences is partic-
ularly important), whereas blocked study of categories improves learning of dissimilar cate-
gories (for which detecting similarities within each category is important; for a metaanalysis,
see Brunmair & Richter, 2019).

In sum, one of the critical pressures affecting where attention will be directed during cat-
egory learning is likely to be the local context of the other items experienced in proximity
(temporal, physical, etc.). Local influences go beyond the global context of whether, overall,
a dimension or property has been relevant for categorization in the past. The effect of both
global and local influences on categorization is likely to be exerted through selective attending
and encoding different properties with different experience, resulting in different properties
being attended such as in the avocado example in the start of this paper. However, previous
models implementing learning mechanisms that capture this phenomenon have focused only
on the global context. In this paper, we present a new model that considers the local context
of categorization as critical, focusing on the local temporal context.

3. A new model of category learning: SAT-M

We propose the Sequential Attention Theory Model (SAT-M), which computationally spec-
ifies and extends the SAT framework proposed by Carvalho and Goldstone (2017). SAT-M
is a new exemplar model of human categorization based on GCM (Nosofsky, 1986) in which
how items are encoded depends not only on global attentional weights that maximize correct
categorization, but also on the immediate context during learning (i.e., the other stimuli stud-
ied in close proximity). If humans are, in fact, sensitive to local context in how they encode
information, then SAT-M should provide a better characterization of learning behavior and
category generalization, especially in situations where local context is particularly variable.
One such situation is when one varies the sequence of exemplars during learning.

3.1. Overview of SAT-M

In SAT-M, as in other exemplar models of categorization, each experienced item is repre-
sented by its value properties. During learning, each stimulus is stored along with its category
assignment and encoding weights for each of its features. Later classification of test items,
both trained and novel, depends on their similarity to the aggregate properties of the previ-
ously trained items, where similarity is based on how distant these test items are from the
previously studied items in the categorization space. A test item will tend to be placed into a
category to the extent that it is more similar to items in that category than other categories.
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Unlike other exemplar models of categorization, however, in SAT-M, the representation of
studied items is influenced not only by its properties and the relative relevance of each prop-
erty for categorization, but also by how those properties and the category assignment vary
from prior items seen before it. Thus, unlike other exemplar models, the stored representa-
tion is biased toward features that were relevant for its categorization in the context of the
other item studied in temporal proximity. This is achieved by storing for each item feature an
encoding weight that modulates the impact that that feature will have to determine the item’s
similarity to new items at test. For example, if two similar items of the same category are seen
in close temporal proximity, their similarities will be more strongly encoded and these stimuli
will be seen as more similar than if they had been studied further apart in time.

Importantly, this process is not simply attentional filtering in the sense of reducing the num-
ber of dimensions for consideration. Our proposal is that by differentially encoding different
properties of the stimuli from trial to trial, we are creating different attentional pressures and
the history of categorization will result in different features playing a larger or smaller role
during learning and future categorization. The encoding parameters in SAT-M lead to locally
guided diagnosticity-based weighting of dimensions, not just paying attention to a subset of
dimensions because there are too many dimensions to attend. In essence, each item is being
encoded differently depending on where it was positioned in the training sequence and the
item before it. The encoding of object 1 from category A when another object from category
A was presented immediately before it will be quite different than encoding of that same
object when preceded by an object of category B. In the next section, we discuss how the
model works in more detail, its individual components, and principles.

3.2. SAT-M principles and implementation

As mentioned above, SAT-M builds on previous exemplar models. Specifically, SAT-M
shares many of its principles and assumptions from the GCM (Nosofsky, 1986). SAT is based
on (extends) GCM, and it crucially features a trial-by-trial encoding mechanism in which
the encoding strength given to features depends on whether they are the same or different
as previous item features, and whether the current and previous items belong to the same
category. We view it as an advantage of the current model that it builds upon a model that
has already been very successful (see, e.g., Hu & Nosofsky, 2021). Too rarely do cognitive
scientists build upon previous work, instead proposing completely new models that may not
pass benchmarks that are passed by extant models (Wills, 2013). Next, we will describe the
general mechanisms of GCM and note how SAT-M deviates from it.

The principles of GCM and SAT-M can be divided into three main parts: item encoding,
item similarity, and decision process. We will describe the model starting from its observ-
able behavior, how it makes a categorization decision, and work backwards to the stimulus
encoding that is used as a basis for the categorization decision. To foreshadow, categorization
decisions are based on the perceived similarity of the to-be-categorized stimuli to all previ-
ously categorized stimuli and their respective category assignments. The similarity between
stimuli is, in turn, inversely related to distance between their integrated distance along all
of their component features. Finally, in SAT-M, unlike GCM, the distance between stimuli
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is a function of each stimulus’s properties as influenced by their temporal context (i.e., the
properties of adjacent neighboring stimuli).

3.2.1. Categorization decision

To decide how to categorize a given item y, GCM takes into account how similar item y
is to all other items encoded. Item y will tend to be categorized as belonging to the category
containing the greatest number of items similar to y. The categorization probability uses a
ratio rule, and is an application of Luce’s choice rule (Luce, 1963; Shepard, 1965). The prob-
ability of categorizing an item y as belonging to a given category A is given by the summed
similarity of that item to all the x exemplars of category A, divided by the summed similarity
of y to all the k exemplars of all the categories, K:

Ba[ X 5w ]
Aly) = ' , 1
p(Aly) SNk (D

where S, denotes the similarity between item y and item x. B4 > O represents the bias
toward responding with category A. A response-scaling parameter, y. When y = 1, the
model responds more probabilistically by “probability matching,” with greater values of y,
the model’s behavior is more deterministic toward the category with greater summed similar-
ity (Nosofsky & Zaki, 2002).

3.2.2. Item similarity
To determine how similar two items are, the model uses an exponentially decaying function
of distance. The similarity between items x and y is given by:

Sey = € 2)

where d(x,y) is the attention-weighted distance between the two items. This calculation
includes a freely estimated sensitivity parameter, c, that defines the rate by which similarity
decays with distance, that is, the gradient of the similarity function. As c increases, catego-
rization decisions are disproportionately influenced by trained items that are very close to
the test item. As ¢ decreases, then categorization is more equitably determined by all trained
items, close or far, from the test item. Finally, the shape of the function relating distance and
similarity is defined by a parameter p. When p = 1, there is an exponential relation between
similarity and distance, while when p = 2, there is a Gaussian relation between the two.
This parameter is often set in advance, and values greater than 1 are often used for highly
confusable stimuli (Nosofsky, 2011).

3.2.3. Distance in multidimensional space

The absolute difference between two items is determined for each dimension in the multi-
dimensional space. This difference is weighted by an attention parameter (w; > 0) that char-
acterizes the global salience or relevance of dimension i, similar to previous exemplar models.
The attention-weighted sum of the differences for all dimensions is the total distance between
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the two stimuli. Thus, the distance between stimuli x and y is computed by:

1

r

d,y)=|Y weli—yl|, 3)

where w; is the attention allocated to Dimension i and x; and y; are the feature values of stim-
uli x and y on dimension i. Notice that when w is high, that dimension will have a greater
influence in the distance calculations, whereas smaller values of @ will render any differences
along that dimension less influential. This parameter can reflect learned information about
which dimensions are relevant for categorization and which are not. A scaling parameter r is
used to define the form of the distance metric. Although p defines the relation between dis-
tance and similarity in calculating items’ similarities (with p = 1 implementing an exponen-
tial relation, while p = 2 implements a Gaussian relation), r defines the form of the distance
metric when calculating the items’ distance in psychological space. When r = 1, a city-block
metric is used, while when r = 2, a Euclidean distance metric is used. While w is often a free
parameter fit to subject data, r is often defined by the type of stimuli used. When stimuli are
highly discriminable and psychologically separable, a city-block metric is often used, while
a Euclidian metric is used for integral dimensions that are not easily separable (Nosofsky,
2011).

3.2.4. Influence of temporal context

SAT-M incorporates variable encoding strengths for the different features that comprise a
stimulus (so named to differentiate them from the attention weights @ defined above which
represents the relevance of features for global category assignment, that is attention modula-
tion based on global context). The critical parameter ¢; > 0 in Eq. 3 is the encoding strength
of Feature i in Exemplar x, which depends on the sequence of study. SAT-M encodes items by
comparing them to previously presented items. Differences and similarities between features
from successive items and the items’ category assignments define the strength of encoding of
each feature ¢;, that is, the encoding weight given to that feature. The assumption here is that
each object is encoded not relative to the overall task of categorizing objects into one of the
categories, but rather each object is encoded relative to how it compares to the most recently
categorized item. Previous work has suggested that this is likely to take place. For exam-
ple, Jones and Sieck (2003) demonstrated clear recency effects in categorization, where the
most recent items seemed to be considered more heavily than earlier items for categorization
decisions (see also Jones et al., 2006). The current version of SAT-M makes the simplify-
ing assumption that the previous item and its category assignment is perfectly remembered.
As we will discuss later, future work should expand on this by including a memory decay
function.

Thus, for each dimension, the difference between x and the preceding item y is mod-
ulated by & and its value depends on the match between the feature value in dimen-
sion i between x and y and their category assignments. The four possibilities are for-
mally represented by four different encoding weights (&ditferent feature, same category, Edifferent

feature, different category, €same feature, same category, €same feature, different category)- Because the enCOleg
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weights depend on the properties of the current and previous stimuli and their category assign-
ments, the same feature might (in fact, is likely to) receive different encoding weights from
trial to trial and from participant to participant. Feature i’s encoding weight is stored along
with x during learning and modulates the influence that feature i has on the overall similarity
metric and thus categorization.

The encoding weight assigned to a given feature is the result of the relation of that feature
with those of the immediately preceding item and works to increase or decrease the impor-
tance of that feature for a stimulus as a function of sequence of study. Note that although we
separate these four encoding weights, because there are four ¢; free parameters fit to the data,
it is possible that the value is the same for all four possibilities. This means that the differences
in encoding between these four possibilities are not hard coded into the model, and the best
fitting solution becomes an indicator for how important different features are as a function of
their encoding context.

4. Applications

We start by describing the target phenomenon we will use to demonstrate the role of local
context in category learning and apply SAT-M. We will then show evidence that previous
models cannot account for human behavior in such situations and demonstrate that SAT-M
provides a good fit to the data, suggesting that local context—in addition to global context
captured by other models—has an important influence on category learning. Finally, we will
probe SAT-M’s assumption that attention shifts on a local context, trial-by-trial, basis by
using eye-tracking data to test whether the local attentional/encoding behavior of the model
matches those of learners.

4.1. Target phenomenon: The effect of sequence on category learning

In our application, we will focus on the behavioral results of one of the early studies on the
impact that different sequences of study have on category acquisition: the results from Car-
valho and Goldstone (2014b). As described above, this phenomenon allows us to demonstrate
the impact that local context changes have on category learning and how SAT-M captures this
effect, whereas models that do not include such a process of local attention changes do not
closely match the results.

Carvalho and Goldstone (2014b) investigated whether different sequences of study would
improve learning for different types of categories. Their main proposal was that different
sequences of study lead to encoding different properties because learners’ encoding of each
of the items is dependent on what they have experienced before. Thus, if study involves rep-
etition of the same category close in time, the encoding would emphasize what is similar
among those items, whereas if study involves alternation between categories close in time,
encoding would instead emphasize what is different among those items. This effect would be
most salient when comparing learning of different types of categories. If the categories stud-
ied are highly dissimilar, noticing small similarities among items of the same categories—and
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Fig. 1. Example stimuli used in Carvalho and Goldstone (2014b). Stimuli in the high similarity set (top panel)
differed on only two features between any two categories and only one feature among items of the same category.
Stimuli in the low similarity set (bottom panel) differed in many features between categories and among items of
the same category. Gray boxes (not presented to participants) highlight the category-defining features. For details
of the structure of the categories used see: https://osf.io/s87tf/.

by hypothesis blocked study—should improve learning outcomes. Conversely, if the different
categories studied are highly similar, noticing the small differences between items of different
categories—and by hypothesis interleaved study—should improve learning outcomes.

To test these predictions, Carvalho and Goldstone (2014b) used two different sequences
of study: blocked practice where items of a category are often followed by other items of
the same category, and interleaved practice where items of one category are often followed
by items of one of the other categories. They also manipulated the type of category being
learned: either low similarity categories where items in the same category differed from each
other and from items of other categories on most of their features, or high similarity categories
where items of different categories differed from items of the same and different categories
on only a small number of features.

The categories used were blob shapes composed of multiple curvilinear segments (see
Fig. 1 for examples). The structure of the categories is shown in Appendix A. Each dimen-
sion corresponds to a segment location in the blob, whereas each feature value corresponds
to a particular curvilinear segment. High and low similarity categories varied on how many
differences existed between and within categories and thus on how many feature values there
were for each dimension (but not on the number of dimensions). All categories were defined
by the presence of a particular curvilinear segment in a particular location of the space. In
the high similarity set, exemplars shared most of their features with all the other exemplars
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in the same category and in each of the other five categories. Moreover, variation within each
category was exactly the same for all categories, so that a difference that could exist between
two exemplars in category 1 would also exist between two exemplars of each of the other
categories in the set. In the low similarity set, exemplars within each category shared only the
category-relevant feature. Moreover, exemplars from different categories differed in all their
features. Some of the exemplars had an overall round shape, and others an overall oblique
shape (this variability was equally distributed across categories).

Participants started by studying three categories in one of the sequences and then being
tested (in random order) on those followed by another study phase in the other sequence and
a new test phase. Interleaved study was achieved by alternating categories 75% of the time,
whereas blocked study was achieved by alternating categories only 25% of the time. Study
phase was composed of four blocks of 72 trials each. During study, eight items of each cat-
egory were presented three times each. The test phase included 48 trials, each a presentation
of one of the 16 items of each category studied (half studied and half novel). Thus, when
we refer to the sequence, we refer to how training was sequenced. Test sequence was never
manipulated.

Overall, Carvalho and Goldstone (2014b) found that for high similarity categories, inter-
leaved study improved the classification of novel items at test, whereas for low similarity
categories, blocked study improved the classification of novel items at test. This is the critical
pattern of results that we will model in this paper.

Of course, one way to capture Carvalho and Goldstone’s proposal and results described
above would be to stipulate that the attentional weights for similarities and differences are
different for blocked and interleaved sequences, for example, by fitting the two sequences
separately. However, such an approach brings us back to the issue stated at the start of this
paper. In so doing, one would be assuming that even though the sequence is a local change
in context, it would be explained solely by global context, that is, by what category the item
belongs to and the pressures that exerts on attention and encoding. Instead, we propose that
SAT-M can parsimoniously account for the effect of different sequences on category learning
and, moreover, better characterize the flexibility of human learning.

4.2. ALCOVE and SUSTAIN and categorization performance following different sequences

Our main proposal is that attention changes that occur over the course of category learning
are the result not only of global context pressures arising from category classification, but
also local context pressures arising from what other items were studied in closed temporal
proximity. Importantly, previous models and theories of category learning fail to capture the
effect of local context, focusing only on the global context.

To confirm this assertion, we fit two models that, like SAT-M, include an attention learning
process during category learning: ALCOVE and SUSTAIN. Our point with these fits is to
demonstrate that without considering the importance of local temporal context, these models
cannot easily account for our previously presented category learning results, as we argued is
the case when comparing the effect of different sequences of learning. It is, of course, possible
that if we were to fit the models separately for each sequence and added the flexibility of
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E‘::ts)lte—:ﬁlt parameter values for ALCOVE and SUSTAIN fits to Carvalho and Goldstone (2014b)

ALCOVE SUSTAIN
Parameter c ] Ay Ae r B d n
Best-fitting value 15.85 1 0.718 0.99 11.99 0.99 1.13 0.49

Note: Models were simulated using the implementation provided in the R package Catlearn.

allowing different parameter values for interleaved versus blocked training, then ALCOVE
and SUSTAIN might fit the data, but, unlike our proposal, this would involve many degrees
of freedom and would not offer a parsimonious mechanistic explanation.

We fit both models to the target phenomenon described above. We used the implemen-
tations of ALCOVE and SUSTAIN available in Catlearn (Wills, O’Connell, Edmunds, &
Inkster, 2017), an open archive of formal psychological models implemented in R (R Core
Team, 2019). We trained the models with the study sequences from each participant and
compared the model performance in the test phase with that of the participant trained with
that sequence. In both models, category learning feedback was presented during training but
not during test. We used sum of squared errors, implemented as part of the Catlearn package,
as the objective function to determine best fitting parameters. The category representation
described in Appendix A was adapted—maintaining its main characteristics—to match how
ALCOVE and SUSTAIN define category spaces.

ALCOVE has a total of six parameters. From these, we defined the distance metric as
Euclidean distance metric (» = 2) and used a Gaussian similarity gradient (¢ = 2), because
as noted before and exemplified in Fig. 1, both category structures were designed to have
highly confusable stimuli for which a Gaussian similarity gradient is more appropriate and
the dimensions are not easily separable, for which Euclidian distance is more appropriate. We
consider these stimuli to be integral because previous work with similar stimuli found that
with practice, people did not seem to be categorizing blobs by separately combining evidence
along each spatially defined feature (Goldstone, 2000), suggesting that during categorization
tasks, these types of stimuli are treated as integral. Importantly, using a city-block metric (»
= 1) and an exponential similarity gradient (¢ = 1) did not change the overall pattern of
results for this or any of the subsequent model fits. The remaining four parameters were free
parameters fit to the data. These parameters include the specificity constant (c), the decision
constant (¥), and the associative (A,,) and attentional (A, ) learning rates. The best fitting values
of these parameters are presented in Table 2.

SUSTAIN has a total of five parameters. From these, we defined the threshold to create a
new cluster (7) as 0 because the study includes only supervised trials. We fit the following
four free parameters: attentional focus (r), cluster competition (8), decision constancy (d), and
learning rate (). The best fitting parameter values are presented in Table 1. We defined the
initial attentional weights and associative strengths as the same to all dimensions. Moreover,
we defined the initial receptive fields as equally tuned and the network was always started
with a single cluster with zero-strength weights.
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Fig. 2. Fitting results (dots) for ALCOVE (top panel) and SUSTAIN (bottom panel) over the empirical results from
Carvalho and Goldstone (2014b; represented by the bars). Best-fitting parameter values are presented in Table 1.

Of note, our modeling approach here and in all subsequent model fitting was to fit the
models to both sequences (and category structures, in this case) together. We use this approach
because it is parsimonious. A model accounting for all conditions with the same parameter
values is preferable to a model that requires additional assumption about how parameters
vary across conditions. One could easily tweak parameter values and improve fit to the data
without providing a parsimonious account by fitting each condition separately.

The results of our simulations with best fitting parameters are shown in Fig. 2. As can
be seen in Fig. 2, both models provide an overall poor fit to the data ( 7> = .005; SSE =
25.85, and > = .001, SSE = 31.54, for ALCOVE and SUSTAIN, respectively). Critically,
both models also fail to show an interaction between category structure and sequence of study
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for novel items presented at test, a hallmark of the effect that local context has on category
learning. The results of these simulations are consistent with our proposal that part of what is
happening during category learning is learning to attend to information that is or is not rele-
vant in the context of the other items studied in close temporal proximity (local context) and
not only the global context of all the items belonging to either category. Although their spe-
cific mechanisms differ, attention in both ALCOVE and SUSTAIN changes during category
learning as a result of the dimensions’ general relevance for categorization. While both mod-
els are process models that take as input a specific sequence of trials, their dimension learning
mechanisms are designed to work over long time courses, rather than the short trial-to-trial
fluctuations of encoding that is implemented in SAT-M. One could argue that the poor fits of
ALCOVE and SUSTAIN are in part the result of trying to fit both the high and low similar-
ity categories simultaneously. One reason to fit each category structure separately would be
to assume that each category structure constitutes a different global context where different
information needs to be attended to and ignored. However, doing so would also assume that
the cognitive system is “reset” to learn different structures in different ways and that it has a
special way to tell which context it is while not specifying what that way might be. Similarly,
one could argue that both ALCOVE and SUSTAIN could capture the results of Carvalho and
Goldstone if fit separately to each sequence and category structure. Although that might be
case, those fits do not answer the question of where learned attention to different features in
different contexts originates. SAT-M, we propose, provides a parsimonious solution to this
question.

4.3. SAT-M and categorization performance following different sequences

In the previous section, we demonstrated that extant models that include a learning process
and a mechanism for attentional changes during learning cannot account for the empirical
results reported by Carvalho and Goldstone (2014b). In this section, we explore whether the
mechanism of sequential encoding of similarities and differences among successive items,
when paired with different sequences of stimuli, can yield these results. To that end, we
fit SAT-M to the results from Carvalho and Goldstone (2014b, Experiment 1). The ver-
sion of SAT-M we used had three free parameters (e, y, ¢), and three fixed parameters (p,
r, w). We fit SAT-M using maximum likelihood estimation with the four versions of the
enCOdng Weight (8 same feature, same category, € same feature, different category, € different feature, same category, €
different feature, different category)s ¥» and ¢ as free parameters fit to the data. We set p = 2, because
stimuli were relatively confusable and r = 2 (see above for there details on the reasoning for
these decisions). Importantly, setting p = 1 and » = 1 did not change the overall pattern of
results. We set @ = 1 because the stimuli used were designed such that all dimensions were
approximately equally salient, and the assignment of feature positions to roles in the cate-
gory structure was counterbalanced. This counterbalancing makes it likely that there are no
systematic nonlinear interactions between feature values on the same blob. To the extent that
there are interactions between particular feature values, that will only handicap SAT-M from
predicting the results given that it does not incorporate those interactions. Additionally, the
different models being compared are all similarly handicapped. We used maximum likelihood
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Table 2
Average best-fitting ¢ and y parameters for SAT-M fits and average best-fitting ¢, y, and ¢ parameters SAT-M-R
to results from Carvalho and Goldstone (2014b, Experiment 1)

c y e
SAT-M 1.01 (0.46) 4.12 (0.18) -
SAT-M-R 1.00 (0) 1.32 (0.00001) 0.9 (0.00001)

Note: Standard deviation in parenthesis.

estimation to allow for direct comparisons between SAT-M and SAT-M-R with quantification
of relative evidence in favor of each.

We fit the model using sequences generated in the same way as those shown to participants.
For each run, the model was trained with a sequence similar to that of a human participant and
then performance in a test phase, including old and novel items, was tested. In our simula-
tions, each stimulus was represented as an eight-dimensional vector. In the low similarity set,
each dimension could assume a value 1-48 representing the many different components of
that set of stimuli. For the high similarity set, each dimension could assume a value 1-4, rep-
resenting the few differing components among stimuli. This representation matches how the
stimuli were initially created (see Carvalho & Goldstone, 2014b, Appendix A, and materials
stored in OSF: https://osf.io/s87tf/). The best-fitting ¢ and y parameters are shown in Table 2.
Interestingly, for both fits, ¢ approximates 1. This might suggest dependencies between ¢ and
y as previously suggested (Ashby & Maddox, 1993; Myung, Pitt, & Navarro, 2007; Smith &
Minda, 2002).

The results of the model are displayed as dots over the bars representing Carvalho and
Goldstone’s (2014b) results in the top panel of Fig. 3. As it can be seen, the model provides
a good fit to the data (r> = .96, SSE = 0.008, BIC = 7053.60), suggesting that the effect of
different sequences on category learning and generalization can be captured by a process of
sequential comparison between successive items. For comparison, we constructed a restricted
version of the model where the sequence of study does not influence the encoding weights of
each stimulus property (Sequential Attention Theory Model Restricted; SAT-M-R). In SAT-
M-R, there is a single encoding weight ¢ that is a function of the feature’s category relevance
and does not vary depending on sequential variation among items (note that ® = 1 as in
SAT-M such that all dimensions are equally relevant for categorization). Thus, in SAT-M-
R, ¢ is allowed to vary based on the global relevance of a dimension for categorization but
does not vary depending on the local context of the value of that feature in the previous item.
SAT-M-R embodies the plausible alternative proposal that the effect of different sequences—
—and local variation during study—can be well-accounted by global weighting based only on
category assignment information. As such, SAT-M-R can be construed as a version of GCM
with a learning process. Best-fitting parameters are presented in Table 2.

As it can be seen in the bottom panel of Fig. 3, SAT-M-R provides a poor fit to the
data (©* = .44, SSE = 0.103, BIC = 7319.03). Interestingly, although SAT-M-R displays
the often-shown effect of stimulus similarity on categorization (better categorization of old
items for low similarity categories, but better categorization of novel items for high similarity
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Fig. 3. Fitting results (dots) for SAT-M (top panel) and SAT-M-R (bottom panel) over the empirical results from
Carvalho and Goldstone (2014b; represented by the bars). SAT-M provides a much better fit to the data than
SAT-M-R.

categories, e.g., Palmeri & Nosofsky, 1995), it is not sensitive to the sequence of learning and
cannot capture the interaction pattern evident in the human data. The Bayes factor comparing
the two models directly suggests that SAT-M-R is much less likely to have generated the data
than SAT-M (B < 0.001).

The ¢ parameters in SAT-M are sensitive to local context (i.e., the encoding parameters
vary depending on the match in feature properties and category assignment across trials) and
can be directly interpreted as the encoding strength of a feature. If encoding is sensitive to
local context, then we should not only see better fit of SAT-M compared to a version in
which ¢ is not allowed to vary due to local context as shown, but we should also see that
the best-fit ¢ values differ depending on local context. Importantly, in SAT-M, the encoding
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Table 3
Average best-fitting encoding parameters ¢ when fitting SAT-M to results from Carvalho and Goldstone (2014b,
Experiment 1)

Different category Same category
Different feature 0.96 (0.08) 0.0015 (0.01)
Same feature 0.11 (0.03) 0.79 (0.22)

Note: Standard deviation in parenthesis.

parameters are fit to the data and, therefore, the best fitting solution could be one where the
encoding parameters, like is the case in SAT-M-R, are equivalent or vary in any number of
ways. Table 1 shows the best fitting parameter values.

As can be seen in Table 3, encoding strengths are stronger for differences between items
of different categories and similarities among items of different categories. This result con-
firms that the SAT-M solution that best fits the data does so by varying encodings depend-
ing on local context (i.e., the match on category and feature properties between current and
previous items). Moreover, these results are consistent with the theoretical explanation of
the phenomenon offered by Carvalho and Goldstone (2014b): if interleaved study improves
learning of high similarity categories because it emphasizes encoding of differences between
categories, whereas blocked study improves learning of low similarity categories because it
emphasizes encoding of similarities among items of the same category, then we should see
that the best fitting parameters should be higher for differences among different categories
and similarities among items of the same category. Because different sequences include a
disproportionate number of transitions across the same category (blocked study), or different
categories (interleaved study), whether differences or similarities are better encoded depends
on the sequence of study.

4.4. Further tests of SAT-M involving categorization performance following different
sequences

To expand on the results above, we fit SAT-M to two other studies investigating the effect
that interleaved and blocked sequences have on category learning: Carpenter and Muller
(2013) and Zulkiply and Burt (2013).

Carpenter and Muller (2013) demonstrated that when learning French pronunciation rules
(e.g., “eau” in “bateau”), non-French speakers were better at classifying the correct pronun-
ciations of novel words at test if they trained by practicing with words blocked by rule (i.e.,
studying multiple words with the “eau” pronunciation before studying words with the “ou”
pronunciation), instead of interleaved by rule. We fit the results of Experiment 1 in Carpenter
and Muller (2013). To do so, we created a feature space based on the characteristics of the
words used in their original experiment (see Appendix C). We considered that all words had
eight dimensions and aligned the features such that the letters associated with the pronun-
ciation rule occupied the same dimensions for all words. The other dimensions represented
random variation across words. For example, take the words “bateau” and “carreau,” these
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Table 4
Average best-fitting parameters when fitting SAT-M to results from Carpenter and Mueller (2013; Experiment 1)
and Zulkiply and Burt (2013; Experiment 2)

Same cat, Different cat,
Same cat, different Different cat, different
c y same feature feature same feature feature
Carpenter & 0.97 (0.22)  0.99 (0.12) 0.88 (0.12) 0.37 (0.14) 0.12 (0.12) 0.86 (0.12)

Mueller, 2013;
Experiment 1
Zulkiply & Burt,  1.01 (0.0001) 2.22 (0.0001) 1.00 (0.0001) 0.40 (0.0001) 0.24 (0.0001) 0.85 (0.0001)
2013;
Experiment 2

Note: Standard deviation in parenthesis.

LRI

two words differ on all dimensions except the last three, representing “e,” “a,” and “u,” for
the critical sounds for the rule “-eau.” The word “adosser” differs from “bateau” and “carreau”
on all feature dimensions but has the same feature values for features 7 and 8 as “attraper,”
representing the letters associated with the critical pronunciation rule “-er.”

In the study, participants practiced by seeing a word along with hearing the correct pro-
nunciation rule. Participants studied four different words from each of eight rules. Four of
the rules were presented interleaved and the other four were presented blocked. Following
training, participants completed a classification test in which they were presented with 64
words (the 32 words seen during training plus 32 new words) and they had to identify the cor-
rect pronunciation rule by choosing one of three alternatives (correct pronunciation, incorrect
rule, and incorrect pronunciation but correct rule). In our modeling, we replicated this proce-
dure closely except the final test was a classification test requiring identifying the correct rule
among all the rules studied. We used this procedure to simplify the modeling approach and
remain close to the characteristics of SAT-M as a categorization model. Previous research has
suggested that recognition and categorization are related (e.g., Nosofsky, 1991), and thus this
simplification should not affect the main characteristics of the task. As before, we fit SAT-M
using maximum likelihood estimation with the four encoding weights (& same feature, same category,
€ same feature, different category, € different feature, same category, € different feature, different calegory), Y, and c as
free parameters fit to the data. We set p = 2, because we evaluate the stimuli as relatively
confusable and r = 2 because, as encoded, the dimensions are not easily separable. Impor-
tantly, as before, changing r = 1 and p = 1 did not change the overall pattern of results. We
set w = 1 under the assumption that in our coding of the stimuli, all dimensions are equally
salient. The model was fit to the average population results from the paper, as we did not have
access to individual participants’ data. The best fitting parameters are presented in Table 4.

As can be seen in Fig. 4, SAT-M provides a good fit to the data (r* = .37; SSE = 0.108;
BIC = 14), capturing both the effect of novel versus old words (Panel A in Fig. 4) and the
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Fig. 4. Fitting results (dots) for SAT-M over the empirical results from Carpenter and Mueller (2013, Experiment
1, represented by the bars), comparing New vs. Old items (panel a) and blocked vs. interleaved study (panel b).

benefit of blocked study compared to interleaved study when classifying all words at test
(Panel B in Fig. 4).

SAT-M provides a natural account for why blocked presentation of pronunciation rules
leads to better learning than interleaving. Blocked presentation allows for encodings of exam-
ples that emphasize the word features that are characteristics of a particular rule. This is useful
for the words used by Carpenter and Mueller (2013) because there are many nondiagnostic
word features that need to be ignored, and not all of the characteristic features discriminate
between rule categories.

In Experiment 2, Zulkiply and Burt (2013) compared generalization of abstract categories
learned either through blocked or interleaved practice. In this study, participants learned either
high similarity or low similarity categories by studying six pictures of each of 12 categories
(six interleaved and six blocked). Following training, participants classified four new pic-
tures of each category, presented in random order. The authors report an interaction between
category similarity and sequence of study, such that interleaved training improved test perfor-
mance for high similarity categories, whereas blocked training improved test performance for
low similarity categories.

Each category was composed of pictures created by positioning different shapes on a black
background. The location and properties of some of the shapes defined the category assign-
ment (see Zulkiply & Burt, 2013 for details). Based on the description of the categories and
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Fig. 5. Example stimuli from Zulkiply and Burt (2013). For modeling, we converted the stimuli into a feature space
with nine dimensions: shape of the main object (dimension 1), color of the other category objects (dimension 2),
match of shapes across category objects (dimension 3), position of the category object (dimension 4), and five
distractor shape dimensions (dimensions 5-9). For details, see text and Appendix D.

the examples provided in their paper, we created a feature space that closely matched the
categories used (see Appendix D). The feature space had nine dimensions: shape of the main
object (dimension 1), color of the other category objects (dimension 2), match of shapes
across category objects (dimension 3), position of the category object (dimension 4), and five
distractor shape dimensions (dimensions 5-9). As can be seen in the examples in Fig. 5, cate-
gory assignment was determined by a combination of shape of the main object (dimension 1;
two values: circle or triangle), and color of the other category objects (dimension 2; six values
for a combination of pairs of two out of four possible colors). For high similarity categories,
the shape matched across category objects (dimension 3), whereas for low similarity cate-
gories, it could match or mismatch (dimension 3). Similarly, for high similarity categories, the
position of the category object (dimension 4) was either top or bottom of the image, whereas
for low similarity categories, it could be one of four positions: top, bottom, left, or right of the
image. Finally, high similarity categories had only one distractor shape (dimension 5) with
every item having a different shape/feature value and the same feature value for the other dis-
tractor shapes (dimensions 6-9) to indicate no shape, whereas low similarity categories had a
different value in each one of the dimensions for each item (dimensions 5-9).

As before, we fit SAT-M using maximum likelihood estimation with the four encod-
ing WeightS (8 same feature, same category, € same feature, different category, € different feature, same category, €
different feature, different category)s ¥» and ¢ as free parameters fit to the data. We set p = 2, because
we considered that the stimuli were relatively confusable and r = 2 because, as designed, the
dimensions are not easily separable. Importantly, as before, changing r = 1 and p = 1 did not
change the overall pattern of results. We set w = 1 because the stimuli were designed with an
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Fig. 6. Fit results (dots) for SAT-M over the empirical results from Zulkiply and Burt (2013, Experiment 2, repre-
sented by the bars).

effort to make all dimensions approximately equally salient. The model was fit to the average
population results from the paper, as we did not have access to individual participants’ data.
The best fitting parameters are presented in Table 4.

As it can be seen in Fig. 6, SAT-M provides a good fit to the data (r> = .94, SSE = 0.003;
BIC = 13), capturing the interaction between category similarity structure and sequence of
study on classification of novel items at test. When the stimuli are dissimilar, it is difficult
to find the features shared by members of the same category, and blocking helps to empha-
size these features. When the stimuli are similar, it is difficult to find the few features that
discriminate between the categories, and interleaving increases the encoding strength of these
discriminating features.

The modeling of other researchers’ empirical results presented here shows that the SAT-
M is able to accommodate results from experiments that were not explicitly designed to test
SAT. Other existing models, such as GCM, would be hard-pressed to account for these results
because they do not have trial-by-trial learning mechanisms. Other models, like ALCOVE,
do have trial-by-trial learning mechanisms, but they tend to slowly change attention to dimen-
sions based on their overall relevance to a categorization task. SAT-M features rapid changes
to stimulus encodings based on the immediate temporal context, in particular, the dimension-
by-dimension similarities between the current and previous items. This component is partic-
ularly useful for accommodating differences between interleaved and blocked presentation.
SAT also offers a different kind of explanation of observed interleaving benefits compared to
contextual interference and spacing accounts. An advantage of SAT’s explanation is that it
can explain when interleaving does not always confer benefits over blocking.
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4.5. Encoding weights and attention

The main novelty introduced by SAT-M is the sensitivity to local temporal context during
category learning through differential encoding of each feature of a stimulus depending on
how it compares to immediately preceding items and their category assignment. To this end,
SAT-M introduces in the context of GCM the ¢ parameters that modulate encoding of a feature
and vary depending on whether the feature and category assignment change relative to the
previous item. Theoretically, we have argued that the inclusion of these parameters is sensible
because learners are sensitive to local context in addition to global information about which
dimensions are overall most relevant for category learning. Furthermore, we proposed that this
sensitivity can be thought of as a modulation in how each stimulus experience is encoded and
stored. The same item studied after a different previous item would be encoded differently.

In the earlier sections, we showed that to fit data from an experiment showing how learners
are sensitive to local context, the ¢ parameters varied in their best-fitting values depending
on whether the feature was the same or not and whether the category assignment was the
same or not across two stimuli. Furthermore, we showed that SAT-M can fit a range of exist-
ing data comparing categorization and memory performance following training with different
sequences. If in fact local sensitivity can be captured by differential encoding patterns as in
SAT-M, then we should see that looking patterns (often taken as a measure of overt atten-
tion) should be correlated to best-fit & values. This new insight from SAT-M can be tested
empirically by comparing looking time with best-fit ¢ values.

Carvalho and Goldstone (2017) tested whether different sequences of study would lead
learners to attend to different properties of the stimuli during different sequences of study. In
their study, participants studied the same two categories of Aliens either blocked or inter-
leaved (see left panel of Fig. 5 for examples of the stimuli used during study). The two
categories studied had a structure such that multiple feature values and dimensions could
predict category assignment (discriminative features), and some features, despite being com-
mon in a category, did not predict category assignment (as they were also common in
the other category—characteristic features; see Appendix B and stimuli available in https:
/losf.io/2n8gy/). After study, participants completed a test phase where participants classified
novel items at test. The novel items could vary on the frequent but not discriminative (char-
acteristic) feature or on other features (see right panel of Fig. 7 for examples). Importantly,
during learning, participants’ eye movements were recorded using eye tracking and how long
learners spent looking at each of the items’ features was analyzed.

Overall, the authors found that during interleaved study, learners looked longer at proper-
ties that differed from those of the preceding item, whereas during blocked study, learners
attended to both differences and similarities equally (see left panel of Fig. 7). The authors
argued that the interaction is overall consistent with SAT in that following blocked study, there
is no bias toward looking at differences, even though those might be more salient because
people often orient toward novelty or task-relevance (Rehder & Hoffman, 2005b; Wang &
Mitchell, 2011). Instead, participants attend to repeated similarities to the same extent. Dur-
ing interleaved study, on the other hand, participants’ attention is heavily biased toward
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Fig. 7. Example of stimuli from one of the families used by Carvalho and Goldstone (2017). Left panel includes
an example of each of the categories studied. Right panel includes an example of each of the novel items presented
during the transfer task (both transfer items belong to category A; equivalent items existed for category B). For
details of the structure of the categories used, see: https://osf.io/2n8gy/.

differences between successive items, which are likely to be properties that differentiate
between the categories.

Can these different attentional patterns be captured by SAT-M? If the encoding weights
in SAT-M correspond to differential looking times as proposed, then the best-fitting parame-
ters when we fit SAT-M to the categorization data should match the looking times observed
in Carvalho and Goldstone (2017). To test these predictions, we fit SAT-M to the results of
the testing phase of Experiment 3 of Carvalho and Goldstone (2017). Each stimulus used
in the experiment was defined as a five-dimensional vector, with each dimension taking
a value between 1 and 5. After fitting the model using the same parameters as described
in the previous section, we extracted the best fitting encoding weight parameters for each
feature of the studied items. The average best-fitting ¢ parameter was 1.07 and the aver-
age best-fitting y parameter was 0.89. As described above, in SAT-M for each event,
the stimulus along with encoding parameters ¢ for each of its features is stored. As in
the previous applications, SAT-M had four encoding parameters depending on the
match of the properties and category assignment among the currently encoded item and
the PreViOUS ONE—=¢ different feature, same category, €different feature, different category, €same feature, same category,
Esame feature, different category. After fitting SAT-M to the behavioral results of the transfer task, we
calculated, separately for the blocked and interleaved sequences, the sum across trials and fea-
tures of the encoding parameter values for features that differed across successive items and
features that were the same among successive items. Conceptually, summing up the encoding
parameters is similar to summing up total looking time for each feature based on sequential
differences and similarities, as done by Carvalho and Goldstone (2017).

As it can be seen in the right panel of Fig. 8, for blocked study, the summed best-fitting
encoding weight parameters are similar for differences and similarities across successive
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Fig. 8. Results from total looking time during study in Carvalho and Goldstone’s (2017) Experiment 3 (left panel)
and summed best-fit values for encoding weights (¢) when SAT-M is fit to the categorization results of Carvalho
and Goldstone’s Experiment 3 (right panel).

items. For interleaved study, on the other hand, the summed encoding weights are higher for
differences than similarities across successive items. This pattern of results is similar to the
empirical results found in the eye-tracking study (see left panel of Fig. 8; Carvalho & Gold-
stone, 2017). It is also consistent with evidence from other eye-tracking studies investigating
the influence of study sequence on category learning (Zaki & Salmi, 2019).

Overall, the results from these simulations suggest that the encoding weights in the SAT-M
can be directly related to encoding differences in behavioral data. Importantly, we did not fit
the encoding weights to the looking data in Carvalho and Goldstone (2017). Instead, we fit the
model to the categorization test results and used the resulting best-fitting encoding parameter
values as a measure of the model’s encoding or looking time. Finding that when fit to the test
data, the model converges on encoding weights with a similar pattern to that of human looking
time in the same paradigm is striking and speaks to the adequacy of the model’s processes to
those of human cognition.

5. Implications

The flexibility of current models of categorization lies in large part on their ability to selec-
tively weight some features more than others during learning. This procedure—although often
successful at capturing how different features are differently relevant for different categories—
—fails to account for the full flexibility of human categorization. Beyond considering global
variables such as the relevance of a property for correct classification, humans are sensitive
to the local context of categorization and the same feature can become more or less relevant
depending on the other items studied in close proximity. We developed a more flexible model
of categorization—the Sequential Attention Theory Model (SAT-M), based on Carvalho and
Goldstone’s Sequential Attention Theory of category learning (Carvalho & Goldstone, 2017).
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The main assumption of our model is that how each item is encoded during category learning
is not only the result of the global context of the categorization task, but also the local context
of the temporally immediately preceding item. This assumption makes SAT-M not only flex-
ible but also computationally efficient: in order to selectively encode properties that will tend
to be useful for categorization, SAT-M takes only the preceding item during learning. Thus,
SAT-M requires very few items that need to be stored while relying mostly on the item that is
expected to be the most accessible due to its recency.

To test SAT-M, we compared its predictions with human behavior in a situation where local
context strongly affects performance—the effect that difference sequences of items have on
category learning. We have proposed that during category learning, people engage in a pro-
cess of sequential comparison to decide what is relevant and should, therefore, be encoded
and what is not relevant and can be ignored. Engaging in this process, we proposed, is the rea-
son why the sequence of study changes what is learned—different sequences create different
sequential statistics that create attentional patterns toward encoding different types of features.
The model introduced in this paper instantiated this proposal by including an initial sequential
encoding process during which different features are assigned encoding weights depending
on their relation to the features in the item encoded immediately before and whether both
items belong to the same category or not. These encoding weights represent the likelihood of
encoding a particular feature during a particular presentation of the item.

Importantly, these weights do not reflect the overall relevance of the feature for catego-
rization as do the attention parameters in models, such as GCM, ALCOVE, or SUSTAIN.
A similarity shared by two successive items of the same category does not necessarily mean
that it is diagnostic of categorization. Similarly, a difference between two successive items
of different categories does not guarantee its diagnosticity for categorization. In this way,
the sequence of study is biasing local encoding on a trial-by-trial level, as opposed to global
attention to relevant versus irrelevant properties at a task level. By strongly encoding locally
relevant similarities that are not globally relevant (e.g., irrelevant within-category similarities
in the high similarity category set), study in a blocked sequence might, at times, deter learn-
ing. Similarly, by encoding locally relevant differences that are not globally relevant (e.g.,
irrelevant between-category differences in the low similarity category set), interleaved study
might, at times, deter learning. The opposite is equally important—encoding locally rele-
vant similarities or differences that are relevant for categorization might boost performance
because it does not depend on having experience with the full set of items and, therefore,
knowing what has been relevant so far. Locally determined encodings could be seen as a cat-
alyst for learning when a learner has not yet collected a lot of information yet as to the global
relevance of different dimensions.

Notwithstanding the significance of attending to and encoding locally relevant features,
the importance of global allocation of attention to category-relevant dimensions and away
from category-irrelevant ones should not be ignored. There is widespread behavioral and
eye-tracking evidence that people learn to attend to certain dimensions while ignoring oth-
ers, depending on their global predictive power for correct categorization (e.g., Blair et al.,
2009; Chen, Meier, Blair, Watson, & Wood, 2012; Rehder & Hoffman, 2005b). In the current
modeling, we have focused only on local allocation of attention and encoding for simplicity.
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However, this means that because each item is encoded relative to only the previous item,
dimensions that do not offer any predictive value continue to be attended. How could our
model be extended to account for both local and global attention modulation? One possibility
is to use the global attention parameter from GCM (w) to model how attention is modulated
by the relevance of each dimension or feature in the context of all category items. However,
this approach sidesteps understanding how global context affects attentional patterns during
categorization. Another possibility would be to include global attention as a learned aspect
of categorization and have a process of attention accumulation for each feature starting at the
beginning of encoding, based on the geometric average of the encoding weights assigned for
that dimension up to that point. In essence, high global attention to a dimension would be the
result of continued high local attention and would reflect an inference of “If this dimension
keeps being relevant locally, it must be important globally.” With sufficient exposure, this
global attention accumulator could then be used to modulate future local encoding decisions:
A locally relevant difference between two categories on a seldom-predictive dimension might
not be attended or encoded, while a locally irrelevant similarity between two categories on a
frequently predictive dimension might be encoded. One potential advantage of this process
compared to current models of categorization is that attention modulation would be a learned
process at both the local (trial-by-trial) and global (task) levels.

In future extensions of this modeling work, it would be important to include both local and
global attention processes, and also to fit the data to individual participants’ data by feeding
the model with the sequence that a particular participant saw, using maximum-likelihood
estimation of the best-fitting parameters for each participants’ data. This would allow for a
more finely tuned analyses of the differences between the encoding weights for different types
of local changes and how this process affects global attention. Another possibility would be
to allow earlier trials (beyond N-1 as used here) to affect the encoding weights. Although our
decision to choose only the immediately preceding item is consistent with empirical evidence
showing that people use the information from the previous trial heavily when making a new
categorization decision (Jones & Sieck, 2003; Stewart, Brown, & Chater, 2002), influences of
preceding items could also be modeled by a function that decays more gradually (Stewart &
Brown, 2004), perhaps varying with several factors, such as how easy it is to encode different
items (i.e., how confusable the exemplars are). Additionally, the current version of SAT-M
assumes that encoding happens post-feedback, when the correct assignment of the current
item is known and can be used. Although this assumption is plausible given current evidence
in supervised learning, it will be important to test extensions of the model to account for
situations where feedback is not presented or delayed.

We developed SAT-M-R as a demonstration that the local context has a direct and important
influence on how information is encoded and used for categorization. Of course, this key
insight can potentially be instantiated in other models as well. For example, EBRW (Nosofsky
& Palmeri, 1997) could be modified such that sampling of stored examples is based not on
similarity but on temporal proximity. Likewise, similar encoding parameters could be added
to SUSTAIN and ALCOVE. Our goal is not to demonstrate that no other model could possibly
ever account for the data SAT-M was developed to account for, but instead to demonstrate that
to account for those data, the impact of local encoding context needs to be considered.
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The results of the modeling work presented here have direct implications for theories of
how the sequence of study influences learning by providing further evidence that a sequential
comparison mechanism is plausible and can account for the results presented. We showed that
there is no “best sequence” shortcut to learning. Instead, each sequence of study and the local
attentional patterns it creates will shape what is learned. To understand whether a sequence is
optimal or not, one needs to understand what is encoded during learning and what is required
during later training or transfer. A match will result in optimal learning. This proposal casts
doubt over alternative proposals that focus on differentiation as the only basis for category
learning and advocate for processes that maximize it (Kang & Pashler, 2012), or proposals
arguing that the relative benefit of interleaved practice lies on the increased temporal spacing
between items of the same category (Birnbaum, Kornell, Bjork, & Bjork, 2013; Kornell &
Bjork, 2008) because it demonstrates that blocked study can result in best encoding of features
repeated close in time and improved learning in situations that do not require discrimination.

Our work also has implications for theories of category learning. Our model goes beyond
conceptualizing attentional changes in category learning as the result of processing statistics
over the entire course of study, that is, how the properties of a given item compare to the
properties of all items of all categories. This is a powerful conceptual change from taking
categorization as a broad learning process to a temporally local process, where each encoding
moment is influenced by what just happened. Here, we demonstrated that such a model can
capture the effect of different sequences, but it might also capture other effects. Although
typically described in the context of memory tasks, the spacing effect has also been shown in
the context of category learning (e.g, Birnbaum et al., 2013). One way to conceptualize this
effect in terms of changes in local context is to consider that encoding an item (or category
of items) among many varied items increases encoding of different features because different
features will be more relevant in pairwise comparisons, leading to a more robust encoding of
the category and promoting later transfer.

More broadly, SAT-M and the importance of local context for attention modulation and
encoding might also account for well-known effects in categorization. For example, local
attention changes can provide a mechanism through which category structure modulates cat-
egory learning (Gureckis & Goldstone, 2008; Livingston & Andrews, 1995). By modulating
attention on a trial-by-trial basis, it is likely that category boundaries would be emphasized
even if they are not overall relevant for categorization. Similarly, the effect of local context can
help explain the transfer of category learning across tasks (Gauthier, James, Curby, & Tarr,
2003), and the effect of different tasks (Trippas & Pachur, 2019) on category learning. These
effects can be conceptualized in terms of changes in local context: when an item is learned
among a certain type of items or semantic contexts, different properties will be emphasized
that matter for that local context which can promote transfer (or hurt it).
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Appendix A

Table 1 Representation of the category structure used in Carvalho and Goldstone (2014b)

D1 D2 D3 D4 D5 D6 D7 DS Category Similarity structure Item
1 2 2 2 2 2 1 1 1 Low similarity LS_101
1 3 4 3 3 3 2 2 1 Low similarity LS_102
1 4 5 4 4 4 3 3 1 Low similarity LS_103
1 5 6 5 5 5 4 4 1 Low similarity LS_104
1 6 7 6 6 6 5 5 1 Low similarity LS_105
1 7 8 7 7 7 6 6 1 Low similarity LS_106
1 8 9 8 8 8 7 7 1 Low similarity LS_107
1 9 10 9 9 9 8 8 1 Low similarity LS_108
1 10 11 10 10 10 9 9 1 Low similarity LS_109
1 11 12 11 11 11 10 10 1 Low similarity LS_110
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DI D2 D3 D4 D5 D6 D7 D8 Category Similarity structure Item
1 12 13 12 12 12 11 11 1 Low similarity LS_111
1 13 14 13 13 13 12 12 1 Low similarity LS_112
1 14 15 14 14 14 13 13 1 Low similarity LS_113
1 15 16 15 15 15 14 14 1 Low similarity LS_114
1 16 17 16 16 16 15 15 1 Low similarity LS_115
1 17 18 17 17 17 16 16 1 Low similarity LS_116
2 1 19 18 18 18 17 17 2 Low similarity LS_201
3 1 20 19 19 19 18 18 2 Low similarity LS_202
4 1 21 20 20 20 19 19 2 Low similarity LS_203
5 1 22 21 21 21 20 20 2 Low similarity LS_204
6 1 23 22 22 22 21 21 2 Low similarity LS_205
7 1 24 23 23 23 22 22 2 Low similarity LS_206
8 1 25 24 24 24 23 23 2 Low similarity LS_207
9 1 26 25 25 25 24 24 2 Low similarity LS_208
10 1 27 26 26 26 25 25 2 Low similarity LS_209
11 1 28 27 27 27 26 26 2 Low similarity LS_210
12 1 29 28 28 28 27 27 2 Low similarity LS_211
13 1 30 29 29 29 28 28 2 Low similarity LS_212
14 1 31 30 30 30 29 29 2 Low similarity LS_213
15 1 32 31 31 31 30 30 2 Low similarity LS_214
16 1 33 32 32 32 31 31 2 Low similarity LS_215
17 1 34 33 33 33 32 32 2 Low similarity LS_216
18 18 1 34 34 34 33 33 3 Low similarity LS_301
19 19 1 35 35 35 34 34 3 Low similarity LS_302
20 20 1 36 36 36 35 35 3 Low similarity LS_303
21 21 1 37 37 37 36 36 3 Low similarity LS_304
22 22 1 38 38 38 37 37 3 Low similarity LS_305
23 23 1 39 39 39 38 38 3 Low similarity LS_306
24 24 1 40 40 40 39 39 3 Low similarity LS_307
25 25 1 41 41 41 40 40 3 Low similarity LS_308
26 26 1 42 42 42 41 41 3 Low similarity LS_309
27 27 1 43 43 43 42 42 3 Low similarity LS_310
28 28 1 44 44 44 43 43 3 Low similarity LS_311
29 29 1 45 45 45 44 44 3 Low similarity LS_312
30 30 1 46 46 46 45 45 3 Low similarity LS_313
31 31 1 47 47 47 46 46 3 Low similarity LS_314
32 32 1 48 48 48 47 47 3 Low similarity LS_315
33 33 1 49 49 49 48 48 3 Low similarity LS_316
1 2 2 2 4 3 2 2 1 High similarity HS_101
1 2 3 2 3 3 2 2 1 High similarity HS_102
1 2 4 3 2 4 2 2 1 High similarity HS_103
1 2 2 3 4 4 3 3 1 High similarity HS_104
1 3 3 4 3 2 3 3 1 High similarity HS_105
1 3 4 4 2 2 3 3 1 High similarity HS_106

(Continues)
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D1 D2 D3 D4 D5 D6 D7 D8 Category Similarity structure Item
1 3 2 2 4 4 4 4 1 High similarity HS_107
1 3 3 2 3 4 4 4 1 High similarity HS_108
1 4 4 3 2 3 4 4 1 High similarity HS_109
1 4 2 3 4 3 4 4 1 High similarity HS_110
1 4 3 4 3 3 4 4 1 High similarity HS_111
1 4 4 4 2 3 4 3 1 High similarity HS_112
1 4 2 2 4 2 2 2 1 High similarity HS_113
1 4 3 2 3 2 2 3 1 High similarity HS_114
1 4 4 3 2 2 2 2 1 High similarity HS_115
1 4 2 3 3 2 2 3 1 High similarity HS_116
2 1 2 2 4 3 2 2 2 High similarity HS_201
2 1 3 2 3 3 2 2 2 High similarity HS_202
2 1 4 3 2 4 2 2 2 High similarity HS_203
2 1 2 3 4 4 3 3 2 High similarity HS_204
3 1 3 4 3 2 3 3 2 High similarity HS_205
3 1 4 4 2 2 3 3 2 High similarity HS_206
3 1 2 2 4 4 4 4 2 High similarity HS_207
3 1 3 2 3 4 4 4 2 High similarity HS_208
4 1 4 3 2 3 4 4 2 High similarity HS_209
4 1 2 3 4 3 4 4 2 High similarity HS_210
4 1 3 4 3 3 4 4 2 High similarity HS_211
4 1 4 4 2 3 4 3 2 High similarity HS_212
4 1 2 2 4 2 2 2 2 High similarity HS_213
4 1 3 2 3 2 2 3 2 High similarity HS_214
4 1 4 3 2 2 2 2 2 High similarity HS_215
4 1 2 3 3 2 2 3 2 High similarity HS_216
2 2 1 2 4 3 2 2 3 High similarity HS_301
2 3 1 2 3 3 2 2 3 High similarity HS_302
2 4 1 3 2 4 2 2 3 High similarity HS_303
2 2 1 3 4 4 3 3 3 High similarity HS_304
3 3 1 4 3 2 3 3 3 High similarity HS_305
3 4 1 4 2 2 3 3 3 High similarity HS_306
3 2 1 2 4 4 4 4 3 High similarity HS_307
3 3 1 2 3 4 4 4 3 High similarity HS_308
4 4 1 3 2 3 4 4 3 High similarity HS_309
4 2 1 3 4 3 4 4 3 High similarity HS_310
4 3 1 4 3 3 4 4 3 High similarity HS_311
4 4 1 4 2 3 4 3 3 High similarity HS_312
4 2 1 2 4 2 2 2 3 High similarity HS_313
4 3 1 2 3 2 2 3 3 High similarity HS_314
4 4 1 3 2 2 2 2 3 High similarity HS_315
4 2 1 3 3 2 2 3 3 High similarity HS_316

Note: Numbers represent a specific feature value on each dimension. They represent independent feature values

across dimensions (i.e., a 2 on dimension 1 is unrelated to a 2 on dimension 2). Each line represents a unique item.
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Appendix B

Category structure for the stimuli used in Experiment 3 of Carvalho and Goldstone (2017)

Category Item Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5
A 1 2(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 4(0.5,0.3)
A 2 2(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 5(0.5,0.3)
A 3 2(1,0.3) 2(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 3(0.5,0.3)
A 4 1(0.5,0.7) 2(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 3(0.5,0.3)
A 5 1(0.5,0.7) 2(1,0.3) 2(1,0.3) 1(0.5,0.7) 5(0.5,0.3)
A 6 1(0.5,0.7) 1(0.5,0.7) 2(1,0.3) 1(0.5,0.7) 4(0.5,0.3)
A 7 1(0.5,0.7) 1(0.5,0.7) 2(1,0.3) 2(1,0.3) 4(0.5,0.3)
A 8 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 2(1,0.3) 3(0.5,0.3)
A 9 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 2(1,0.3) 5(0.5,0.3)
B 1 3(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 4(0.5,0.3)
B 2 3(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 5(0.5,0.3)
B 3 3(1,0.3) 3(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 3(0.5,0.3)
B 4 1(0.5,0.7) 3(1,0.3) 1(0.5,0.7) 1(0.5,0.7) 3(0.5,0.3)
B 5 1(0.5,0.7) 3(1,0.3) 3(1,0.3) 1(0.5,0.7) 5(0.5,0.3)
B 6 1(0.5,0.7) 1(0.5,0.7) 3(1,0.3) 1(0.5,0.7) 4(0.5,0.3)
B 7 1(0.5,0.7) 1(0.5,0.7) 3(1,0.3) 3(1,0.3) 4(0.5,0.3)
B 8 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 3(1,0.3) 3(0.5,0.3)
B 9 1(0.5,0.7) 1(0.5,0.7) 1(0.5,0.7) 3(1,0.3) 5 (0.5, 0.3)

Note: Numbers represent a specific feature value on each dimension. They represent independent feature values
across dimensions (i.e., a 2 on dimension 1 is unrelated to a 2 on dimension 2). A value of 2 or 3 is always a
discriminative feature, whereas a value of 1 is a characteristic feature. Which part (eyes, legs, arms, antenna, and
mouth) corresponded to each dimension was counterbalanced across participants. Cue and category validity values
for each feature value are presented in parentheses (cue validity and category validity).

Appendix C

Category structure for the stimuli used in Experiment 1 of Carpenter and Mueller (2013)

Word Rule D1 D2 D3 D4 D5 D6 D7 D8
bateau eau 1 1 1 1 1 1 1 1
carreu eau 2 2 2 2 2 1 1 1
corbeau eau 3 3 3 3 3 1 1 1
fardeau eau 4 4 4 4 4 1 1 1
panneau eau 5 5 5 5 5 1 1 1
rameau eau 6 6 6 6 6 1 1 1
tableau eau 7 7 7 7 7 1 1 1
tonneau eau 8 8 8 8 8 1 1 1
adosser er 9 9 9 9 9 1 1 1
attraper er 10 10 10 10 10 3 2 2
baver er 11 11 11 11 11 4 2 2
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(Continues)
Word Rule D1 D2 D3 D4 D5 D6 D7 D8
combler er 12 12 12 12 12 5 2 2
darder er 13 13 13 13 13 6 2 2
raconter er 14 14 14 14 14 7 2 2
tamiser er 15 15 15 15 15 8 2 2
valser er 16 16 16 16 16 9 2 2
allimette e 17 17 17 17 17 10 6 3
cervelle e 18 18 18 18 18 11 7 3
carrolle e 19 19 19 19 19 12 8 3
cuvette e 20 20 20 20 20 13 9 3
emplette e 21 21 21 21 21 14 10 3
frappe e 22 22 22 22 22 15 11 3
malade e 23 23 23 23 23 16 12 3
serpe e 24 24 24 24 24 17 13 3
bouton ou 25 25 25 25 25 18 3 4
genou ou 26 26 26 26 26 19 3 4
goudron ou 27 27 27 27 27 20 3 4
gourou ou 28 28 28 28 28 21 3 4
mouton ou 29 29 29 29 29 22 3 4
tabou ou 30 30 30 30 30 23 3 4
verrou ou 31 31 31 31 31 24 3 4
voulu ou 32 32 32 32 32 25 3 4
archipel ch 33 33 33 33 33 26 4 5
capuchon ch 34 34 34 34 34 27 4 5
chacal ch 35 35 35 35 35 28 4 5
chardon ch 36 36 36 36 36 29 4 5
charnel ch 37 37 37 37 37 30 4 5
chiffon ch 38 38 38 38 38 31 4 5
cochon ch 39 39 39 39 39 32 4 5
fichu ch 40 40 40 40 40 33 4 5
brumeux eux 41 41 41 41 41 2 5 6
neveux eux 42 42 42 42 42 2 5 6
0sseux eux 43 43 43 43 43 2 5 6
paresseux eux 44 44 44 44 44 2 5 6
sablonneux eux 45 45 45 45 45 2 5 6
somptueux eux 46 46 46 46 46 2 5 6
vaniteux eux 47 47 47 47 47 2 5 6
venimeux eux 48 48 48 48 48 2 5 6
admis S 49 49 49 49 49 34 14 7
brebis S 50 50 50 50 50 35 15 7
coloris S 51 51 51 51 51 36 16 7

(Continues)
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Word Rule D1 D2 D3 D4 D5 D6 D7 D8
compris s 52 52 52 52 52 37 17 7
lambris s 53 53 53 53 53 38 18 7
tandis s 54 54 54 54 54 39 19 7
verglas s 55 55 55 55 55 40 20 7
vernis s 56 56 56 56 56 41 21 7
brevet t 57 57 57 57 57 42 22 8
carnet t 58 58 58 58 58 43 23 8
pavot t 59 59 59 59 59 44 24 8
rabot t 60 60 60 60 60 45 25 8
sifflet t 61 61 61 61 61 46 26 8
soldat t 62 62 62 62 62 47 27 8
sommet t 63 63 63 63 63 48 28 8
tricot t 64 64 64 64 64 49 29 8

Appendix D

Note: Numbers represent a specific feature value on each dimension. They represent independent feature values
across dimensions (i.e., a 2 on dimension 1 is unrelated to a 2 on dimension 2). Each line represents a unique item.

Category structure for the stimuli used in Experiment 2 of Zulkiply and Burt (2013)

High similarity set:

F1 F2 F3 F4 F5 F6 F7 F8 F9 Category
1 1 1 1 2 1 1 1 1 1
1 1 1 2 3 1 1 1 1 1
1 1 1 1 4 1 1 1 1 1
1 1 1 2 5 1 1 1 1 1
1 1 1 1 6 1 1 1 1 1
1 1 1 2 7 1 1 1 1 1
1 1 1 1 8 1 1 1 1 1
1 1 1 2 9 1 1 1 1 1
1 1 1 1 10 1 1 1 1 1
1 1 1 2 11 1 1 1 1 1
1 2 1 1 2 1 1 1 1 2
1 2 1 2 3 1 1 1 1 2
1 2 1 1 4 1 1 1 1 2

(Continues)
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Category

F2 F3 F4 F5 F6 F7 F8 F9

F1

10

11

10

11

10

11

10

11

(Continues)
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Category

F2 F3 F4 F5 F6 F7 F8 F9

F1

10

11

10

11

10

11

10

11

10
10
10
10
10
10
10
10
10
10

10

11

(Continues)
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Category

F2 F3 F4 F5 F6 F7 F8 F9
11

F1

11
11
11

11
11
11

11
11
11

10

11

12
12
12
12
12
12
12
12
12
12

10

11

Low similarity set:

category

F2 F3 F4 F5 F6 F7 F8 F9

F1

10

10 10 10
11 11 11

11

10

11

(Continues)
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category

F2 F3 F4 F5 F6 F7 F8 F9

F1

10

11

10

10

10

11

10

11

10

10 10 10
11 11 11

11

10

11

10

10 10 10
11 11 11

11

10

11

10

10 10 10
11 11 11

11

10

11

(Continues)
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category

F2 F3 F4 F5 F6 F7 F8 F9

F1

10

10 10 10
11 11 11

11

10

11

10

10 10 10
11 11 11

11

10

11

10

10 10 10
11 11 11

11

10

11

10

10 10 10
11 11 11

11

10

11

10
10
10
10
10
10
10
10
10

10

10

10

10

10
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category
10

11
11
11
11
11
11
11
11
11
11

F2 F3 F4 F5 F6 F7 F8 F9

F1

11

11

11

11

11

10

10 10 10
11 11 11

11

10

11

12
12
12
12
12
12
12
12
12
12

10

10 10 10
11 11 11

11

10

11




