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Abstract

The division of labor phenomenon has been observed with re-
spect to both manual and cognitive labor, but there is no clear
understanding of the intra- and inter-individual mechanisms
that allow for its emergence, especially when there are multiple
divisions possible and communication is limited. Situations
fitting this description include individuals in a group splitting
a geographical region for resource harvesting without explicit
negotiation, or a couple tacitly negotiating the hour of the day
for each to shower so that there is sufficient hot water. We stud-
ied this phenomenon by means of an iterative two-person game
where multiple divisions are possible, but no explicit commu-
nication is allowed. Our results suggest that there are a lim-
ited number of biases toward divisions of labor, which serve
as attractors in the dynamics of dyadic coordination. How-
ever, unlike Schelling’s focal points, these biases do not attract
players’ attention at the onset of the interaction, but are only
revealed and consolidated by the in-game dynamics of dyadic
interaction.

Keywords: Group cognition; Divergent behavioral norms; Fo-
cal points; Cooperation.

Introduction
An individual can often benefit from participating in a group
when (s)he can perform just one component of the group’s
task while other individuals take care of other parts. When
the other individuals also benefit from this arrangement, we
speak of an efficient division of labor. For example, two
roommates can choose between (a) preparing their lunch for
themselves every day, and (b) dividing the days of the week
on which one prepares lunch for two. In the latter case, both
roommates benefit from not having to cook every day.

The benefits of division of labor have been studied not only
with respect to manual labor (Smith, 2008), but also with re-
spect to cognitive labor (Sloman & Fernbach, 2017; Kennedy,
Eberhart, & Shi, 2001). For instance, one study showed that
the puzzle of assigning categories to the nodes of a network
such that no adjacent nodes have the same category could be
efficiently solved as a self-organized, collective task if each
individual is assigned to a single node and is only concerned
about the acceptability of their local sub-network (Kearns,
Suri, & Montfort, 2006).

In some collective groups, such as ant colonies or bee-
hives, the division of labor occurs as a genetically designed
organization (Weitekamp, Libbrecht, & Keller, 2017; Robin-
son, 1992). However, it can also emerge as a self-organized
process, without leaders or explicit negotiations (Heylighen,

2013). For example, when a group of individuals has to col-
lectively guess a target number, where the collective guess
is the sum of their individual guesses, and the only feedback
they receive is for how much their collective guess is greater
or lesser than the target, individuals spontaneously differenti-
ate their behaviors to either react or not react to the feedback,
and the extent to which role differentiation occurs is predic-
tive of group performance (Roberts & Goldstone, 2011).

What are the cognitive mechanisms that facilitate the self-
organized division of labor? One possibility is that it arises
from the principle of maximization of expected utility. In our
previous example of the two roommates, successful division
of the days of the week might be said to arise because it con-
stitutes a Nash equilibrium, that is, a combination of choices
in which no roommate can obtain a higher payoff by changing
only their choice—fixing the other roommate’s choice (Ross,
2018). However, as it turns out, maximization of expected
utility is not sufficient to explain why roommates act in ac-
cord with a particular Nash equilibrium instead of another
(Arthur, 1994; Colman, 2003). Some scholars have suggested
that games with multiple Nash equilibria are not solved on
the basis of maximization of expected utility, but rather by
means of rough-and-ready rules of thumb based on limited
knowledge and time. This approach is known as ‘bounded ra-
tionality’ to emphasize that people frequently have memory,
attentional, and calculation limitations that prevent them from
employing perfectly rational strategies (Holbrook, 2002; Si-
mon, 1957). It could be claimed, returning to our roommates
example, that the division of labor according to which Room-
mate A prepares lunch only on weekdays and Roommate B
only prepares lunch on the weekend is achieved because they
cannot think of a different division, or because this division
is the most natural for both of them, even though there are
many other possible divisions. This is an example of the fo-
cal point approach, according to which the set of all possible
Nash equilibria is reduced to just a single point that is psycho-
logically salient for all players (Mehta, Starmer, & Sugden,
1994; Schelling, 1960). Another possible proposal is that in-
dividuals possess a small set of simple strategies that they
can apply in their search for a division. For example, they
may stick to one strategy for as long as it provides acceptable
results, and when it fails, they would swap it for another in
their strategy set (a win-stay, lose-shift heuristic). There are
cooperative scenarios, such as the famous El Farol problem
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(Arthur, 1994), in which this heuristic works well. Another
strategy could be to adapt one’s own reactivity to the task
based on how much the whole group is contributing. Indeed,
as pointed out by Roberts and Goldstone (2011), there may
be situations in which an individual helps the collective effort
by refraining from acting or reducing their activity, allowing
the other players to dominate the task.

We studied this phenomenon by means of an iterative two-
person game where multiple divisions are possible, but no
explicit communication is allowed. Our results suggest that
there are a limited number of biases toward divisions of la-
bor and that they work as attractors in the negotiation dy-
namics. Unlike Schelling’s focal points, these biases do not
attract players’ attention at the onset of the interaction, but
are only revealed and consolidated by the in-game dynamics
of the dyadic interaction. In other words, these biases do not
determine players’ a priori actions, via some sort of iterative
reasoning, for dividing up their task. Rather, the attractors
only become salient as a result of the interaction.

Materials and methods
Participants and procedure
Participants were 90 undergraduate students at Indiana Uni-
versity in Bloomington who received course credits for ap-
proximately 1 hour of participation. Participants were run in
10 experimental sessions, each one requiring an even number
of participants to be grouped into dyads. If an odd number
of participants turned up to the session, one of them was ran-
domly chosen and sent home. The number of dyads in each
session were as follows: 4, 5, 3, 6, 4, 2, 6, 3, 8, and 4. Par-
ticipants sat in a university computer lab, each at a sound-
and sight-isolated personal computer running a version of
the game implemented in the nodeGame platform (Balietti,
2017). The computer randomly paired participants into dyads
and each dyad participated in 60 rounds of the game. Partic-
ipants were instructed not to talk to each other and were not
informed about who was paired with whom.

The task
The task is a two-player game, which we dub “Seeking the
unicorn,” in which players interact with 64 tiles arranged in
an 8×8 grid (see the top panel in Figure 1). The grid can ei-
ther hide a unicorn beneath one of the tiles or else the unicorn
can be absent from the grid, either event can occur with equal
probability. At the beginning of each round, the computer
chooses with equal probability whether or not there is a uni-
corn, and if there is one, it randomly chooses a tile in which to
hide it, each tile having an equal probability of being chosen.
Then, players seek for the unicorn by uncovering tiles one at
a time, with both players uncovering tiles simultaneously, in
order to see what lies beneath them. What tiles have been un-
covered and whether there is or not a unicorn is only known
to the player that uncovers these tiles. Tiles uncovered by
both players instantly change their color and both players can
see this. At any time during the round, each player can guess

whether the unicorn is present or absent. The other player
will know this player’s decision and can use it to inform their
own guess. The round ends when both players announce that
their guess is a final decision, and then they are shown their
scores (see the bottom panel in Figure 1). The score depends
on whether the player’s guess is correct (32 points) or incor-
rect (-64 points), subtracting the number of tiles that were
uncovered by both players.

Figure 1: The experimental task. The top panel shows the
grid as displayed to each player. By uncovering a tile, they
know whether it is empty or contains the unicorn. Such in-
formation is private for the player. Tiles uncovered by both
players have a blue background and both can see this col-
oration. They also have access to each other’s guesses. The
yellow column on the right decreases as the number of over-
lapping tiles increases. The round ends when both players
submit their final decision. In the bottom panel we show the
screen displaying the score and the score history over the last
20 rounds.

Measures

The following measure, which we call the Division of
Labor Index (DLINDEX), determines the extent to which
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players split the grid into complementary regions:

DLINDEX =

Tiles uncovered by one
or both of the players

−Overlapping
tiles

Tiles in the grid

This measure instantiates the intuition that it is beneficial if
a dyad collectively uncovers all of the tiles (first term) and
does not overlap in any tiles uncovered (second term). Ob-
serve that it ranges from 0 to 1 with 1 being ideal division of
labor and 0 being least efficient. There is only one way of be-
ing ideal, namely, when both players uncover the entire grid
and do not overlap at all. Additionally, we measure how con-
sistently a player uncovers tiles from one round to the next:

Consistencyn =

Overlapping uncovered tiles from
Round n−1 to Round n

Tiles uncovered in
either of the two rounds

This number ranges from 0 to 1 with 1 meaning that the player
uncovers the same tiles on both rounds, and 0 meaning that
the player uncovers a completely different set of tiles from
one round to the next. We also define the distance and the
similarity between two regions a and b in the grid in the fol-
lowing way:

dist(a,b) =
√

∑
t∈Tiles

(at −bt)2, sim(a,b,ε) = e−ε∗dist(a,b)

Here, t represents the t-th tile in the 8×8 grid (represented as
the list [1, . . . ,64]), and at and bt can be either 1 or 0, repre-
senting whether or not tile t belongs to a and b, respectively.
The parameter ε in the definition of sim determines the ex-
tent to which the distance between two regions determines
the similarity between them and, unless explicitly stated oth-
erwise, we assume that ε=1.

Results
We should note at the outset that we have not used the entire
dataset in our analysis. The reason is that rounds on which
the unicorn is present provide us only with partial informa-
tion as to how players split the grid, because on those rounds
players do not have to uncover every tile. Once they find the
unicorn, they will say that the unicorn is present and finish
the round. Therefore, unless explicitly stated otherwise, we
are only reporting results for trials on which the unicorn is
absent.

For each dyad we created a figure displaying two grids,
one for each player. In this figure we magnitude-coded each
tile according to the number of times the player selected it
through 60 rounds of the experiment in such a way that the
darker the tile, the more times it was selected. Figure 2 shows
the types of regions that were obtained. There were only four
stable, successful pairs of complementary regions in the grid:
the Left-Right, Top-Bottom, All-Nothing, and Inside-Outside
splits. We call them the focal splits. Only dyads in the focal
splits obtained an above-average DLINDEX, except for one
dyad with no discernible stable region that nevertheless has

Left-Right Top-Bottom All-Nothing

Mix Inside-Outside

Nothing-Nothing All-All RS

Figure 2: The seven types of splits of the grid that could be
observed from our data. Each panel shows two grids, one for
each player, with the regions uncovered through 60 rounds.
The darker the tile, the more rounds the player uncovered it.

an average DLINDEX of 0.82 (this is over 0.45 standard de-
viations above the average of the 45 dyads; this dyad deter-
mined the Mix type of split in Figure 2). We conclude that
26 out of 45 dyads successfully split the grid. This represents
over 57% success in self-organizing division of labor.

If our paradigm were a one-shot task in which players had
to converge on a split of the grid on only one round, our
data show that the average DLINDEX would be close to 0.43
(s.d.≈ 0.32). By comparison, in our iterated task, the average
DLINDEX rose up to almost 0.68 after 60 rounds (s.d.≈ 0.32).
The difference between these averages is statistically signifi-
cant (p< 0.001). This shows that an efficient division of labor
does not emerge on the first round, and that the iterated nature
of our task facilitates its emergence.

But how did the division of labor emerge? We observed
that, in general, dyads moved from lower to higher levels
of DLINDEX, and that players in a low-level dyad tended
to more frequently change their tile selection strategy from
one round to the next with respect to players in a high-level
dyad. Moreover, we found a positive correlation between a
player’s consistency on Round n and their score on Round
n−1 (β≈ 0.51; p < 0.001). This supports the hypothesis that
players used, at least to some extent, a win-stay, lose-shift
heuristic (WSLS). That is to say, if their score is relatively
high, which often occurs when the dyad splits the grid into
complementary regions, each player tends to re-select their
previously selected tiles; but if their score is low, they will be
more likely to shift to different tiles.

However, WSLS does not seem to account for all the char-
acteristics of the dyadic interaction. When we predict DLIN-
DEX as a function of consistency, we see that, perhaps not sur-
prisingly, dyads consisting of individuals who are relatively
consistent in their tile selection strategies tend to divide la-
bor better (β ≈ 0.36; p < 0.001). However, we also observe
an interaction such that dyads with players that differ in their
consistencies tend to divide labor better than predicted when
players have a large amount of overlap in their selected tiles.
That is, if both players overlap considerably, it is best if one
player is consistent and the other player is not. The evidence
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for this claim comes from comparing the linear regression
model above with a model that includes the interaction be-
tween, on the one hand, the absolute difference in consistency
between players on a given round and, on the other hand, the
number of overlapping tiles on the previous round:

DLINDEX(n)∼ α+β1 ∗Consistency(n)+β2 ∗difConsist(n)
+β3 ∗Overlap(n−1)+β4 ∗difConsist(n)∗Overlap(n−1)

Our data show that this interaction is positive (β4 ≈ 0.01;
p< 0.001). Moreover, an analysis of variance test (p< 0.001)
confirms that this interaction effect accounts for significantly
more variance in performance relative to the main effects.
These results indicate that dyads eventually tend to most ef-
fectively divide labor despite initially overlapping in their
tiles when one player is consistent/stubborn and the other
player is inconsistent/flexible, giving rise to complementary
degrees of reactivity to occasions of overlap (Roberts & Gold-
stone, 2011). But why did one of the players become more
stubborn? We found that if a player tends to select tiles
consistent with a focal region (that is, one half of a focal
split), they tend to be more consistent. In other words, the
closer a player’s tile selection strategy is to a focal region,
the more stubborn they become, presumably because they be-
lieve that they are forming one half of a viable division of la-
bor. The regression model of consistency with respect to dis-
tance to closest focal region confirms this effect (β≈−0.12;
p < 0.001). The interesting question now is how the other
player figured out that they have to select tiles in the appro-
priate complementary region, given that a player only had ac-
cess to their own uncovered tiles and not the other player’s
uncovered tiles. The key seems to lie in the fact that play-
ers do have access to overlapping tiles, from which the other
player’s selected tiles can be inferred with reasonably high
validity.

One mechanism that can account for many players’ shifts
in selected tiles is based on a measure of the similarity be-
tween a focal region and the overlapping tiles. If one player’s
selected tiles are sufficiently close to a focal region, then this
can be used as a signal for the other player to select the corre-
sponding, complementary region. In Figure 3 we take a closer
look at an actual game play from a dyad in which this mech-
anism is prominent, as exhibited by Player B’s transition. On
Round 23 the overlapping tiles are similar to the focal region
RIGHT, which inclines B to select every single tile in the com-
plementary LEFT region. Observe that B not only re-selected
the left region’s tiles from the previous round, but uncovered
the whole LEFT region. More generally, the player’s attention
is attracted toward a focal region k when the region that is
complementary to k is sufficiently similar to the overlapping
tiles. To be sure, even though the process seems to be gradual
and there are other factors at play, these complementary focal
regions have attraction power. Last but not least, observe that
the overlapping tiles are the same for both players, so Player
A’s attention is also attracted by LEFT. Nevertheless, given
that A has uncovered the focal region RIGHT, they tend to be-

Figure 3: Evidence in favor of Focal Regions as Attractors
(FRA). We see the transition from one round to the next, taken
from an actual game play. In each grid, black tiles represent
uncovered tiles and red tiles were uncovered by both players.
Player A’s transition illustrates ‘stubbornness’ and Player B’s
illustrates the attraction exerted by the complement of A’s fo-
cal region, which is also a focal region. See details in the
text.

come “stubborn” in the sense of resisting substantial change
to their uncovered tiles. The combination of this retention
and the attraction powers of a focal region informs a decision
process that we call the Focal Regions as Attractors heuristic
(FRA).

Computational models
We put our previous explanations to the test by providing a
computational model for each one of these two heuristics.
The first model is an implementation of WSLS. To motivate it,
suppose that on round n the player uncovered tiles determin-
ing BOTTOM. We want to determine the probability of choos-
ing each region k in K on round n+1, where k in K ={RS,
ALL, NOTHING, BOTTOM, TOP, LEFT, RIGHT, INSIDE, OUT-
SIDE}. K contains the focal regions, plus the type of region
we call RS, which represents all remaining regions in the grid.
Now, if the player is in a win situation, we should increase
the probability of choosing again BOTTOM. This effect can
be obtained by means of a threshold function (see Figure 4).
More formally, the model defines a probability function, de-
termined by the following formula:

P(k) =
attract(k)

∑r∈K attract(r)
(1)

The attract(k) function represents the extent to which a player
is inclined to choose region k, given the current state of the
game. For the WSLS model, we assume that this state is rep-
resented by the vector (i,s), where i is the region explored
on the previous round and s the obtained score. The attract
function for the WSLS model is defined in the following way:

attract(k, i,s) = biask +α∗ thresh(sn,β,γ)∗ I(k, i) (2)
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Figure 4: The thresh(sn) function representing how good the
score was. The left panel illustrates a situation where the
score is not good enough, which is captured by the low value
of thresh(sn). The right panel illustrates a good situation, cap-
tured by the high value of thresh(sn).

Here, the term biask represents how inclined the player feels
toward k, all other things being equal, and is expected to be
higher for more pre-experimentally salient regions. The sec-
ond term contains the functions thresh and I, which are de-
fined in the following way:

thresh(sn,β,γ)=
1

1+ e−β(sn−γ)
, I(k, i)=

{
1, if i = k 6= Rs
0, otherwise

Here, sn is the normalized score, which takes values between
0 and 1. The function thresh(sn,β,γ) has an S shape and takes
values in the open interval (0,1). It goes from values near 0
to values near 1 when sn is near γ, and the steepness of this
transition is determined by β (see Figure 4). The second term
in Equation 2 contains the parameter α, which determines the
extent to which the score increases the player’s tendency to
choose k, when the normalized score is greater than γ. The
effect of I(k, i) in this expression is that the only region that
has its bias modified is region i (i.e., the region explored on
the previous round) and only if this region is a focal region.
The value of attract(k) for the remaining regions is equal to
biask.

The model defined by FRA extends the previous model. To
motivate it, suppose that on round n the player uncovered tiles
in the i region as defined in Figure 5. Now, we should con-
sider the overlapping region, j, and consider its similarity to
each focal regions (see right panel of Figure 5). The more
similar to k, the more attractive the complement of k becomes.
In our example, the overlapping region is more similar to UP,
so the probability of choosing BOTTOM on round n+1 is in-
creased. More formally, we assume that the current state of
the game is represented by the vector (i,s, j), where i is the re-
gion explored on the previous round and s the obtained score,
and j the area formed by the overlapping tiles. The attractive-
ness of k is defined in the following way:

attract(k, i, j,s) = biask +α∗ thresh(sn,β,γ)∗ I(k, i)

+δ∗ sim( j,k,ε)∗Focal(k)+ζ∗ I(k, i)
(3)

Observe that the first two terms in Equation 3 are the same
as in Equation 2. The third and fourth terms are new. In the
third term, the function sim( j,k,ε) determines the similarity

i = j =

Figure 5: An example of a region visited, i, the overlapping
tiles, j, and the similarity between j and other regions.

Model θ1 θ2 θ3 θ4 α β

WSLS 0.14 0.0674 0.0123 0.0009 39 405
FRA 0.077 0.048 ≈ 0 ≈ 0 48 402

Model γ δ ε ζ Dev. AIC

WSLS 0.933 0 0 0 3060 3074
FRA 0.99 1.57 0.94 3 2709 2709

Table 1: Best parameters and deviance for each
model. The first four parameters correspond to the
biases in the model: θ1=biasALL, θ2=biasNOTHING,
θ3=biasBOTTOM=biasTOP=biasLEFT=biasRIGHT, and
θ4=biasIN=biasOUT. Moreover, biasRS is defined as 1 minus
the sum of the other biases, and we require that the sum of
all biases adds to 1.

between j and the complement of k, denoted as k. The func-
tion Focal(k) is defined in the following way:

Focal(k) =

{
1, if k 6∈ {RS, ALL}
0, otherwise

The parameter δ in Equation 3 determines the extent to which
the similarity between j and k modifies attract(k), but this
only occurs when k is a focal region and is different from
ALL. This effect is obtained by multiplying δ by Focal(k).
Finally, the parameter ζ determines the extent of the player’s
stubbornness when i is a focal region.

Note that the extra parameters from FRA with respect to
WSLS are δ, ε, and ζ, and that Equation 2 for WSLS can be
obtained from Equation 3 when δ = ζ = 0. That is, WSLS is
a nested model within FRA.

Using maximization of log likelihood of the multinomial
distribution of the observed transition frequencies and the
respective predicted probabilities given by the model, we
found the optimal parameters and the deviance of the two
models, summarized in Table 1. Both the Likelihood Ratio
Test (χ2 = 351; 3 d.o.f.; p< 0.001) and the ∆AIC=365 pro-
vide quantitative evidence that the additional parameters con-
tributed by FRA provide a better account of the underlying
choice process and that this model’s better fit to the data is
not due to overfitting.

We simulated our game in the same conditions as the ex-
perimental task. For each model, we ran 100 simulations of
60 rounds of the game, obtaining two collections of simu-
lated data. In the two top panels of Figure 6 we can observe

95



0.0

0.3

0.6

0.9

0 20 40 60

Round (unicorn absent)

D
iv

is
io

n
 o

f 
la

b
o
r

0

1

2

3

0.00 0.25 0.50 0.75 1.00

DLIndex

d
e
n
s
it
y

Source of data Observed behavior WSLS FRA

Figure 6: Comparison between observed and simulated be-
havior. The top panel shows the behavior of DLINDEX
through all rounds. The vertical axis represents, for each
round, the average DLINDEX. Shadow regions represent an
error margin of one standard deviation. The bottom panel
shows the kernel density estimate of DLINDEX for observed
and simulated data, where each observation is the DLINDEX
of a dyad at the end of a round.

the behavior of DLINDEX through all rounds. The vertical
axis represents, for each round, the average DLINDEX with
respect to all dyads in the respective set (45 for humans; 100
for each model). In the three cases we observe that the in-
dexes are within the error margins of the others, and that
the three sets of data show the same positive trend through
rounds. However, in the case of WSLS, the t-test of mean
difference (p≈ 0.01) does not provide conclusive evidence
to assert that the means are the same, whereas the t-test of
mean difference of DLINDEX (p≈ 0.3) determines that there
is no statistical evidence to claim that the means are different,
which means that FRA is better at capturing the tendency of
DLINDEX in human subjects.

In the bottom panel of Fig. 6 we can see the kernel den-
sity estimate of DLINDEX for observed and simulated data.
When the density curve is high (y-axis) for a given value of
DLINDEX (x-axis), it means that there were many rounds
for which a dyad obtained a DLINDEX close to x. Observe
that, for humans, high values of DLINDEX are more frequent
than medium and low values—representing the fact that many
dyads split the grid satisfactorily. However, in WSLS there
is a considerable tail on the left, indicating many more tri-
als on which dyads did not split the grid into complementary
regions, as compared to humans. Moreover, in WSLS the fre-
quency of low values is higher than that of medium values,
which is not in accordance with the observed data. For FRA,
the frequency of low values is not greater than that of medium
values, which is closer to what is observed in human data. To
sum up, it seems that WSLS predicts a less efficient division
of labor than exhibited by people, whereas FRA and people
show a comparable degree of division of labor.

Discussion

57% of human dyads finished 60 rounds of game play with
an efficient division of labor. The results from our experi-
ment and our computational models allow us to explain how
most dyads managed to split the grid without being able to
engage in explicit negotiations. First of all, even though there
are 264 ways to split the grid, dyads split it in only four dif-
ferent ways. In some sense, these splits are focal points be-
cause they have a certain psychological salience (Schelling,
1960). One might have thought that these individual cogni-
tive biases (focal points) would exert an early (in terms of
rounds) influence on choices exactly because they are a pri-
ori, so that agents would have started on Round 1 with strate-
gies of selecting all tiles on the left, top, bottom, or right.
If agents understand that these are natural attractors, then
through engaging in many levels of iterated thinking based
on common knowledge (Lewis, 1969), these would be log-
ical starting points. However, players do not generally start
with strategies that resemble focal points. Humans are far
more idiosyncratic and exploratory in their initial selections
of tiles. It is only through repeated interactions that players
manifest their a priori predispositions/biases toward certain
focal points. In other words, a priori biases do not entail that
the biases are manifest at the onset of play. It is only through
dyadic interaction that these biases are revealed (Kaush ML,
Griffiths TL, & Lewandowsky S, 2007). Returning to our
two roommates example, there are 128 different ways to di-
vide the days of the week in order to alternate one roommate
cooking for two. We suppose that not every possible division
is equally salient for them, and that only a handful of divi-
sions will actually attract and retain their attention, such as the
division between weekdays or weekend, or a division based
on the idea of cooking every other day. If the roommates
cannot explicitly negotiate a division but are given the daily
chore of preparing lunch(es), one roommate will eventually
follow one of these psychologically salient divisions and will
tend to persist in the strategy because it is a focal point. To
the extent that the other roommate wants to avoid overlap-
ping days, soon they will be attracted to the psychologically
salient strategy of choosing complementary days of the week.
Interacting individuals, both human and algorithmic, can of-
ten arrive at efficient coordinating solutions in a paradigm that
incorporates two challenging conditions – individuals cannot
explicitly communicate, and there are multiple coordinating
solutions that are initially equally salient. The human and
computational results indicate that agents solve this coordi-
nation task by beginning with a set of possibly incompatible
focal points. Then, via iterated interactions they adjust their
behaviors to move toward focal points when they are not at
a focal point, stay in a focal point once reached, and shift
to a complementary focal point relative to the other player.
In this way, the coordination that a group forms results from
the interplay over time between their a priori cognitive biases
and the dynamics of their interpersonal interaction (Hawkins,
Goodman, & Goldstone, in press).
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