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Building Inner Tools
R o b e rt  L .  G o l d sto n e

1.  Building Inner Tools

Humans show a striking penchant for creating tools to benefit our own thought 
processes. Andy Clark (2003, 2008) has convincingly argued that the tools that we 
as humans recruit become integrated parts of an extended cognitive system that 
includes us as just one component. By extending cognition beyond our brains, 
Clark presents an “embiggened” perspective on what it means to be a cognizer 
and a person more generally. This perspectival shift runs counter to some recent 
forms of argumentation that in effect work to minimize personhood. For example, 
arguments for lack of personal culpability can take the form of “It wasn’t my fault. 
It was the fault of my _​_​_​_​_​” to be filled in, perhaps, by “upbringing,” “genes,” 
“neurochemistry,” “diet,” or “improperly functioning amygdala.” Instead, Clark (see 
also Dennett 1989) offers the opposite line of argumentation, according to which 
we consist not only of our amygdalae and hippocampi but also potentially our 
glasses, notebooks, friends, supporting technologies, and culture.

I find this vision of human nature to be empowering and transformative. At the 
same time, I find a critical plank in this argument to support a very different launch 
trajectory which I would like to pursue here. This plank is the stance that one should 
remain neutral about how functionally defined systems can be implemented by 
mixtures of biological and nonbiological components. The specific version of this 
stance that Clark and Chalmers (1998, 8) adopt is known as the Parity Principle: “If, 
as we confront some task, a part of the world functions as a process which, were it 
to go on in the head, we would have no hesitation in accepting as part of the cog-
nitive process, then that part of the world is (for that time) part of the cognitive 
process.” The motivation for this principle is to avoid the biochauvinistic prejudice 
of accepting something as implementing cognition only when it is accomplished 
by a brain. Such prejudice begs the question of what kinds of things are capable of 
cognition by defining out of existence, for example, human-​machine partnerships. 
By adopting the Parity Principle, we keep our mind open about how open are 
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minds—​about how cognitive systems might be implemented. Clark (2005, 2n3) 
has likened the Parity Principle to a “veil of metabolic ignorance,” analogous to 
Rawls’s (2001) “veil of ignorance,” to establish an impartial position from where 
we can determine governing principles rather than simply assert self-​serving biases. 
Moreover, one also can apply one’s intuitions and conceptual frameworks for un-
derstanding other people’s minds to understanding the cognitive potential of other 
systems, such as technology-​enabled humans or groups of people (Theiner, Allen, 
and Goldstone 2010).

Once one adopts the neutral stance of trying not to prematurely rule out 
instantiations of functional systems, a perspective approaching the reverse of 
Clark’s “supersizing” naturally arises. Just as we can recruit our understanding of 
human minds to help us make sense of cyborg, robot, and group cognition, so we 
might be able to use our understanding of external systems to make sense of human 
cognition. To this end, it is possible to propose a:

Reverse Parity Principle (RPP): a brain component should be considered 
to be part of a distributed cognitive system if we would accept it as being 
part of a distributed system if it were nonbiological.

The parity and reverse parity principles are flip sides of the same boundary-​erasing 
coin. They share the position that what matters is the nature of a system understood 
as parts and their interactions. What does not matter is to precisely ascertain what 
is part of the central processor of the system and what is external to that central 
core. If a system has been identified that has integrity, then it is the entire system 
that must be analyzed as a whole to understand its function. For example, if a set of 
components forms a homeostatic negative feedback loop, and this loop is core to 
the functionality of the system, then all of the components that compose the loop 
are equally function-​providing contributors, regardless of where they fall on a bio-
logical/​nonbiological divide.

One motivation for the RPP is that we often know more about the external trans-
duction of information in a system compared to information processing within a 
brain. Modern neuroimaging techniques have greatly improved our understanding 
of within-​brain information flow, but information flow external to the brain is still 
typically easier to analyze because it does not require expensive laboratory equip-
ment and often leaves a paper trail, lasting inscriptions, or digital traces. The pri-
mary motivation, however, is to invite a perspectival shift that is potentially as 
illuminating as the extended mind shift. Whereas extended mind arguments invite 
us to think of ourselves as broader, wider, and larger than we might otherwise, the 
RPP invites us to consider the strangeness and otherness that lie within what would 
normally be considered to be “us.”

In developing implications of the RPP, my approach will be as follows. First, 
I will argue that cognitive systems can be identified that span multiple levels, from 
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within-​individual modules to individuals to groups of individuals. Four examples of 
these cognitive systems will be presented, with the aim of showing that postulating 
them can be inductively powerful despite their cutting across traditional scientific 
disciplines. Having laid out the case for the same kind of cognitive system being 
implemented with different kinds of components, the second step is to consider 
particular organizational principles that are prominent when considering distrib-
uted systems and can productively be applied within a single human brain. These 
principles are specialization, tool creation, and indirect levers. When applied to 
single brains, these principles suggest that our brains are made up of modularized 
tools that are adaptively tuned to our needs even though their inner workings can 
only be imperfectly and indirectly shaped. A third and final section describes spe-
cific ways in which we modify our own internal modules, via selective reinforce-
ment of quasi-​random variation, strategic training, and emulation. These mind 
hacks can lead to eventually highly refined cognitive systems that are aptly under-
stood as created mental tools even though they reside inside one’s head.

2.  Inductively Powerful Systems

Both forward and reverse parity principles stem from the notion that there should 
not be one privileged level of analysis when thinking about cognitive systems. 
Systems with integrity exist that are wider or narrower than a single central nervous 
system. What it means for a system to have integrity is that its components are 
working together as a unified whole to achieve its relevant functionality. Systems 
arise at multiple levels for multiple purposes, which is to say that whether a particular 
set of components forms an integral system is typically a matter of perspective. To 
a neuroscience expert, the hippocampus, or even the dentate gyrus subcomponent 
within the hippocampus, forms an important system, but for many other purposes, 
it is just one component of a large system for encoding and retrieving memories, 
and for still other purposes, such as describing Otto’s memory (Clark and Chalmers 
1998), it may be, by percentage, an even smaller component of a system that 
includes notebooks, iPhones, and reminder ribbons tied around fingers.

This is not to say that all perspectives are equally useful. The utility of a perspec-
tive can be assessed by the inductive power of the categories that it brings to mind. 
A category is inductively powerful if valid, task-​relevant predictions can be ascribed 
to something, given that it has been placed in the category (Anderson 1991). The 
category llama is inductively powerful because once it has been ascertained that 
something fits in it, one can make many potentially useful inferences about its size, 
number of legs, ability to carry heavy loads up mountains, and proclivity to spit. 
Common taxonomic categories like llama, sofa, chemistry, and charcoal are typ-
ically useful categories to ascribe because the objects contained within them tend 
to share many life-​relevant properties in common (Rosch and Mervis 1975). Other 
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ad hoc categories such as things to remove from a burning house, things that 
could be stood on to reach a lightbulb, and things that float do not share many 
properties and are generated only in a time of momentary need (Barsalou 1983). 
An ability to think about ad hoc categories may save a passenger on a sinking ship 
but are not generally inductively powerful. Their lack of lasting inductive power is 
even suggested by their categories’ names being phrases rather than single words. 
Given the propensity for routine language to become progressively more efficient, 
if these categories had been generically useful, then they probably would have even-
tually become tokened by single short words.

Categories related to systems occupy an interesting intermediary case between 
taxonomic and ad hoc categories. Like ad hoc categories, they bring together entities 
that at first sight seem to have very little in common, but like taxonomic categories, 
they can also be the source of rich inductive inferences. One of the most simple and 
common systems concepts is a positive feedback system characterized by a system in 
which increases to something cause still further increases to it. Examples of this cat-
egory include a microphone being placed too close to an attached amplified speaker, 
global warming (ice melting into water causes more sunlight to be absorbed into 
the earth, which causes more ice to melt), citations to an article leading to more 
citations, and children pestering their parents to buy them a doll that other children 
in their school already own (Goldstone and Wilensky 2008).

Once one knows that a system falls in the category of a positive feedback system 
many inferences are possible, such as the likelihood of a runaway growth process, a 
possible tipping point, and characteristic growth dynamics. To be sure, llamas are 
more like each other than positive feedback systems are like each other (though 
see Goodman [1972] for inherent difficulties in cashing out that claim). Still, the 
observer armed with the concept of a positive feedback system may be able to an-
ticipate the future behavior of a system and nip vexing growth dynamics in the 
bud, which can make for a powerful induction indeed. In fact, one could well argue 
that education ought to be primarily in the business of teaching students system 
concepts like this—​other examples being diffusion, autocatalysis, negative feed-
back loop, lateral inhibition, annealing, and resonance—​precisely because of 
their cross-​discipline inductive power. People might be presumed to invent cat 
and table concepts on their own from unsupervised exploration of our modern 
world, but might miss out on the common diffusion limited aggregation system 
that underlies lungs, cities, and electrical discharges unless they are explicitly given 
instruction concerning this system’s growth dynamics (see also Goldstone and 
Theiner 2017).

The reason for stressing the inductive legitimacy of systems concepts is to sup-
port claims that an important cognitive system might be alternatively implemented 
within a single brain, across several brains, or in a brain-​environment cyborg assem-
blage. Arguing against this possibility, Adams and Aizawa (2001, 61), reflecting on 
the myriad forms that memory-​augmenting technologies take, ask, “What are the 
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chances of there being interesting regularities that cover humans interacting with all 
these sorts of things? Slim to none, we speculate.” By contrast, Clark and Chalmers 
(1998, 14) judge that “by using the ‘belief ’ notion in a wider way, it picks out some-
thing more akin to a natural kind. The notion becomes deeper and more unified, 
and is more useful in explanation.” While preferring the notion of inductive power 
to natural kind because inductive power does not carry unnecessary baggage asso-
ciated with identifying kinds of things that are intrinsically “out there,” I fundamen-
tally agree with Clark and Chalmers that systems concepts are frequently useful, 
even though, indeed often because, they are applicable to many situations that seem 
to be dissimilar. In fact, a productive general strategy for figuring out what is core to 
a cognitive system is to purposefully consider as widely ranging cases of it as pos-
sible. In the same spirit that a linguist interested in what is common to all human 
languages would be better served by studying Swahili, Dutch, and Chinese rather 
than French, Italian, and Spanish, the best cure for overly parochial interpretations 
of concepts like beliefs, memories, and concepts is to study them in all of their 
diverse forms.

A skeptic might respond that some systems concepts in science, such as diffu-
sion, positive feedback, and autocatalysis, do have inductive power that transcends 
traditional disciplines, but for cognitive systems in particular, the standard unit of 
one central nervous system is the only instantiation. This response seems unlikely 
given the general requirements faced by any system that has an information-​based 
niche and the specific successes of functional accounts of adaptive behavior that 
apply to both artificial and natural intelligences. For now, I will simply describe four 
candidate cognitive systems that have been usefully employed to understand sys-
tems wider than, narrower than, and simply different from single central nervous 
systems.

	1.	 Competitive specialization. A  group of originally homogeneous, undifferenti-
ated units are sequentially presented with resources (see figure 9.1). The unit 
which is closest or more similar to the resource moves or adapts toward the 
resource rapidly, while the other units adapt more slowly. The end result is a 
spontaneous, self-​organized division of labor among the units in which dif-
ferent units are specialized for different resources, and resources that are close 
or similar will tend to be handled by the same unit. This learning algorithm has 
applications for allocating members of a team to spatially distributed resources, 
unsupervised pattern learning in neuroscience, and autonomous machine 
learning (Rumelhart and Zipser 1985).

	2.	 Diffusion-​based decision-​making. Information continuously accumulates and a 
response is produced when a threshold amount of evidence has been achieved for 
that response. The diffusion model can be shown to be optimal in that it achieves 
the fastest mean decision time for a given accuracy (Bogacz et al. 2006) and has 
been recruited to understand both human perceptual judgments (Forstmann, 
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Ratcliff, and Wagenmakers 2016)  and how ant colonies and beehives choose 
new nesting sites (Marshall et al. 2011).

	3.	 Temporal difference learning. Learning can be based not only on a rare external 
reward at, say, Time100, but also on the degree to which a prediction at Time10 
about that later reward matches a prediction at Time20. When predictions dis-
agree, then later predictions can critique and modify the earlier predictions in 
a bootstrapping process. This self-​critique is supplied by the neurotransmitter 
dopamine in nervous systems, which provides an internal reward signal that can 
shape animals’ actions without requiring an external reward (Schultz, Dayan, 

Only closest
moves

All move
equally

Closest moves
quickly, others
move slowly

N
eu

ro
ns

In
pu

ts
N

eu
ro

ns
In

pu
ts

N
eu

ro
ns

In
pu

ts

Category 1 Category 2 Category 3

Category 1 Category 2 Category 3

Category 1 Category 2 Category 3

Figure 9.1  Two examples of competitive specialization, adapted from Goldstone and 
Sakamoto (2003). For the case on the left, three neurons are adapting to cover three input 
patterns that are randomly and repeatedly selected. For the case on the right, three ants 
are moving to cover three resource patches. When only the closest agent moves toward 
a resource (top panels), the agent will inadequately cover all three resources, while other 
agents do not adapt at all. If all agents move equally quickly (middle panels), they will 
end up being equally influenced by all of the resources and will come up with the same 
inadequate solution. If the closest agent to a selected resource adapts quickly while the 
other two adapt slowly (bottom panels), then they will spontaneously self-​organize so 
that each agent is specialized for one of the inputs, efficiently covering the entire space of 
resources.
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and Montague 1997). In artificial intelligent systems, this form of learning can 
dramatically increase the efficiency of learning in systems for playing games, 
maze solving, and dynamic control tasks (Sutton and Barto 1998).

	4.	 Decision-​making by similarity-​based sampling. One way to make generally ap-
propriate decisions in a given situation is to sample previously remembered 
situations, determine what was or would have been the correct decision in those 
situations, and make the corresponding decision in the given situation, with 
“recommended” decisions weighted by the similarity of the remembered and 
current situation. This notion of making decisions by sampling memory serves 
as the basis for financial decisions (Stewart, Chater, and Brown 2006), human 
categorization judgments (Nosofsky 1984), and machine learning models of in-
duction such as Support Vector Machines and Bayesian inference (Fung and 
Mangasarian 2001).

While chosen semi-​arbitrarily, these examples suffice to show that very dif-
ferent components can implement the same cognitive function. While none of 
these identified systems implements a complete mind, they all represent the kind of 
algorithms that cognitive scientists spend most of their time thinking about and for 
which tangible gains in understanding have been made. They represent the kinds of 
systems that are likely to underpin cognition in us and other agents. For this reason, 
I  remain optimistic that inductively powerful cognitive systems can be identified 
that apply across many different instantiating components.

3.  Piecing Together People

Thus far, only a generic defense of the RPP has been ventured. Like the Parity 
Principle, one of the main benefits of the RPP is to help us see familiar phenomena 
in new ways. What are the specific notions that we can usefully borrow from clearly 
distributed systems to understanding how our own brain function works? I  will 
focus on three.

3.1  Specialization

Divide-​and-​conquer is a valuable strategy for information-​processing systems. We 
understand well that a good team will divide its task into well-​differentiated parts 
and that success depends on division of labor. This division of labor clearly happens 
within a brain too and creates, to some degree, fragmented rather than unified 
minds. Division of labor means that no part will have everything in mind.

It might seem impossible or exceptional for a system to become more richly in-
ternally structured over time, but in fact it is rather common as the competitive spe-
cialization example above suggests. Environments tend to be “clumpy,” with objects 
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distributed in clusters rather than strewn randomly or homogeneously. This is true 
for spatial clustering, and is even more true for objects’ nonspatial dimensions. 
Dimensions tend to be strongly correlated. Thanks to the bird clump of the world, 
nesting in trees, singing, flying, and laying eggs are all correlated with each other. 
As long as an environment is naturally “clumpy,” a distributed system of agents can 
adaptively divide this world into its clumps and develop agents specialized for dif-
ferent clumps.

A striking example of this acquired specialization within human brains is the ac-
quired functional specialization of relatively small parts of the brain for recognizing 
words and mathematics. The visual word form area in the left fusiform gyrus, for 
instance, is implicated in reading (Dehaene and Cohen 2011). Visual number 
forms are processed in the inferior temporal gyrus and anterior to the temporo-​
occipital incisure (Shum et  al. 2013), and the intraparietal sulcus and prefrontal 
cortex have been identified for their contributions to mathematical cognition 
(Amalric and Dehaene 2016). Written language and mathematical reasoning have 
probably existed for less than six thousand years, with examples dating back to the 
Sumerians in Mesopotamia. These inventions are decidedly recent with respect 
to biological evolutionary time. Brain specializations for words and numbers are 
possible because (1) people solve new cognitive tasks by reusing brain regions that 
evolved for other purposes (Anderson 2015; (2) the brain is sufficiently malleable 
that its parts become tuned, over development, to new requirements; and (3) cul-
tural artifacts have adapted over relatively brief recorded history to improve the effi-
ciency with which they are processed by relatively slowly evolving brains (Changizi 
and Shimojo 2005). Combining the latter two points: we adapt to culturally rele-
vant objects while at the same time they are adapting to us (see also Clark 2003).

3.2  Tool Creation

It is clear that people create external, nonbiological tools to help them cope with 
their world. Clark (2003, 2008) has convincingly argued that humans are remark-
able in their inclination to create tools, create tools for creating tools, and so on. 
This perspective on people as consummate tool builders applies to internal tools as 
well—​that is, to brain changes that allow us to do our cognitive tasks better.

The phenomenon of categorical perception (CP) is a good example of how per-
ception comes to better support cognition by leading us to perceive our world in 
terms of the categories we have formed (Goldstone and Hendrickson 2010). By CP, 
our perceptions are warped such that differences between objects that belong in dif-
ferent categories are accentuated, and differences between objects that fall into the 
same category are de-​emphasized (Harnad 1997). CP transforms relatively linear 
sensory signals into relatively nonlinear internal representations. This transforma-
tion is important because it promotes the crucial cognitive function of treating dis-
tinguishable stimuli as the same thing. Once different examples of a phoneme /​d/​

OUP UNCORRECTED PROOF – FIRSTPROOFS, Tue Dec 18 2018, NEWGEN

Colombo300818ATUS_MU.indd   120 18-Dec-18   10:30:09 PM



Bui ld ing  Inn e r   Tool s 121

, different cats, or different chairs are treated as the same kind of thing, then irrel-
evant variations are de-​emphasized and connections can be made between things 
that have disparate superficial appearances. While we might have expected these 
connections to be made only at deeper, cognitive levels, turning over some of the 
work in creating equivalence classes to perceptual systems frees up executive control 
functioning for other tasks and leads to the fast and efficient detection of categories. 
A general strategy that the brain uses to become more efficient is to shift, using a 
well-​understood basal ganglia circuit, tasks that once required executive function, 
frontal neural circuits to more posterior circuits that subserve habits (Poldrack et al. 
2005). The brain performs its own “internal outsourcing,” turning strategic action-​
outcome reasoning into automatic stimulus-​response behavior.

There are other striking examples of visual processes being tailored to an 
organism’s tasks. In a case considered by Clark (2008), Milner and Goodale (1995) 
have proposed interacting but distinct visual pathways involved in visual identifica-
tion/​recognition of an object and reaching for that object. One confirmed predic-
tion of the idea that perceptual processes are tuned to the currently relevant actions 
is that visual systems engaged in identification/​recognition versus reaching should 
not always show the same pattern of sensitivity to illusions (Bruno and Franz 2009). 
While verbally reported size judgments for a central circle are heavily influenced by 
the sizes of surrounding circles, grasps for the central circle are relatively unaffected. 
This is a plausible pattern if one assumes that successful grasps depend on metric 
calculations based on the target itself, whereas explicit perceptual judgments about 
that target can sometimes benefit from determining its relation to other objects.

In these examples, and many others, it is compelling to think of our own brain’s 
perception and action modules as tools to be shaped to our needs. They are partic-
ularly important tools because of their immediacy, indispensability, and gatekeeper 
status—​all other tools that we want to use have to go through these. An important 
apparent difference between these modules and external tools like hammers, beds, 
computers, and Google Search is that the internal modules seem not to be inten-
tionally crafted, but shaped only by automatic, unwilled processes. I will return later 
to this apparent difference when considering the ways we hack our own brains.

3.3  Indirect Levers

In the massively distributed system known as economics, a market-​based instru-
ment encourages behavior through market signals rather than through explicit 
directives (Stavins 2003). Market-​based instruments are frequently contrasted with 
“command and control” regulations that simply specify a target to be achieved, 
frequently detailing the technologies and method that must be used to reach the 
target. Examples of market-​based instruments are 10 cent deposits on aluminum 
cans, cap-​and-​trade programs to control sulfur dioxide emissions, and rebates for 
water-​efficient washing machines.
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The insight from these indirect levers is that you can change a system’s behavior 
even if you cannot or do not want to directly rig it up yourself. This insight may seem 
inapplicable to brains and minds. One might have thought that our own mind is the 
easiest thing to change because each of us is in extremely close contact with it, some 
going as far as to say that it is us. Furthermore, sometimes we can change our minds 
easily. If somebody trustworthy tells us “A baby llama is called a cria,” we can absorb 
this fact with only one telling and potentially change our mind permanently.

Very often, though, changing a mind is frustratingly difficult, and is not made 
much easier just because one happens to be the mind’s owner. This irreducible fact 
is rather inexplicable from the viewpoint that we are each a unified self with access 
to the mental components that confer intelligence on us. The fact, however, will be 
readily attested to by anyone who has tried to quit a bad habit, learn linear algebra, 
or play guitar well. We can make headway on these goals, but it is usually a long slog, 
and we often make more progress by applying mental market-​based instruments 
rather than command-​control regulations.

4.  Hacking One’s Own Mind

The suggested perspectival shift of RPP is for people to see their own internal 
mental operations as the result of the interactions among a distributed network of 
partially decomposable modules that are specialized and adaptive but not directly 
controlled by us. In fact, it is not even clear what remains of a central “us” that could 
possibly be doing the controlling. In the previous section, the last two perspectival 
borrowings from distributed systems, “tool creation” and “indirect levers,” suggest 
mental modules that are liminally positioned in terms of their opacity to strategic 
manipulation. A tool that cannot be crafted according to the wielder’s need is not 
much of a tool, but perception-​action modules are classically considered to be black 
boxes incapable of being penetrated by cognitive entities such as goals, beliefs, and 
desires (Fodor 1983).

In fact, modules may be gray or murky boxes, but they are rarely completely black 
boxes. People devote considerable time and energy to hacking their own perception-​
action modules. Consider, for example, the ingenious efforts of athletes and 
musicians to create novel training methods for improving their own performance. 
Soccer players have been known to train themselves in a multiple-​object tracking 
task in order to improve their global situation awareness on the field (Faubert and 
Sidebottom 2012). Musicians give themselves ear training exercises that specifically 
allow them to better discriminate troublesome intervals. Olympic kayakers monitor 
the force of individual strokes with sensor arrays to provide instantaneous feedback 
on the effects of slight modifications of their paddling technique.

Short of auto-​neurosurgery, people do not have the ability to completely re-
wire their perceptual systems to give themselves new perceptual capabilities, such 
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as seeing infrared light or hearing a 30 kHz pitch. However, we routinely and stra-
tegically modify human perceptual systems by giving ourselves and our students 
targeted training. Very different training is required of music students to master 
discriminations between absolute pitches (e.g., A vs. A#) versus relative intervals 
(e.g., minor vs. major thirds) (Hannon and Trainor 2007), and students regularly 
avail themselves of training methods suited to their musical goals. As a result of 
musical training, musicians relative to nonmusicians acquire different responses to 
both music and speech in their brain stems. Musicians also show different patterns 
of sound emissions from their ears that is consistent with the theory that they have 
improved auditory processing that stems from top-​down feedback from the brain-
stem to the most peripheral site of auditory processing: the cochlea (Moreno and 
Bidelman 2014). Dr. Susan Barry (2010) lacked binocular stereoscopic depth per-
ception but was able to strategically train herself to have this ability by presenting 
to herself colored beads at varying distances and forcing her eyes to jointly fixate on 
them. It is worth noting for this last example that binocular depth perception is one of 
the human perceptual abilities with the strongest empirical claims for having status 
as a neurophysiologically and functionally genuine module (Nakayama 2005).

These examples show that training leads to changes in impressively peripheral 
sites of perceptual modules. People use various strategies to hack their own percep-
tual modules to make them better tools. Three of these strategies follow.

4.1  Selective Reinforcement of Quasi-​Random Variations

Even if an agent does not have any access to the internal machinations of one of his or 
her neural modules, as long as that module produces natural or coaxed randomness, 
the blind flailings of the module can be selectively reinforced to reward favorable 
random changes (Goldstone, Landy, and Brunel 2011). Selective reinforcement is 
at the heart of the behavioral shaping techniques of the animal learning theorists. 
This method is not terribly fast, but with patience and repetition it can still produce 
remarkable results, such as allowing pigeons to correctly categorize mammograms 
of benign versus malignant breast tumors 85 percent of the time when tested indi-
vidually and 99 percent when aggregated in a flock-​sourced approach (Levenson 
et al. 2015).

4.2  Strategic Training

Individuals who are either introspective or well-​read in the psychology of learning 
frequently expedite changes to their perception-​action modules by strategically 
modifying their training. Examples of these strategies include giving oneself spaced 
rather than massed practice when learning anatomical structures in medical school, 
practicing a guitar song at quarter speed or a piano song separately with left and right 
hands, purposefully exposing oneself to different speakers when trying to learn a 
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difficult speech sound discrimination in Mandarin, viewing deliberate caricatures of 
two highly confusable mushroom species before examining actual samples so as to 
orient oneself to their diagnostic features, and parents placing paintings on the walls 
of a baby’s room when they want the baby to later have an easier time identifying the 
paintings. These strategies are powerful because they can be applied across many 
domains and they are still more directed than simply waiting for random flailing to 
produce a behavior worth reinforcing.

4.3  Emulation

An often efficient way to learn a new skill is to emulate an expert. Students of 
drumming will frequently emulate their teacher, either in synchronized duet 
playing or in call-​and-​response fashion. Teachers in many disciplines often find it 
more instructive to show than tell. Words are not completely useless, but teachers of 
dance, skiing, and even computer programming frequently have the experience that 
words are too narrow a bottleneck for conveying to students their nuanced message. 
Instead, teachable moments can reliably occur if students are made to move their 
bodies in the correct way and then reflect on what that feels like.

These three strategies are ordered in terms of their increasing directedness, and 
emulation is typically possible only after a long period of random flailing and rein-
forcement has transpired because emulation requires learners to already have sig-
nificant control over their modules. Perhaps the most potent reward for achieving 
expertise in a domain is to be able to express oneself in a more nuanced, articulate 
manner within that domain. The reward for playing a game well is to get the chance 
to play more of the game better. Experts can perceive and produce nuances and 
complexities that they completely missed as novices. Originally coarse and poorly 
controlled hacks give way to more pointed and precise hacks. The hacking of one’s 
own brain is the epitome of pulling oneself up by one’s bootstraps. The progression 
of skill from infant to expert consists in the iterative creation of increasingly refined 
levers, channels, and expressive vocabularies that depend upon and hone the pre-
vious iteration. Very akin to how Clark (2003) has argued for the striking advances 
that humanity achieves by building tools for building tools that build tools, the 
eventual, highly refined organization of our perception-​action brain modules would 
be impossible without hundreds of iterations of using existing neural organization 
to establish the next, incrementally refined organization.

Hacking one’s own mind is, then, a potent case of tool creation even though and 
because it occurs inside one’s head. Although this hacking is initially coarse and is 
never perfectly targeted, it is nonetheless a case of the willful, strategic training of 
perception to improve its operation for highly specific purposes. For example, as 
Barry (2010) trained herself to have depth perception, she wanted to have depth 
perception, she believed that her training regime would serve to give her this ability, 
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and the training itself was systematically related to her developing the ability. If this 
does not count as a rational process, then many canonical cases of human rational 
inference will probably fail to count as well.

5.  Conclusions

The RPP invites consideration of the ways in which the components of our brain 
can be understood as akin to components of an external distributed system. This 
perspective helps us understand why changing our minds is frequently a long, ar-
duous, and incremental process. The visual word form area in the left fusiform gyrus 
is, by this account, a tool par excellence for helping us decipher written words. The 
inevitable answer to the question “But is it a tool that we use or is it simply part of 
us?” is simply “That is a matter of perspective.” As described in the first section, there 
are multiple scales of systems that can be postulated, some which do not include the 
visual word form area as part of a cognitive system but rather treat it as an external 
tool, some which do treat it as part of a single system, and some which include it 
as well as notebooks, iPhones, and colleagues. The choice between these systems/​
perspectives should be based on the inductive power of the perspective, which will, 
in turn, be influenced by the kinds of properties one is interested in inferring.

The core conceptual advantage of both the forward and reverse parity princi-
ples is to dissuade us from believing that there is a single privileged level for under-
standing cognition—​one that includes the brain, the whole brain, and nothing but 
the brain. The parity principle has the empowering effect of literally enlarging our-
selves to include some of the reliable and trustworthy environmental entities that 
make our thoughts possible. The path to human betterment by the extended mind 
account lies in developing technological and infrastructural devices that expand our 
capabilities. Does the reverse parity principle therefore diminish us? This is certainly 
a possibility, but there is also a kind of fascination that comes with appreciating the 
otherness that lies within us. It also suggests an alternative (but not incompatible) 
path to human betterment by using science and technology to improve the training 
of our internal brain components. At a first pass, we depend on components for 
perceiving and acting on the world that we can control only imperfectly and after 
considerable experience. At a second pass, there is very possibly no central “we” that 
depends on peripheral components. There are only interacting components that 
imperfectly control one another—​tools that create and shape other tools without 
needing a separate, original user at all.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Tue Dec 18 2018, NEWGEN

Colombo300818ATUS_MU.indd   125 18-Dec-18   10:30:09 PM



O n  B e i n g  a   C y b o r g126

References

Adams, F., and K. Aizawa. 2001. “The Bounds of Cognition.” Philosophical Psychology 14(1): 43–​64.
Amalric, M., and S. Dehaene. 2016. “Origins of the Brain Networks for Advanced Mathematics in 

Expert Mathematicians.” Proceedings of the National Academy of Sciences 113: 4909–​4917.
Anderson, J. R. 1991. “The Adaptive Nature of Human Categorization.” Psychological Review 

98: 409–​429.
Anderson, M. L. 2015. After Phrenology:  Neural Reuse and the Interactive Brain. Cambridge, 

MA: MIT Press.
Barry, S. R. 2010. Fixing My Gaze: A Scientist’s Journey into Seeing in Three Dimensions. New York: 

Basic Books.
Barsalou, L. W. 1983. “Ad Hoc Categories.” Memory and Cognition 11: 211–​227.
Bogacz, R., E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen. 2006. “The Physics of Optimal 

Decision Making: A Formal Analysis of Models of Performance in Two-​Alternative Forced 
Choice Tasks.” Psychological Review 113: 700–​765.

Bruno, N., and V. H. Franz. 2009. “When Is Grasping Affected by the Müller-​Lyer Illusion? 
A Quantitative Review.” Neuropsychologia 47: 1421–​1433.

Changizi, M. A., and S. Shimojo. 2005. “Character Complexity and Redundancy in Writing Systems 
over Human History.” Proceedings of the Royal Society London B 272: 267–​275.

Clark, A. 2003. Natural-​Born Cyborgs:  Minds, Technologies, and the Future of Human Intelligence. 
New York: Oxford University Press.

Clark, A. 2005. “Intrinsic content, active memory and the extended mind.” Analysis 65(285): 1–​11.
Clark, A. 2008. Supersizing the Mind: Embodiment, Action, and Cognitive Extension. New York: Oxford 

University Press.
Clark, A., and D. Chalmers. 1998. “The Extended Mind.” Analysis 58: 7–​19.
Dennett, D. 1989. “The Origins of Selves.” Cogito 3: 163–​173.
Dehaene, S., and L. Cohen. 2011. “The Unique Role of the Visual Word Form Area in Reading.” 

Trends in Cognitive Sciences 15(6): 254–​262.
Faubert, J., and L. Sidebottom. 2012. “Perceptual-​Cognitive Training of Athletes.” Journal of Clinical 

Sports Psychology 6: 85–​102.
Fodor, J. A. 1983. The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.
Forstmann, B. U., R. Ratcliff, and E.-​J. Wagenmakers. 2016. “Sequential Sampling Models in 

Cognitive Neuroscience:  Advantages, Applications, and Extensions.” Annual Review of 
Psychology 67: 641–​666.

Fung, G., and O. L. Mangasarian. 2001. “Proximal support vector machine classifiers.” In Proceedings 
KDD-​2001: Knowledge discovery and data mining, edited by F. Provost and R. Srikant, 77–​86. 
San Francisco, CA, New York: Association for Computing Machinery.

Goldstone, R. L., and A. T. Hendrickson. 2010. “Categorical Perception.” Wiley Interdisciplinary 
Reviews: Cognitive Science 1: 69–​78.

Goldstone, R. L., D. Landy, and L. Brunel. 2011. “Improving Perception to Make Distant 
Connections Closer.” Frontiers in Perception Science 2(385): 1–​10.

Goldstone, R. L., and Y. Sakamoto. 2003. “The Transfer of Abstract Principles Governing Complex 
Adaptive Systems. Cognitive Psychology 46: 414–​466.

Goldstone, R. L., and G. Theiner. 2017. “The Multiple, Interacting Levels of Cognitive Systems 
(MILCS) Perspective on Group Cognition.” Philosophical Psychology 30(3): 334–​368.

Goldstone, R. L., and U. Wilensky. 2008. “Promoting Transfer by Grounding Complex Systems 
Principles.” Journal of the Learning Sciences 17: 465–​516.

Goodman, N. 1972. “Seven Strictures on Similarity.” In Problems and Projects, edited by N. Goodman, 
437–​447. New York: Bobbs-​Merrill.

Hannon, E. E., and L. J. Trainor. 2007. “Music Acquisition:  Effects of Enculturation and Formal 
Training on Development.” Trends in Cognitive Sciences 11: 466–​470.

Harnad, S. 1997. Categorical Perception. Cambridge, UK: Cambridge University Press.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Tue Dec 18 2018, NEWGEN

Colombo300818ATUS_MU.indd   126 18-Dec-18   10:30:09 PM



Bui ld ing  Inn e r   Tool s 127

Levenson, R. M., E. A. Krupinski, V. M. Navarro, and E. A. Wasserman. 2015. “Pigeons (Columba 
livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.” PLOS ONE 
10(11): e0141357.

Marshall, J. A.  R., R. Bogacz, A. Dornhaus, R. Plaque, T. Kovacs, and N. R. Franks. 2011. “On 
Optimal Decision-​Making in Brains and Social Insect Colonies.” Journal of the Royal Society 
Interface 6: 1065–​1074.

Milner, A. D., and M. A. Goodale. 1995. The Visual Brain in Action. Oxford: Oxford University Press.
Moreno, S., and G. M. Bidelman. 2014. “Examining Neural Plasticity and Cognitive Benefit through 

the Unique Lens of Musical Training.” Hearing Research 308: 84–​97.
Nakayama, K. 2005. “Modularity in Perception, Its Relation to Cognition and Knowledge.” In 

Blackwell Handbook of Sensation and Perception, edited by E. B. Goldstein, 737–​759. 
Malden, MA: Blackwell.

Nosofsky, R. M. 1984. “Choice, Similarity, and the Context Theory of Classification.” Journal of 
Experimental Psychology: Learning, Memory, and Cognition 10: 104–​114.

Poldrack, R. A., et  al. 2005. “The Neural Correlates of Motor Skill Automaticity.” Journal of 
Neuroscience 25: 5356–​5364.

Rawls, J. 2001. Justice as Fairness: A Restatement. Cambridge, MA: Belknap Press.
Rosch, E., and C. B. Mervis. 1975. “Family Resemblances:  Studies in the Internal Structure of 

Categories.” Cognitive Psychology 7: 573–​605.
Rumelhart, D. E., and D. Zipser. 1985. “Feature Discovery by Competitive Learning.” Cognitive 

Science 9: 75–​112.
Schultz, W., P. Dayan, and P. R. Montague. 1997. “A Neural Substrate of Prediction and Reward.” 

Science 275(5306): 1593–​1599.
Shum, J., D. Hermes, B. L. Foster, M. Dastjerdi, V. Rangarajan, J. Winawer, K. J. Miller, and J. Parvizi. 

2013. “A Brain Area for Visual Numerals.” Journal of Neuroscience 33: 6709–​6715.
Stavins, R. N. 2003. “Experience with Market-​Based Environmental Policy Instruments.” In 

Handbook of Environmental Economics, edited by K. G. Mäler and J. Vincent, 355–​435. 
Amsterdam: Elsevier Science.

Stewart, N., N. Chater, and G. D.  A. Brown. 2006. “Decision by Sampling.” Cognitive Psychology 
53: 1–​26.

Sutton, R., and A. Barto. 1998. Reinforcement Learning. Cambridge, MA: MIT Press.
Theiner, G., C. Allen, and R. L. Goldstone. 2010. Recognizing Group Cognition. Cognitive Systems 

Research 11: 378–​395.

OUP UNCORRECTED PROOF – FIRSTPROOFS, Tue Dec 18 2018, NEWGEN

Colombo300818ATUS_MU.indd   127 18-Dec-18   10:30:09 PM


