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CHAPTER 8

Categorization and Concepts

ROBERT L. GOLDSTONE, ALAN KERSTEN, AND PAULO F. CARVALHO

INTRODUCTION

Concepts are the building blocks of thought.
They are critically involved when we rea-
son, make inferences, and try to generalize
our previous experiences to new situations.
Behind every word in every language lies
a concept, although there are concepts, like
the small plastic tubes attached to the ends
of shoelaces, that we are familiar with and
can think about even if we do not know
that they are called aglets. Concepts are
indispensable to human cognition because
they take the “blooming, buzzing confu-
sion” (James, 1890, p. 488) of disorganized
sensory experiences and establish order
through mental categories. These mental
categories allow us to make sense of the
world and predict how worldly entities will
behave. We see, hear, interpret, remember,
understand, and talk about our world through
our concepts, and so it is worthy of reflec-
tion time to establish where concepts come
from, how they work, and how they can
best be learned and deployed to suit our
cognitive needs.

We are grateful to Brian Rogosky, Robert Nosofsky, JohnAQ1
Kruschke, Linda Smith, and David Landy for helpful
comments on earlier drafts of this chapter. This research
was funded by National Science Foundation REESE
grant DRL-0910218, and Department of Education IES
grant R305A1100060.

Issues related to concepts and catego-
rization are nearly ubiquitous in psychology
because of people’s natural tendency to
perceive a thing as something. We have a
powerful impulse to interpret our world.
This act of interpretation, an act of “seeing
something as X” rather than simply seeing it
(Wittgenstein, 1953), is fundamentally an act
of categorization.

The attraction of research on concepts is
that an extremely wide variety of cognitive
acts can be understood as categorizations
(Kurtz, 2015; Murphy, 2002). Identifying the
person sitting across from you at the breakfast
table involves categorizing something as your
spouse. Diagnosing the cause of someone’s
illness involves a disease categorization.
Interpreting a painting as a Picasso, an arti-
fact as Mayan, a geometry as non-Euclidean,
a fugue as baroque, a conversationalist as
charming, a wine as a Bordeaux, and a gov-
ernment as socialist are categorizations at
various levels of abstraction. The typically
unspoken assumption of research on concepts
is that these cognitive acts have something
in common. That is, there are principles that
explain many or all acts of categorization.
This assumption is controversial (see Medin,
Lynch, & Solomon, 2000), but is perhaps
justified by the potential payoff of discover-
ing common principles governing concepts
in their diverse manifestations.
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276 Categorization and Concepts

The desirability of a general account of
concept learning has led the field to focus
its energy on what might be called generic
concepts. Experiments typically involve arti-
ficial categories that are hopefully unfamiliar
to the subject. Formal models of concept
learning and use are constructed to be able to
handle any kind of concept irrespective of its
content. Although there are exceptions to this
general trend (Malt, 1994; Ross & Murphy,
1999), much of the mainstream empirical
and theoretical work on concept learning is
concerned not with explaining how particular
concepts are created, but with how concepts
in general are represented and processed.

One manifestation of this approach is that
the members of a concept are often given
an abstract symbolic representation. For
example, Table 8.1 shows a typical notation
used to describe the stimuli seen by a subject
in a psychological experiment or presented
to a formal model of concept learning. Nine
objects belong to two categories, and each
object is defined by its value along four
binary dimensions. In this notation, objects
from Category A typically have values of 1
on each of the four dimensions and objects
from Category B usually have values of 0.
The dimensions are typically unrelated to

Table 8.1 A Common Category Structure

Dimension

Category Stimulus D1 D2 D3 D4

A1 1 1 1 0
A2 1 0 1 0

Category A A3 1 0 1 1
A4 1 1 0 1
A5 0 1 1 1

B1 1 1 0 0
Category B B2 0 1 1 0

B3 0 0 0 1
B4 0 0 0 0

Source: From Medin and Schaffer (1978). Copy-
right 1978 by the American Psychological Association.
Reprinted with permission.

each other, and assigning values of 0 and 1 to
a dimension is arbitrary. For example, for a
color dimension, red may be assigned a value
of 0 and blue a value 1. The exact category
structure of Table 8.1 has been used in at least
30 studies (reviewed by J. D. Smith & Minda,
2000) and instantiated by stimuli as diverse
as geometric forms, yearbook photographs,
cartoons of faces (Medin & Schaffer, 1978),
and line drawings of rocket ships. These
researchers are not particularly interested
in the category structure of Table 8.1 and
are certainly not interested in the catego-
rization of rocket ships per se. Instead, they
choose their structures and stimuli so as to be
(a) unfamiliar (so that learning is required),
(b) well controlled (dimensions are approx-
imately equally salient and independent),
(c) diagnostic with respect to theories of
category learning, and (d) potentially gen-
eralizable to natural categories that people
learn. Work on generic concepts is valuable
if it turns out that there are domain-general
principles underlying human concepts that
can be discovered. Still, there is no a pri-
ori reason to assume that all concepts will
follow the same principles, or that we can
generalize from generic concepts to naturally
occurring concepts.

WHAT ARE CONCEPTS?

Concepts, Categories, and Internal
Representations

A good starting place is Edward Smith’s
(1989) characterization that a concept is “a
mental representation of a class or individual
and deals with what is being represented and
how that information is typically used during
the categorization” (p. 502). It is common to
distinguish between a concept and a category.
A concept refers to a mentally possessed idea
or notion, whereas a category refers to a
set of entities that are grouped together.



Trim Size: 7in x 10in Wixted-Vol3 c08.tex V1 - 09/30/2017 9:13 P.M. Page 277�

� �

�

What Are Concepts? 277

The concept dog is whatever psychological
state signifies thoughts of dogs. The category
dog consists of all the entities in the real
world that are appropriately categorized as
dogs. The question of whether concepts
determine categories or vice versa is an
important foundational controversy. On the
one hand, if one assumes the primacy of
external categories of entities, then one will
tend to view concept learning as the enter-
prise of inductively creating mental structures
that predict these categories. One extreme
version of this view is the exemplar model
of concept learning (Estes, 1994; Medin &
Schaffer, 1978; Nosofsky, 1984), in which
one’s internal representation of a concept is
nothing more than the set of all of the exter-
nally supplied examples of the concept to
which one has been exposed. If, on the other
hand, one assumes the primacy of internal
mental concepts, then one tends to view exter-
nal categories as the end product of using
these internal concepts to organize observed
entities. Some practitioners of a “concepts
first” approach argue that the external world
does not inherently consist of rocks, dogs,
and tables; these are mental concepts that
organize an otherwise unstructured exter-
nal world (Lakoff, 1987). Recent research
indicates that concepts’ extensions (the class
of items to which the concept applies) and
intensions (the features that distinguish that
class of items) do not always cohere with
each other (Hampton & Passanisi, 2016).
For example, dolphins and whales are often
judged to have many of the features charac-
teristic of an internal representation of fish
(e.g., swims, lives in oceans, and has fins),
but are still placed in the extensional set of
mammals rather than fish. The implication
is that a complete model of concepts may
require at least partially separate represen-
tations for intensions and extensions, rather
than a more parsimonious model in which
a concept’s intension determines whether

particular objects belong, and how well, to
the concept’s extension.

Equivalence Classes

Another important aspect of concepts is that
they are equivalence classes. In the classical
notion of an equivalence class, distinguish-
able stimuli come to be treated as the same
thing once they have been placed in the
same category (Sidman, 1994). This kind of
equivalence is too strong when it comes to
human concepts because even when we place
two objects into the same category, we do not
treat them as the same thing for all purposes.
Some researchers have stressed the intrinsic
variability of human concepts—variability
that makes it unlikely that a concept has the
same sense or meaning each time it is used
(Barsalou, 1987; Connell & Lynott, 2014;
Thelen & Smith, 1994). Still, the extent to
which perceptually dissimilar things can
be treated equivalently given the appropri-
ate conceptualization is impressive. To the
biologist armed with a strong “mammal”
concept, even whales and dogs may be
treated as commensurate in many situations
related to biochemistry, child rearing, and
thermoregulation.

Equivalence classes are relatively imper-
vious to superficial similarities. Once one
has formed a concept that treats all skunks
as equivalent for some purposes, irrelevant
variations among skunks can be greatly
de-emphasized. When people are told a story
in which scientists discover that an animal
that looks exactly like a raccoon actually con-
tains the internal organs of a skunk and has
skunk parents and skunk children, they often
categorize the animal as a skunk (Keil, 1989;
Rips, 1989). When people classify objects
into familiar, labeled categories such as chair,
then their memory for the individuating infor-
mation about the objects is markedly worse
(Lupyan, 2008a). People may never be able
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to transcend superficial appearances when
categorizing objects (Goldstone, 1994b),
nor is it clear that they would want to (S. S.
Jones & Smith, 1993). Still, one of the most
powerful aspects of concepts is their ability
to make superficially different things alike
(Sloman, 1996). If one has the concept things
to remove from a burning house, even chil-
dren and jewelry become similar (Barsalou,
1983). The spoken phonemes /d/ /o/ /g/, the
French word chien, the written word dog, and
a picture of a dog can all trigger one’s concept
of dog (Snodgrass, 1984), and although they
may trigger slightly different representations,
much of the core information will be the
same. Concepts are particularly useful when
we need to make connections between things
that have different apparent forms.

WHAT DO CONCEPTS DO FOR US?

Fundamentally, concepts function as filters.
We do not have direct access to our external
world. We only have access to our world
as filtered through our concepts. Concepts
are useful when they provide informative or
diagnostic ways of structuring this world. An
excellent way of understanding the mental
world of an individual, group, scientific
community, or culture is to find out how they
organize their world into concepts (Lakoff,
1987; Malt & Wolff, 2010; Medin & Atran,
1999; Ojalehto & Medin, 2015).

Components of Thought

Concepts are cognitive elements that com-
bine together to generatively produce an
infinite variety of thoughts. Just as an endless
variety of architectural structures can be
constructed out of a finite set of building
blocks, so concepts act as building blocks
for an endless variety of complex thoughts.
Claiming that concepts are cognitive ele-
ments does not entail that they are primitive

elements in the sense of existing without
being learned and without being constructed
out of other concepts. Some theorists have
argued that concepts such as bachelor, kill,
and house are primitive in this sense (Fodor,
Garrett, Walker, & Parkes, 1980), but a
considerable body of evidence suggests that
concepts typically are acquired elements that
are themselves decomposable into semantic
elements (McNamara & Miller, 1989).

Once a concept has been formed, it can
enter into compositions with other concepts.
Several researchers have studied how novel
combinations of concepts are produced and
comprehended. For example, how does one
interpret buffalo paper when one first hears
it? Is it paper in the shape of a buffalo, paper
used to wrap buffaloes presented as gifts,
an essay on the subject of buffaloes, coarse
paper, or is it like flypaper but used to catch
bison? Interpretations of word combinations
are often created by finding a relation that
connects the two concepts. In Murphy’s
(1988) concept-specialization model, one
interprets noun–noun combinations by find-
ing a variable that the second noun has
that can be filled by the first noun. By this
account, a robin snake might be interpreted
as a snake that eats robins once robin is used
to the fill the eats slot in the snake concept.

In addition to promoting creative thought,
the combinatorial power of concepts is
required for cognitive systematicity (Fodor &
Pylyshyn, 1988). The notion of systematicity
is that a system’s ability to entertain com-
plex thoughts is intrinsically connected to
its ability to entertain the components of
those thoughts. In the field of conceptual
combination, this has appeared as the issue
of whether the meaning of a combination
of concepts can be deduced on the basis of
the meanings of its constituents. However,
there are some salient violations of this type
of systematicity. When adjective and noun
concepts are combined, there are sometimes
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emergent interactions that cannot be pre-
dicted by the main effects of the concepts
themselves. For example, the concept gray
hair is more similar to white hair than black
hair, but gray cloud is more similar to black
cloud than white cloud (Medin & Shoben,
1988). Wooden spoons are judged to be fairly
large (for spoons), even though this property
is not generally possessed by wood objects
or spoons (Medin & Shoben, 1988). Still,
there have been successes in predicting how
well an object fits a conjunctive description
based on how well it fits the individual
descriptions that comprise the conjunction
(Hampton, 1997). A reasonable reconcilia-
tion of these results is that when concepts
combine together, the concepts’ meanings
systematically determine the meaning of
the conjunction, but emergent interactions
and real-world plausibility also shape the
conjunction’s meaning.

Inductive Predictions

Concepts allow us to generalize our expe-
riences with some objects to other objects
from the same category. Experience with one
slobbering dog may lead one to suspect that
an unfamiliar dog may have the same pro-
clivity. These inductive generalizations may
be wrong and can lead to unfair stereotypes
if inadequately supported by data, but if an
organism is to survive in a world that has
some systematicity, it must “go beyond the
information given” (Bruner, 1973) and gen-
eralize what it has learned. The concepts we
use most often are useful because they allow
many properties to be inductively predicted.
To see why this is the case, we must digress
slightly and consider different types of con-
cepts. Categories can be arranged roughly in
order of their grounding by similarity: natu-
ral kinds (dog, oak tree), man-made artifacts
(hammer, airplane, chair), ad hoc categories
(things to take out of a burning house, things

that could be stood on to reach a lightbulb),
and abstract schemas or metaphors (e.g.,
events in which a kind action is repaid with
cruelty, metaphorical prisons, problems that
are solved by breaking a large force into parts
that converge on a target). For the latter cat-
egories, members need not have very much
in common at all. An unrewarding job and a
relationship that cannot be ended may both
be metaphorical prisons, but the situations
may share little other than this.

Unlike ad hoc and metaphor-base cate-
gories, most natural kinds and many artifacts
are characterized by members that share
many features. In a series of studies, Rosch
(Rosch, 1975; Rosch & Mervis, 1975) has
shown that the members of natural kind
and artifact “basic level” categories, such
as chair, trout, bus, apple, saw, and guitar,
are characterized by high within-category
overall similarity. Subjects listed features for
basic level categories, as well as for broader
superordinate (e.g., furniture) and narrower
subordinate (e.g., kitchen chair) categories.
An index of within-category similarity was
obtained by tallying the number of features
listed by subjects that were common to items
in the same category. Items within a basic
level category tend to have several features
in common, far more than items within a
superordinate category and almost as many
as items that share a subordinate categoriza-
tion. Rosch (Rosch & Mervis, 1975; Rosch,
Mervis, Gray, Johnson, & Boyes-Braem,
1976) argues that categories are defined by
family resemblance; category members need
not all share a definitional feature, but they
tend to have several features in common. Fur-
thermore, she argues that people’s basic level
categories preserve the intrinsic correlational
structure of the world. All feature combina-
tions are not equally likely. For example, in
the animal kingdom, flying is correlated with
laying eggs and possessing a beak. There
are “clumps” of features that tend to occur



Trim Size: 7in x 10in Wixted-Vol3 c08.tex V1 - 09/30/2017 9:13 P.M. Page 280�

� �

�

280 Categorization and Concepts

together. Some categories do not conform to
these clumps (e.g., ad hoc categories), but
many of our most natural-seeming categories
do. Neural network models have been pro-
posed that take advantage of these clumps
to learn hierarchies of categories (Rogers &
Patterson, 2007).

These natural categories also permit many
inductive inferences. If we know something
belongs to the category dog, then we know
that it probably has four legs and two eyes,
eats dog food, is somebody’s pet, pants,
barks, is bigger than a breadbox, and so on.
Generally, natural kind objects, particularly
those at Rosch’s basic level, permit many
inferences. Basic level categories allow many
inductions because their members share sim-
ilarities across many dimensions/features.
Ad hoc categories and highly metaphorical
categories permit fewer inductive inferences,
but in certain situations the inferences they
allow are so important that the categories
are created on an “as needed” basis. One
interesting possibility is that all concepts
are created to fulfill an inductive need, and
that standard taxonomic categories, such as
bird and hammer, simply become automati-
cally triggered because they have been used
often, whereas ad hoc categories are only
created when specifically needed (Barsalou,
1982, 1991). In any case, evaluating the
inductive potential of a concept goes a long
way toward understanding why we have the
concepts that we do. The concept peaches,
llamas, telephone answering machines, or
Ringo Starr is an unlikely concept because
belonging in this concept predicts very
little. Researchers have empirically found
that the categories that we create when we
strive to maximize inferences are different
from those that we create when we strive
to sort the objects of our world into clearly
separate groups (Yamauchi & Markman,
1998). Several researchers have been for-
mally developing the notion that the concepts

we possess are those that maximize induc-
tive potential (Anderson, 1991; Goodman,
Tenenbaum, Feldman, & Griffiths, 2008;
Tenenbaum, 1999). An implication of this
approach is that there are degrees of concept-
hood, with concepts falling on a continuum of
inductive power (Wixted, personal communi-
cation, November 2016). Most psychologists
studying concept learning do not believe that
most of our everyday concepts are defined
by rules or discrete boundaries (see Rules
section below), but we may well be guilty
of treating the concept concept as more rule
based than it actually is. If concepts vary
crucially in terms of their inductive power,
they are very likely to be fuzzy and graded
rather than discrete objects that people either
do or do not possess.

Communication

Communication between people is enor-
mously facilitated if the people can count
upon a set of common concepts being shared.
By uttering a simple sentence such as “Ed is
a football player,” one can transmit a wealth
of information to a colleague, dealing with
the probabilities of Ed being strong, having
violent tendencies, being a college physics
or physical education major, and having a
history of steroid use. Markman and Makin
(1998) have argued that a major force in
shaping our concepts is the need to efficiently
communicate. They find that people’s con-
cepts become more consistent and systematic
over time in order to unambiguously establish
reference for another individual with whom
they need to communicate (see also Garrod &
Doherty, 1994).

Cognitive Economy

We can discriminate far more stimuli than
we have concepts. For example, estimates
suggest that we can perceptually discriminate
at least 10,000 colors from each other, but
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we have far fewer color concepts than this.
Dramatic savings in storage requirements can
be achieved by encoding concepts rather than
entire raw (unprocessed) inputs. A classic
study by Posner and Keele (1967) found
that subjects code letters such as “A” in a
detailed, perceptually rich code, but that
this code rapidly (within 2 seconds) gives
way to a more abstract conceptual code that
“A” and “a” share. Huttenlocher, Hedges,
and Vevea (2000) developed a formal model
in which judgments about a stimulus are
based on both its category membership and
its individuating information. As predicted
by the model, when subjects are asked to
reproduce a stimulus, their reproductions
reflect a compromise between the stimulus
itself and the category to which it belongs.
When a delay is introduced between seeing
the stimulus and reproducing it, the contri-
bution of category-level information relative
to individual-level information increases
(Crawford, Huttenlocher, & Engebretson,
2000). Together with studies showing that,
over time, people tend to preserve the gist
of a category rather than the exact mem-
bers that comprise it (e.g., Posner & Keele,
1970), these results suggest that by pre-
serving category-level information rather
than individual-level information, efficient
long-term representations can be main-
tained. In fact, it has been argued that our
perceptions of an object represent a nearly
optimal combination of evidence based on
the object’s individuating information and
the categories to which it belongs (N. H.
Feldman, Griffiths, & Morgan, 2009). By
using category-level information, one will
occasionally overgeneralize and make errors.
Rattlesnakes may be dangerous in general,
but one may stumble upon a congenial one
in the Arizona desert. One makes an error
when one is unduly alarmed by its presence,
but it is an error that stems from a healthful,
life-sustaining generalization.

From an information theory perspective,
storing a category in memory rather than a
complete description of an individual is effi-
cient because fewer bits of information are
required to specify the category. For example,
Figure 8.1 shows a set of objects (shown by
circles) described along two dimensions.
Rather than preserving the complete descrip-
tion of each of the 19 objects, one can create
a reasonably faithful representation of the
distribution of objects by just storing the
positions of the four triangles in Figure 8.1.

In addition to conserving memory storage
requirements, an equally important econo-
mizing advantage of concepts is to reduce
the need for learning (Bruner, Goodnow, &
Austin, 1956). An unfamiliar object that has
not been placed in a category attracts atten-
tion because the observer must figure out
how to think about it. Conversely, if an object
can be identified as belonging to a preestab-
lished category, then typically less cognitive
processing is necessary. One can simply treat
the object as another instance of something
that is known, updating one’s knowledge
slightly if at all. The difference between
events that require altering one’s concepts
and those that do not was described by Piaget
(1952) in terms of accommodation (adjust-
ing concepts on the basis of a new event)
and assimilation (applying already known

X

Y

Figure 8.1 Alternative proposals have suggested
that categories are represented by the individual
exemplars in the categories (the circles), the proto-
types of the categories (the triangles), or the cate-
gory boundaries (the lines dividing the categories).
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concepts to an event). This distinction has
also been incorporated into computational
models of concept learning that determine
whether an input can be assimilated into a
previously learned concept, and if it can-
not, then reconceptualization is triggered
(Grossberg, 1982). When a category instance
is consistent with a simple category descrip-
tion, then people are less likely to store
a detailed description of it than if it is an
exceptional item (Palmeri & Nosofsky,
1995), consistent with the notion that people
simply use an existing category description
when it suffices. In general, concept learning
proceeds far more quickly than would be
predicted by a naïve associative learning pro-
cess. Our concepts accelerate the acquisition
of object information at the same time that
our knowledge of objects accelerates concept
formation (Griffiths & Tenenbaum, 2009;
Kemp & Tenenbaum, 2009).

HOW ARE CONCEPTS
REPRESENTED?

Much research on concepts and cate-
gorization revolves around the issue of
how concepts are mentally represented.
As with all discussion of representations,
the standard caveat must be issued—mental
representations cannot be determined or
used without processes that operate on these
representations. Rather than discussing the
representation of a concept such as cat, we
should discuss a representation-process pair
that allows for the use of this concept. Empir-
ical results interpreted as favoring a particular
representation format should almost always
be interpreted as supporting a particular
representation given particular processes that
use the representation. As a simple example,
when trying to decide whether a shadowy
figure briefly glimpsed was a cat or a fox,
one needs to know more than how one’s

cat and fox concepts are represented. One
needs to know how the information in these
representations is integrated together to make
the final categorization. Does one wait for the
amount of confirmatory evidence for one of
the animals to rise above a certain threshold
(Fific, Little, & Nosofsky, 2010)? Does one
compare the evidence for the two animals and
choose the more likely (Luce, 1959)? Is the
information in the candidate animal concepts
accessed simultaneously or successively?
Probabilistically or deterministically? These
are all questions about the processes that use
conceptual representations. One reaction to
the insufficiency of representations alone to
account for concept use has been to dispense
with all reference to independent representa-
tions, and instead frame theories in terms of
dynamic processes alone (Thelen & Smith,
1994; van Gelder, 1998). However, others
feel that this is a case of throwing out the
baby with the bath water, and insist that rep-
resentations must still be posited to account
for enduring, organized, and rule-governed
thought (Markman & Dietrich, 2000).

Rules

There is considerable intuitive appeal to the
notion that concepts are represented by some-
thing like dictionary entries. By a rule-based
account of concept representation, to possess
the concept cat is to know the dictionary entry
for it. A person’s cat concept may differ from
Webster’s dictionary’s entry: “A carnivorous
mammal (Felis catus) long domesticated and
kept by man as a pet or for catching rats and
mice.” Still, this account claims that a concept
is represented by some rule that allows one
to determine whether or not an entity belongs
within the category.

The most influential rule-based approach
to concepts may be Bruner et al.’s (1956)
hypothesis-testing approach. Their theorizing
was, in part, a reaction against behaviorist
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approaches (Hull, 1920), in which concept
learning involved the relatively passive acqui-
sition of an association between a stimulus
(an object to be categorized) and a response
(such as a verbal response, key press, or
labeling). Instead, Bruner et al. argued that
concept learning typically involves active
hypothesis formation and testing. In a typ-
ical experiment, their subjects were shown
flash cards that had different shapes, colors,
quantities, and borders. The subjects’ task
was to discover the rule for categorizing
the flash cards by selecting cards to be
tested and by receiving feedback from the
experimenter indicating whether the selected
card fit the categorizing rule or not. The
researchers documented different strategies
for selecting cards, and a considerable body
of subsequent work showed large differences
in how easily acquired are different cate-
gorization rules (e.g., Bourne, 1970). For
example, a conjunctive rule such as white
and square is more easily learned than a
conditional rule such as if white then square,
which is in turn more easily learned than a
biconditional rule such as white if and only
if square.

The assumptions of these rule-based
models have been vigorously challenged
for several decades now. Douglas Medin
and Edward Smith (Medin & Smith, 1984;
E. E. Smith & Medin, 1981) dubbed this
rule-based approach “the classical view,” and
characterized it as holding that all instances
of a concept share common properties that
are necessary and sufficient conditions for
defining the concept. At least three criticisms
have been levied against this classical view.

First, it has proven to be very difficult
to specify the defining rules for most con-
cepts. Wittgenstein (1953) raised this point
with his famous example of the concept
game. He argued that none of the candidate
definitions of this concept, such as activity
engaged in for fun, activity with certain rules,

competitive activity with winners and losers
is adequate to identify Frisbee, professional
baseball, and roulette as games, while simul-
taneously excluding wars, debates, television
viewing, and leisure walking from the game
category. Even a seemingly well-defined con-
cept such as bachelor seems to involve more
than its simple definition of unmarried male.
The counterexample of a 5-year-old child
(who does not really seem to be a bachelor)
may be fixed by adding in an adult precon-
dition, but an indefinite number of other
preconditions are required to exclude a man
in a long-term but unmarried relationship, the
Pope, and a 80-year-old widower with four
children (Lakoff, 1987). Wittgenstein argued
that instead of equating knowing a concept
with knowing a definition, it is better to think
of the members of a category as being related
by family resemblance. A set of objects
related by family resemblance need not have
any particular feature in common, but will
have several features that are characteristic
or typical of the set.

Second, the category membership for
some objects is not clear. People disagree on
whether or not a starfish is a fish, a camel is a
vehicle, a hammer is a weapon, and a stroke
is a disease. By itself, this is not too problem-
atic for a rule-based approach. People may
use rules to categorize objects, but different
people may have different rules. However,
it turns out that people not only disagree
with each other about whether a bat is mam-
mal. They also disagree with themselves!
McCloskey and Glucksberg (1978) showed
that people give surprisingly inconsistent
category-membership judgments when asked
the same questions at different times. There
is either variability in how to apply a cat-
egorization rule to an object, or people
spontaneously change their categorization
rules, or (as many researchers believe) people
simply do not represent objects in terms of
clear-cut rules.
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Third, even when a person shows consis-
tency in placing objects in a category, people
do not treat the objects as equally good mem-
bers of the category. By a rule-based account,
one might argue that all objects that match
a category rule would be considered equally
good members of the category (but see
Bourne, 1982). However, when subjects are
asked to rate the typicality of animals such as
robin and eagle for the category bird, or chair
and hammock for the category furniture, they
reliably give different typicality ratings for
different objects. Rosch and Mervis (1975)
were able to predict typicality ratings with
respectable accuracy by asking subjects to
list properties of category members and
measuring how many properties possessed
by a category member were shared by other
category members. The magnitude of this
so-called family-resemblance measure is
positively correlated with typicality ratings.

Despite these strong challenges to the
classical view, the rule-based approach is
by no means moribund. In fact, in part
due to the perceived lack of constraints in
neural network models that learn concepts
by gradually building up associations, the
rule-based approach experienced a rekindling
of interest in the 1990s after its low point
in the 1970s and 1980s (Marcus, 1998).
Nosofsky and Palmeri (Nosofsky & Palmeri,
1998; Palmeri & Nosofsky, 1995) have pro-
posed a quantitative model of human concept
learning that learns to classify objects by
forming simple logical rules and remember-
ing occasional exceptions to those rules. This
work is reminiscent of earlier computational
models of human learning that created rules
such as If white and square, then Category
1 from experience with specific examples
(Anderson, Kline, & Beasley, 1979; Medin,
Wattenmaker, & Michalski, 1987). The mod-
els have a bias to create simple rules, and are
able to predict entire distributions of subjects’
categorization responses rather than simply

average responses. A strong version of a
rule-based model predicts that people create
categories that have the minimal possible
description length (J. Feldman, 2006).

One approach to making the rule-governed
approach to concepts more psychologically
plausible is to discard the assumption that
rule-governed implies deterministic. The past
few years have seen a new crop of rule-based
models that are intrinsically probabilistic
(Piantadosi & Jacobs, 2016; Piantadosi,
Tenenbaum, & Goodman, 2016; Tenenbaum,
Kemp, Griffiths, & Goodman, 2011). These
models work by viewing categorization as the
result of integrating many discrete rules, each
of which may be imperfect predictors on its
own. A remaining challenge for these models
is that there often is a psychological con-
nection between rule use and determinism.
Rules, particularly ones that involve relations
between elements, are often very difficult
to learn when they are probabilistic rather
than applied without exception (Jung &
Hummel, 2015). In addition, even formal
concepts such as triangle have graded and
flexible structures—structures that are tied
less to strict definitions when the concepts
are activated by their labels (Lupyan, 2017).

In defending a role for rule-based rea-
soning in human cognition, E. E. Smith,
Langston, and Nisbett (1992) proposed eight
criteria for determining whether or not people
use abstract rules in reasoning. These criteria
include “performance on rule-governed items
is as accurate with abstract as with concrete
material,” “performance on rule-governed
items is as accurate with unfamiliar as with
familiar material,” and “performance on
a rule-governed item or problem deterio-
rates as a function of the number of rules
that are required for solving the problem.”
Based on the full set of criteria, they argue
that rule-based reasoning does occur, and
that it may be a mode of reasoning distinct
from association-based or similarity-based
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reasoning. Similarly, Pinker (1991) argued
for distinct rule-based and association-based
modes for determining linguistic categories.
Neurophysiological support for this dis-
tinction comes from studies showing that
rule-based and similarity-based categoriza-
tions involve anatomically separate brain
regions (Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; E. E. Smith, Patalano, &
Jonides, 1998).

In developing a similar distinction
between similarity-based and rule-based
categorization, Sloman (1996) introduced the
notion that the two systems can simultane-
ously generate different solutions to a reason-
ing problem. For example, Rips (1989; see
also Rips & Collins, 1993) asked subjects to
imagine a three-inch, round object, and then
asked whether the object was more similar to
a quarter or a pizza, and whether the object
was more likely to be a pizza or a quarter.
There is a tendency for the object to be judged
as more similar to a quarter but as more likely
to be a pizza. The rule that quarters must not
be greater than 1 inch plays a larger role in the
categorization decision than in the similarity
judgment, causing the two judgments to dis-
sociate. By Sloman’s analysis, the tension we
feel about the categorization of the three-inch
object stems from the two different systems,
indicating incompatible categorizations.
Sloman argues that the rule-based system
can suppress the similarity-based system
but cannot completely suspend it. When
Rips’ experiment is repeated with a richer
description of the object to be categorized,
categorization again tracks similarity, and
people tend to choose the quarter for both the
categorization and similarity choices (E. E.
Smith & Sloman, 1994).

Prototypes

Just as the active hypothesis-testing approach
of the classical view was a reaction against

the passive stimulus–response association
approach, so the prototype model was devel-
oped as a reaction against what was seen
as the overly analytic, rule-based classical
view. Central to Eleanor Rosch’s devel-
opment of prototype theory is the notion
that concepts are organized around family
resemblances rather than features that are
individually necessary and jointly sufficient
for categorization (Mervis & Rosch, 1981;
Rosch, 1975; Rosch & Mervis, 1975). The
prototype for a category consists of the most
common attribute values associated with the
members of the category and can be empir-
ically derived by the previously described
method of asking subjects to generate a list of
attributes for several members of a category.
Once prototypes for a set of concepts have
been determined, categorizations can be pre-
dicted by determining how similar an object
is to each of the prototypes. The likelihood
of placing an object into a category increases
as it becomes more similar to the category’s
prototype and less similar to other category
prototypes (Rosch & Mervis, 1975).

This prototype model can naturally deal
with the three problems that confronted the
classical view. It is no problem if defining
rules for a category are difficult or impossible
to devise. If concepts are organized around
prototypes, then only characteristic, not nec-
essary or sufficient, features are expected.
Unclear category boundaries are expected if
objects are presented that are approximately
equally similar to prototypes from more than
one concept. Objects that clearly belong to
a category may still vary in their typicality
because they may be more similar to the cate-
gory’s prototype than to any other category’s
prototype, but they still may differ in how
similar they are to the prototype. Prototype
models do not require “fuzzy” boundaries
around concepts (Hampton, 1993), but proto-
type similarities are based on commonalities
across many attributes and are consequently
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graded, and lead naturally to categories with
graded membership.

A considerable body of data has been
amassed that suggests that prototypes have
cognitively important functions. The simi-
larity of an item to its category prototype (in
terms of featural overlap) predicts the results
from several converging tasks. Somewhat
obviously, it is correlated with the average
rating the item receives when subjects are
asked to rate how good an example the item is
of its category (Rosch, 1975). It is correlated
with subjects’ speed in verifying statements
of the form, “An [item] is a [category name]”
(E. E. Smith, Shoben, & Rips, 1974). It is
correlated with the frequency and speed
of listing the item when asked to supply
members of a category (Mervis & Rosch,
1981). It is correlated with the probability
of inductively extending a property from the
item to other members of the category (Rips,
1975). Taken in total, these results indicate
that different members of the same category
differ in how typical they are of the category,
and that these differences have a strong
cognitive impact. Many natural categories
seem to be organized not around definitive
boundaries, but by graded typicality to the
category’s prototype.

The prototype model described above
generates category prototypes by finding
the most common attribute values shared
among category members. An alternative
conception views prototypes as the central
tendency of continuously varying attributes.
If the four observed members of a lizard
category had tail lengths of 3, 3, 3, and 7
inches, the former prototype model would
store a value of 3 (the modal value) as the
prototype’s tail length, whereas the central
tendency model would store a value of 4
(the average value). The central tendency
approach has proven useful in modeling
categories composed of artificial stimuli that
vary on continuous dimensions. For example,

Posner and Keele’s (1968) classic dot-pattern
stimuli consisted of nine dots positioned
randomly or in familiar configurations on
a 30 × 30 invisible grid. Each prototype
was a particular configuration of dots, but
during categorization training subjects never
saw the prototypes themselves. Instead, they
saw distortions of the prototypes obtained
by shifting each dot randomly by a small
amount. Categorization training involved
subjects seeing dot patterns, guessing their
category assignment, and receiving feedback
indicating whether their guesses were cor-
rect or not. During a transfer stage, Posner
and Keele found that subjects were better
able to categorize the never-before-seen
category prototypes than they were in cate-
gorizing new distortions of those prototypes.
In addition, subjects’ accuracy in categoriz-
ing distortions of category prototypes was
strongly correlated with the proximity of
those distortions to the never-before-seen
prototypes. The authors interpreted these
results as suggesting that prototypes are
extracted from distortions, and used as a
basis for determining categorizations.

Exemplars

Exemplar models deny that prototypes are
explicitly extracted from individual cases,
stored in memory, and used to categorize
new objects. Instead, in exemplar models,
a conceptual representation consists only
of the actual individual cases that one has
observed. The prototype representation for
the category bird consists of the most typical
bird, or an assemblage of the most common
attribute values across all birds, or the central
tendency of all attribute values for observed
birds. By contrast, an exemplar model repre-
sents the category bird by representing all of
the instances (exemplars) that belong to this
category (L. R. Brooks, 1978; Estes, 1994;
Hintzman, 1986; Kruschke, 1992; Lamberts,
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2000; Logan, 1988; Medin & Schaffer, 1978;
Nosofsky, 1984, 1986).

While the prime motivation for these
models has been to provide good fits to
results from human experiments, computer
scientists have pursued similar models with
the aim of exploiting the power of storing
individual exposures to stimuli in a rela-
tively raw, unabstracted form. The exemplar,
instance-based (Aha, 1992), view-based
(Tarr & Gauthier, 1998), case-based (Schank,
1982), nearest neighbor (Ripley, 1996),
configural cue (Gluck & Bower, 1990), and
vector quantization (Kohonen, 1995) models
all share the fundamental insight that novel
patterns can be identified, recognized, or
categorized by giving the novel patterns the
same response that was learned for similar,
previously presented patterns. By creating
representations for presented patterns, not
only is it possible to respond to repetitions
of these patterns, it is also possible to give
responses to novel patterns that are likely
to be correct by sampling responses to old
patterns, weighted by their similarity to the
novel pattern. Consistent with these models,
psychological evidence suggests that people
show good transfer to new stimuli in per-
ceptual tasks just to the extent that the new
stimuli superficially resemble previously
learned stimuli (Palmeri, 1997).

The frequent inability of human general-
ization to transcend superficial similarities
might be considered as evidence of either
human stupidity or laziness. To the contrary,
if a strong theory about what stimulus fea-
tures promote valid inductions is lacking, the
strategy of least commitment is to preserve
the entire stimulus in its full richness of detail
(L. R. Brooks, 1978). That is, by storing
entire instances and basing generalizations
on all of the features of these instances, one
can be confident that one’s generalizations are
not systematically biased. It has been shown
that in many situations, categorizing new

instances by their similarity to old instances
maximizes the likelihood of categorizing the
new instances correctly (Ashby & Maddox,
1993; McKinley & Nosofsky, 1995; Ripley,
1996). Furthermore, if information becomes
available at a later point that specifies what
properties are useful for generalizing appro-
priately, then preserving entire instances
will allow these properties to be recovered.
Such properties might be lost and unrecov-
erable if people were less “lazy” in their
generalizations from instances.

Given these considerations, it is under-
standable why people often use all of the
attributes of an object even when a task
demands the use of specific attributes.
Doctors’ diagnoses of skin disorders are
facilitated when they are similar to previously
presented cases, even when the similarity is
based on attributes that are known to be
irrelevant for the diagnosis (L. R. Brooks,
Norman, & Allen, 1991). Even when people
know a simple, clear-cut rule for a percep-
tual classification, performance is better on
frequently presented items than rare items
(Allen & Brooks, 1991). Consistent with
exemplar models, responses to stimuli are
frequently based on their overall similarity to
previously exposed stimuli.

The exemplar approach to categorization
raises a number of questions. First, once
one has decided that concepts are to be
represented in terms of sets of exemplars,
the obvious question remains: How are the
exemplars to be represented? Some exem-
plar models use a featural or attribute-value
representation for each of the exemplars
(Hintzman, 1986; Medin & Schaffer, 1978).
Another popular approach is to represent
exemplars as points in a multidimen-
sional psychological space. These points
are obtained by measuring the subjective
similarity of every object in a set to every
other object. Once an n × n matrix of simi-
larities among n objects has been determined
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by similarity ratings, perceptual confusions,
spontaneous sortings, or other methods,
a statistical technique called multidimen-
sional scaling (MDS) finds coordinates for
the objects in a d-dimensional space that
allow the n × n matrix of similarities to be
reconstructed with as little error as possible
(Nosofsky, 1992). Given that d is typically
smaller than n, a reduced representation is
created in which each object is represented
in terms of its values on d dimensions.
Distances between objects in these quan-
titatively derived spaces can be used as
the input to exemplar models to determine
item-to-exemplar similarities. These MDS
representations are useful for generating
quantitative exemplar models that can be
fit to human categorizations and similarity
judgments, but these still beg the question
of how a stand-alone computer program or
a person would generate these MDS repre-
sentations. Presumably there is some human
process that computes object representations
and can derive object-to-object similarities
from them, but this process is not currently
modeled by exemplar models (for steps in
this direction, see Edelman, 1999).

A second question for exemplar models
is, If exemplar models do not explicitly
extract prototypes, how can they account for
results that concepts are organized around
prototypes? A useful place to begin is by con-
sidering Posner and Keele’s (1968) result that
the never-before-seen prototype is catego-
rized better than new distortions based on the
prototype. Exemplar models have been able
to model this result because a categorization
of an object is based on its summed similarity
to all previously stored exemplars (Medin &
Schaffer, 1978; Nosofsky, 1986). The proto-
type of a category will, on average, be more
similar to the training distortions than are
new distortions, because the prototype was
used to generate all of the training distortions.
Without positing the explicit extraction of

the prototype, the cumulative effect of many
exemplars in an exemplar model can create
an emergent, epiphenomenal advantage for
the prototype.

Given the exemplar model’s account of
prototype categorization, one might ask
whether predictions from exemplar and pro-
totype models differ. In fact, they typically
do, in large part because categorizations in
exemplar models are not simply based on
summed similarity to category exemplars,
but to similarities weighted by the proximity
of an exemplar to the item to be categorized.
In particular, exemplar models have mech-
anisms to bias categorization decisions so
that they are more influenced by exemplars
that are similar to items to be categorized.
In Medin and Schaffer’s (1978) context
model, this is achieved by computing the
similarity between objects by multiplying
rather than adding the similarities in each
of their features. In Hintzman’s (1986)
MINERVA 2 model, this is achieved by
raising object-to-object similarities to a
power of 3 before summing them together.
In Nosofsky’s generalized context model
(1986), this is achieved by basing object-to-
object similarities on an exponential function
of the objects’ distance in an MDS space.
With these quantitative biases for close exem-
plars, the exemplar model does a better job of
predicting categorization accuracy for Posner
and Keele’s (1968) experiment than the
prototype model because it can also predict
that familiar distortions will be categorized
more accurately than novel distortions that
are equally far removed from the prototype
(Shin & Nosofsky, 1992).

A third question for exemplar models
is, In what way are concept representations
economical if every experienced exemplar
is stored? It is certainly implausible with
large real-world categories to suppose that
every instance ever experienced is stored
in a separate trace. However, more realistic
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exemplar models may either store only
part of the information associated with an
exemplar (Lassaline & Logan, 1993) or only
some exemplars (Aha, 1992; Palmeri &
Nosofsky, 1995). One particularly interesting
way of conserving space that has received
empirical support (Barsalou, Huttenlocher, &
Lamberts, 1998) is to combine separate
events that all constitute a single individ-
ual into a single representation. Rather
than passively register every event as dis-
tinct, people seem to naturally consolidate
events together that refer to the same indi-
vidual. If an observer fails to register the
difference between a new exemplar and a
previously encountered exemplar (e.g., two
similar-looking Chihuahuas), then he or she
may combine the two together, resulting in an
exemplar representation that is a blend of two
instances (Love, Medin, & Gureckis, 2004).

Category Boundaries

Another notion is that a concept repre-
sentation describes the boundary around a
category. The prototype model would repre-
sent the four categories of Figure 8.1 in terms
of the triangles. The exemplar model would
represent the categories by the circles. The
category boundary model would represent the
categories by the four dividing lines between
the categories. This view has been most
closely associated with the work of Ashby
and his colleagues (Ashby, 1992; Ashby
et al, 1998; Ashby & Gott, 1988; Ashby &
Maddox, 1993; Ashby & Townsend, 1986;
Maddox & Ashby, 1993). It is particularly
interesting to contrast the prototype and
category boundary approaches, because their
representational assumptions are almost per-
fectly complementary. The prototype model
represents a category in terms of its most
typical member—the object in the center
of the distribution of items included in the
category. The category boundary model

represents categories by their periphery, not
their center. One recurring empirical result
that provides some prima facie evidence for
representing categories in terms of bound-
aries is that oftentimes the most effectively
categorized object is not the prototype of
a category, but rather is a caricature of the
category (Davis & Love, 2010; Goldstone,
1996; Goldstone, Steyvers, & Rogosky,
2003; Heit & Nicholson, 2010). A caricature
is an item that is systematically distorted
away from the prototype for the category in
the direction opposite to the boundary that
divides the category from another category.

An interesting phenomenon to consider
with respect to whether centers or periph-
eries of concepts are representationally
privileged is categorical perception. Due
to this phenomenon, people are better able
to distinguish between physically different
stimuli when the stimuli come from different
categories than when they come from the
same category (see Harnad, 1987 for several
reviews of research). The effect has been best
documented for speech phoneme categories.
For example, Liberman, Harris, Hoffman,
and Griffith (1957) generated a continuum
of equally spaced consonant-vowel syllables,
going from /be/ to /de/. Observers listened
to three sounds—A followed by B followed
by X—and indicated whether X was identi-
cal to A or B. Subjects performed the task
more accurately when the syllables A and B
belonged to different phonemic categories
than when they were variants of the same
phoneme, even when physical differences
were equated.

Categorical perception effects have been
observed for visual categories (Calder,
Young, Perrett, Etcoff, & Rowland, 1996)
and for arbitrarily created laboratory cat-
egories (Goldstone, 1994a). Categorical
perception could emerge from either proto-
type or boundary representations. An item
to be categorized might be compared to
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the prototypes of two candidate categories.
Increased sensitivity at the category bound-
ary would be because people represent items
in terms of the prototype to which they are
closest. Items that fall on different sides of
the boundary would have very different rep-
resentations because they would be closest to
different prototypes (Liberman et al., 1957).
Alternatively, the boundary itself might be
represented as a reference point, and as pairs
of items move closer to the boundary it
becomes easier to discriminate between them
because of their proximity to this reference
point (Pastore, 1987).

Computational models have been devel-
oped that operate on both principles.
Following the prototype approach, Harnad,
Hanson, and Lubin (1995) describe a neural
network in which the representation of an
item is “pulled” toward the prototype of the
category to which it belongs. Following the
boundaries approach, Goldstone, Steyvers,
Spencer-Smith, and Kersten (2000) describe
a neural network that learns to strongly
represent critical boundaries between cat-
egories by shifting perceptual detectors to
these regions. Empirically, the results are
mixed. Consistent with prototypes being
represented, some researchers have found
particularly good discriminability close to a
familiar prototype (Acker, Pastore, & Hall,
1995; McFadden & Callaway, 1999). Consis-
tent with boundaries being represented, other
researchers have found that the sensitivity
peaks associated with categorical perception
heavily depend on the saliency of perceptual
cues at the boundary (Kuhl & Miller, 1975).
Rather than being arbitrarily fixed, category
boundaries are most likely to occur at a
location where a distinctive perceptual cue,
such as the difference between an aspirated
and unaspirated speech sound, is present.
A possible reconciliation is that information
about either the center or periphery of a cat-
egory can be represented, and that boundary

information is more likely to be represented
when two highly similar categories must be
frequently discriminated and there is a salient
reference point for the boundary.

Different versions of the category bound-
ary approach, illustrated in Figure 8.2, have
been based on different ways of partitioning
categories (Ashby & Maddox, 1998). With
independent decision boundaries, categories
boundaries must be perpendicular to a dimen-
sional axis, forming rules such as Category A
items are larger than 3 centimeters, irrespec-
tive of their color. This kind of boundary is
appropriate when the dimensions that make
up a stimulus are hard to integrate (Ashby &
Gott, 1988). With minimal distance bound-
aries, a Category A response is given if and
only if an object is closer to the Category
A prototype than the Category B prototype.
The decision boundary is formed by finding
the line that connects the two categories’ pro-
totypes and creating a boundary that bisects
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Figure 8.2 The notion that categories are repre-
sented by their boundaries can be constrained in
several ways. Boundaries can be constrained to be
perpendicular to a dimensional axis, to be equally
close to prototypes for neighboring categories,
to produce optimal categorization performance,
or may be loosely constrained to be a quadratic
function.
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and is orthogonal to this line. The optimal
boundary is the boundary that maximizes the
likelihood of correctly categorizing an object.
If the two categories have the same patterns
of variability on their dimensions, and people
use information about variance to form their
boundaries, then the optimal boundary will
be a straight line. If the categories differ in
their variability, then the optimal boundary
will be described by a quadratic equation
(Ashby & Maddox, 1993, 1998). A general
quadratic boundary is any boundary that can
be described by a quadratic equation.

One difficulty with representing a concept
by a boundary is that the location of the
boundary between two categories depends
on several contextual factors. For example,
Repp and Liberman (1987) argue that cat-
egories of speech sounds are influenced by
order effects, adaptation, and the surround-
ing speech context. The same sound that is
halfway between pa and ba will be catego-
rized as pa if preceded by several repetitions
of a prototypical ba sound, but categorized
as ba if preceded by several pa sounds.
For a category boundary representation to
accommodate this, two category boundaries
would need to be hypothesized—a relatively
permanent category boundary between ba
and pa, and a second boundary that shifts
depending upon the immediate context. The
relatively permanent boundary is needed
because the contextualized boundary must be
based on some earlier information. In many
cases, it is more parsimonious to hypothesize
representations for the category members
themselves and view category boundaries
as side effects of the competition between
neighboring categories. Context effects are
then explained simply by changes to the
strengths associated with different cate-
gories. By this account, there may be no
reified boundary around one’s cat concept
that causally affects categorizations. When
asked about a particular object, we can decide

whether it is a cat or not, but this is done by
comparing the evidence in favor of the object
being a cat to its being something else.

Theories

The representation approaches thus far con-
sidered all work irrespectively of the actual
meaning of the concepts. This is both an
advantage and a liability. It is an advantage
because it allows the approaches to be uni-
versally applicable to any kind of material.
They share with inductive statistical tech-
niques the property that they can operate on
any data set once the data set is formally
described in terms of numbers, features, or
coordinates. However, the generality of these
approaches is also a liability if the meaning
or semantic content of a concept influences
how it is represented. While few would argue
that statistical T-tests are only appropriate
for certain domains of inquiry (e.g., testing
political differences, but not disease differ-
ences), many researchers have argued that the
use of purely data-driven, inductive methods
for concept learning are strongly limited and
modulated by the background knowledge one
has about a concept (Carey, 1985; Gelman &
Markman, 1986; Keil, 1989; Medin, 1989;
Murphy & Medin, 1985).

People’s categorizations seem to depend
on the theories they have about the world
(for reviews, see Komatsu, 1992; Medin,
1989). Theories involve organized systems
of knowledge. In making an argument for
the use of theories in categorization, Murphy
and Medin (1985) provide the example of
a man jumping into a swimming pool fully
clothed. This man may be categorized as
drunk because we have a theory of behav-
ior and inebriation that explains the man’s
action. Murphy and Medin argue that the
categorization of the man’s behavior does
not depend on matching the man’s features
to the category drunk’s features. It is highly
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unlikely that the category drunk would have
such a specific feature as jumps into pools
fully clothed. It is not the similarity between
the instance and the category that determines
the instance’s classification; it is the fact that
our category provides a theory that explains
the behavior.

Other researchers have empirically sup-
ported the dissociation between theory-
derived categorization and similarity. In
one experiment, Carey (1985) observes that
children choose a toy monkey over a worm
as being more similar to a human, but that
when they are told that humans have spleens,
are more likely to infer that the worm has a
spleen than that the toy monkey does. Thus,
the categorization of objects into spleen and
no spleen groups does not appear to depend
on the same knowledge that guides similarity
judgments. Carey argues that even young
children have a theory of living things. Part
of this theory is the notion that living things
have self-propelled motion and rich internal
organizations. Children as young as 3 years of
age make inferences about an animal’s prop-
erties on the basis of its category label, even
when the label opposes superficial visual
similarity (Gelman & Markman, 1986).

Using different empirical techniques, Keil
(1989) has come to a similar conclusion.
In one experiment, children are told a story
in which scientists discover that an animal
that looks exactly like a raccoon actually
contains the internal organs of a skunk and
has skunk parents and skunk children. With
increasing age, children increasingly claim
that the animal is a skunk. That is, there is
a developmental trend for children to cate-
gorize on the basis of theories of heredity
and biology rather than visual appearance.
In a similar experiment, Rips (1989) shows
an explicit dissociation between categoriza-
tion judgments and similarity judgments in
adults. An animal that is transformed (by
toxic waste) from a bird into something that

looks like an insect is judged by subjects
to be more similar to an insect, but is also
judged to be a bird still. Again, the category
judgment seems to depend on biological,
genetic, and historical knowledge, while the
similarity judgments seems to depend more
on gross visual appearance.

Researchers have explored the importance
of background knowledge in shaping our
concepts by manipulating this knowledge
experimentally. Concepts are more easily
learned when a learner has appropriate back-
ground knowledge, indicating that more than
“brute” statistical regularities underlie our
concepts (Pazzani, 1991). Similarly, when
the features of a category can be connected
through prior knowledge, category learning
is facilitated (Murphy & Allopenna, 1994;
Spalding & Murphy, 1999). Even a single
instance of a category can allow people to
form a coherent category if background
knowledge constrains the interpretation of
this instance (Ahn, Brewer, & Mooney,
1992). Concepts are disproportionately rep-
resented in terms of concept features that are
tightly connected to other features (Sloman,
Love, & Ahn, 1998).

Forming categories on the basis of
data-driven, statistical evidence, and forming
them based upon knowledge-rich theories
of the world seem like strategies fundamen-
tally at odds with each other. Indeed, this is
probably the most basic difference between
theories of concepts in the field. However,
these approaches need not be mutually exclu-
sive. Even the most outspoken proponents
of theory-based concepts do not claim that
similarity-based or statistical approaches are
not also needed (Murphy & Medin, 1985).
Moreover, some researchers have suggested
integrating the two approaches. Theories
in the form of prior knowledge about a
domain are recruited in order to account for
empirically observed categorizations, and
one mechanism for this is the process of
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subjects trying to form explanations for the
observations (Williams & Lombrozo, 2013;
Williams, Lombrozo, & Rehder, 2013). Heit
(1994, 1997) describes a similarity-based,
exemplar model of categorization that incor-
porates background knowledge by storing
category members as they are observed (as
with all exemplar models), but also storing
never-seen instances that are consistent with
the background knowledge. Choi, McDaniel,
and Busemeyer (1993) described a neural
network model of concept learning that does
not begin with random or neutral connections
between features and concepts (as is typical),
but begins with theory-consistent connec-
tions that are relatively strong. Rehder and
Murphy (2003) propose a bidirectional neural
network model in which observations affect,
and are affected by, background knowledge.
Hierarchical Bayesian models allow theories,
incorporated as prior probabilities on specific
structural forms, to guide the construction
of knowledge, oftentimes forming knowl-
edge far more rapidly than predicted if each
observation needed to be separately learned
(Kemp & Tenenbaum, 2008, 2009; Lucas &
Griffiths, 2010). All of these computational
approaches allow domain-general category
learners to also have biases toward learn-
ing categories consistent with background
knowledge.

Summary to Representation
Approaches

One cynical conclusion to reach from the
preceding alternative approaches is that a
researcher starts with a theory, and tends to
find evidence consistent with the theory—a
result that is meta-analytically consistent
with a theory-based approach! Although this
state of affairs is typical throughout psychol-
ogy, it is particularly rife in concept-learning
research because researchers have a sig-
nificant amount of flexibility in choosing

what concepts they will use experimentally.
Evidence for rule-based categories tends to
be found with categories that are created
from simple rules (Bruner et al., 1956). Evi-
dence for prototypes tends to be found for
categories made up of members that are dis-
tortions around single prototypes (Posner &
Keele, 1968). Evidence for exemplar models
is particular strong when categories include
exceptional instances that must be individu-
ally memorized (Nosofsky & Palmeri, 1998;
Nosofsky, Palmeri, & McKinley, 1994).
Evidence for theories is found when cat-
egories are created that subjects already
know something about (Murphy & Kaplan,
2000). The researcher’s choice of represen-
tation seems to determine the experiment
that is conducted rather than the experiment
influencing the choice of representation.

There may be a grain of truth to this
cynical conclusion, but our conclusions are
instead that people use multiple representa-
tional strategies (Weiskopf, 2009) and can
flexibly deploy these strategies based upon
the categories to be learned. From this per-
spective, representational strategies should
be evaluated according to their trade-offs,
and for their fit to the real-world categories
and empirical results. For example, exemplar
representations are costly in terms of storage
demands, but are sensitive to interactions
between features and adaptable to new cat-
egorization demands. There is a growing
consensus that at least two kinds of repre-
sentational strategies are both present but
separated—rule-based and similarity-based
processes (Erickson & Kruschke, 1998;
Pinker, 1991; Sloman, 1996). There is even
recent evidence for reliable individual dif-
ferences in terms of these strategies, with
different groups of people naturally inclined
toward either rule-based or exemplar learn-
ing processes (McDaniel, Cahill, Robbins, &
Wiener, 2014). Other researchers have argued
for separate processes for storing exemplars
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and extracting prototypes (Knowlton &
Squire, 1993; J. D. Smith & Minda, 2000,
2002). Some researchers have argued for
a computational rapprochement between
exemplar and prototype models in which
prototypes are formed around statistically
supported clusters of exemplars (Love et al.,
2004). Even if one holds out hope for a uni-
fied model of concept learning, it is important
to recognize these different representational
strategies as special cases that must be
achievable by the unified model given the
appropriate inputs.

CONNECTING CONCEPTS

Although knowledge representation appro-
aches have often treated conceptual sys-
tems as independent networks that gain
their meaning by their internal connections
(Lenat & Feigenbaum, 1991), it is important
to remember that concepts are connected
to both perception and language. Concepts’
connections to perception serve to ground
them (Goldstone & Rogosky, 2002; Harnad,
1990), and their connections to language
allow them to transcend direct experience
and to be easily transmitted.

Connecting Concepts to Perception

Concept formation is often studied as though
it were a modular process (in the sense of
Fodor, 1983). For example, participants in
category learning experiments are often pre-
sented with verbal feature lists representing
the objects to be categorized. The use of
this method suggests an implicit assumption
that the perceptual analysis of an object
into features is complete before one starts
to categorize that object. Categorization
processes can then act upon the features that
result from this analysis, largely unconcerned
with the specific perceptual information that
led to the identification of those features.

This may be a useful simplifying assumption,
allowing a researcher to test theories of how
features are combined to form concepts.
There is mounting evidence, however, that
conceptual processes may act directly on
modality-specific perceptual information,
eliminating the need to first transduce that
information into amodal feature lists before
categorization can begin.

Evidence for a role of perceptual infor-
mation in conceptual processes comes
from research relating to Barsalou’s (1999,
2008) theory of perceptual symbol systems.
According to this theory, sensorimotor areas
of the brain that are activated during the ini-
tial perception of an event are reactivated at
a later time by association areas, serving as a
representation of one’s prior perceptual expe-
rience. Rather than preserving a verbatim
record of what was experienced, however,
association areas only reactivate certain
aspects of one’s perceptual experience,
namely those that received attention. Because
these reactivated aspects of experience may
be common to a number of different events,
they may be thought of as symbols, represent-
ing an entire class of events. Because they
are formed around perceptual experience,
however, they are perceptual symbols, unlike
the amodal symbols typically employed in
symbolic theories of cognition.

In support of this theory, neuroimaging
research has revealed that conceptual pro-
cessing leads to activation in sensorimotor
regions of the brain, even when that acti-
vated information is not strictly necessary to
perform the conceptual task. For example,
Simmons, Martin, and Barsalou (2005)
revealed in a functional magnetic resonance
imaging (fMRI) study that pictures of appe-
tizing foods led to activation in areas associ-
ated with the perception of taste, even though
the task simply involved visual matching
and thus taste was irrelevant. This suggests
that food concepts may be represented by
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activation in a variety of areas representing
the different sensory modalities associated
with those concepts. Furthermore, Simmons
et al. (2007) revealed that brain areas respon-
sive to color information in a visual task were
also activated by judgments of color prop-
erties associated with concepts, even though
the concepts and properties were presented
only in verbal form. Representing the various
properties associated with a concept appar-
ently recruits the same brain mechanisms
that are involved in directly perceiving those
properties, consistent with the theory of
perceptual symbol systems.

Although findings such as these demon-
strate that perceptual representations are
activated when a concept is instantiated, they
leave open the possibility that the concepts
themselves are represented in amodal for-
mat, and that the activation of perceptual
representations reflects visual imagery pro-
cesses subsequent to the identification of
a concept. This account remains possible
because the coarse temporal resolution of
fMRI makes unclear the exact sequence
of neural events leading to successful task
performance. To address this concern, Kiefer,
Sim, Herrnberger, Grothe, and Hoenig (2008)
examined the activation of perceptual rep-
resentations using not only fMRI but also
event-related potentials (ERPs), a brain-
imaging technique with much better tem-
poral resolution. Neuroimaging with fMRI
revealed that auditory areas were activated
in response to visual presentation of words
referring to objects with strongly associated
acoustic features (e.g., telephone). Moreover,
results with ERP suggested that these audi-
tory areas were activated within 150 ms
of stimulus presentation, quite similar to
durations previously established for access-
ing meanings for visually presented words
(e.g., Pulvermüller, Shtyrov, & Ilmoniemi,
2005). This combination of results suggests
that activation of perceptual representations

occurs early in the process of concept
access, rather than reflecting later visual
imagery processes.

Although neuroimaging studies with
fMRI and ERP reveal that activation of per-
ceptual areas is associated with conceptual
processing, these are correlational methods,
and thus it still remains possible that acti-
vation of perceptual areas does not play a
direct causal role in concept access and use.
For example, on the basis of these results
alone, it remains possible that presentation
of a word leads one to access an amodal
symbolic representation of the associated
concept, but that perceptual areas are also
activated via a separate pathway. These per-
ceptual representations would thus have no
causal role in accessing or representing the
concept. To establish causality, it is necessary
to manipulate activation of perceptual areas
and demonstrate an effect on concept access.
An example of such a manipulation was
carried out by Vermeulen, Corneille, and
Niedenthal (2008). They presented partici-
pants with a memory load presented either in
the visual or auditory modality. While main-
taining these items, participants were given
a property verification task in which either
a visual or an auditory property of a concept
had to be verified. Participants were slower
to verify visual properties while simultane-
ously maintaining a visual memory load,
whereas they were slower to verify auditory
properties while simultaneously maintaining
an auditory memory load. These results sug-
gest that concept access involves activating
various modalities of sensorimotor informa-
tion associated with the concept, and thus
that simultaneous processing of other unre-
lated perceptual information within the same
modality can interfere with concept access
(see also Witt, Kemmerer, Linkenauger, &
Culham, 2010).

The results described so far in this section
suggest that concepts are represented not in
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terms of amodal symbols transduced from
perceptual experience, but rather in terms of
perceptual information itself. The specific
patterns of perceptual information that one
has experienced when learning about a con-
cept may thus influence the representation of
that concept (e.g., see Kiefer, Sim, Liebich,
Hauk, & Tanaka, 2007), possibly even for
putatively abstract concepts that one may
not expect to be associated with percep-
tual information, such as truth and freedom
(Barsalou & Wiemer-Hastings, 2005). More-
over, if there is overlap in perceptual and
conceptual representations, then not only
may perceptual information affect concept
access and use, but one’s concepts may also
influence one’s perceptual sensitivities, with
concept activation leading to top-down influ-
ences on perceptual discrimination abilities
(Brooks & Freeman, Chapter 13 in Volume
4 of this Handbook; Lupyan, 2008b; but
see Firestone & Scholl, 2016 for skepticism
regarding top-down effects). The relationship
between perceptual and conceptual processes
may thus be bidirectional (Goldstone &
Barsalou, 1998), with the identification of
perceptual features influencing the catego-
rization of an object, and the categorization
of an object influencing the perception of
features (Bassok, 1996).

Classic evidence for an influence of con-
cepts on perception comes from research
on the previously described phenomenon
of categorical perception. Listeners are
much better at perceiving contrasts that are
representative of different phoneme cate-
gories (Liberman, Cooper, Shankweiler, &
Studdert-Kennedy, 1967). For example, lis-
teners can hear the difference in voice onset
time between bill and pill, even when this
difference is no greater than the difference
between two /b/ sounds that cannot be dis-
tinguished. One may argue that categorical
perception simply provides further evidence
of an influence of perception on concepts.

In particular, the phonemes of language
may have evolved to reflect the sensitivities
of the human perceptual system. Evidence
consistent with this viewpoint comes from
the fact that chinchillas are sensitive to many
of the same sound contrasts as are humans,
even though chinchillas obviously have no
language (Kuhl & Miller, 1975). There is
evidence, however, that the phonemes to
which a listener is sensitive can be modi-
fied by experience. In particular, although
newborn babies appear to be sensitive to all
of the sound contrasts present in all of the
world’s languages, a 1-year-old can only
hear those sound contrasts present in his
or her linguistic environment (Werker &
Tees, 1984). Thus, children growing up in
Japan lose the ability to distinguish between
the /l/ and /r/ phonemes, whereas children
growing up in the United States retain this
ability (Miyawaki, 1975). The categories of
language thus influence one’s perceptual sen-
sitivities, providing evidence for an influence
of concepts on perception.

Although categorical perception was
originally demonstrated in the context of
auditory perception, similar phenomena have
since been discovered in vision (Goldstone &
Hendrickson, 2010). For example, Goldstone
(1994a) trained participants to make a cate-
gory discrimination either in terms of the size
or brightness of an object. He then presented
those participants with a same/different task,
in which two briefly presented objects were
either the same or varied in terms of size or
brightness. Participants who had earlier cat-
egorized objects on the basis of a particular
dimension were found to be better at telling
objects apart in terms of that dimension than
were control participants who had been given
no prior categorization training. Moreover,
this sensitization of categorically relevant
dimensions was most evident at those values
of the dimension that straddled the boundary
between categories.



Trim Size: 7in x 10in Wixted-Vol3 c08.tex V1 - 09/30/2017 9:13 P.M. Page 297�

� �

�

Connecting Concepts 297

These findings thus provide evidence
that the concepts that one has learned influ-
ence one’s perceptual sensitivities, in the
visual as well as in the auditory modality
(see also Ozgen & Davies, 2002). Other
research has shown that prolonged experi-
ence with domains such as dogs (Tanaka &
Taylor, 1991), cars and birds (Gauthier,
Skudlarski, Gore, & Anderson, 2000), faces
(Levin & Beale, 2000; O’Toole, Peterson, &
Deffenbacher, 1995) or even novel “Greeble”
stimuli (Gauthier, Tarr, Anderson, Skud-
larski, & Gore, 1999) leads to a perceptual
system that is tuned to these domains. Gold-
stone et al. (2000; Goldstone, Landy, &
Son, 2010) and Lupyan (2015) review other
evidence for conceptual influences on visual
perception. Concept learning appears to be
effective both in combining stimulus proper-
ties together to create perceptual chunks that
are diagnostic for categorization (Goldstone,
2000), and in splitting apart and isolating per-
ceptual dimensions if they are differentially
diagnostic for categorization (Goldstone &
Steyvers, 2001; M. Jones & Goldstone,
2013). In fact, these two processes can be
unified by the notion of creating perceptual
units in a size that is useful for relevant
categorizations (Goldstone, 2003).

The evidence reviewed in this section sug-
gests that there is a strong interrelationship
between concepts and perception, with per-
ceptual information influencing the concepts
that one forms and conceptual information
influencing how one perceives the world.
Most theories of concept formation fail
to account for this interrelationship. They
instead take the perceptual attributes of a
stimulus as a given and try to account for
how these attributes are used to categorize
that stimulus.

One area of research that provides an
exception to this rule is research on object
recognition. As pointed out by Schyns
(1998), object recognition can be thought

of as an example of object categorization,
with the goal of the process being to identify
what kind of object one is observing. Unlike
theories of categorization, theories of object
recognition place strong emphasis on the
role of perceptual information in identifying
an object.

Interestingly, some of the theories that
have been proposed to account for object
recognition have characteristics in com-
mon with theories of categorization. For
example, structural description theories of
object recognition (e.g., Biederman, 1987;
Hummel & Biederman, 1992) are similar to
prototype theories of categorization in that
a newly encountered exemplar is compared
to a summary representation of a category in
order to determine whether or not the exem-
plar is a member of that category. In contrast,
multiple views theories of object recognition
(e.g., Edelman, 1998; Riesenhuber & Poggio,
1999; Tarr & Bülthoff, 1995) are similar to
exemplar-based theories of categorization in
that a newly encountered exemplar is com-
pared to a number of previously encountered
exemplars stored in memory. The categoriza-
tion of an exemplar is determined either by
the exemplar in memory that most closely
matches it or by computing the similarities
of the new exemplar to each of a number of
stored exemplars.

The similarities in the models proposed
to account for categorization and object
recognition suggest that there is consid-
erable opportunity for cross talk between
these two domains. For example, theories of
categorization could potentially be adapted
to provide a more complete account for
object recognition. In particular, they may be
able to provide an account of not only the
recognition of established object categories,
but also the learning of new ones, a problem
not typically addressed by theories of object
recognition. Furthermore, theories of object
recognition could be adapted to provide
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a better account of the role of perceptual
information in concept formation and use
(Palmeri, Wong, & Gauthier, 2004). The
rapid recent developments in object recog-
nition research, including the development
of detailed computational, neurally based
models (e.g., Jiang et al., 2006; Yamins &
DiCarlo, 2016), suggest that a careful consid-
eration of the role of perceptual information
in categorization can be a profitable research
strategy.

Connecting Concepts to Language

Concepts also take part in a bidirectional
relationship with language. In particular,
one’s repertoire of concepts may influence
the types of word meanings that one learns,
whereas the language that one speaks may
influence the types of concepts that one
forms.

The first of these two proposals is the
less controversial. It is widely believed that
children come into the process of vocabu-
lary learning with a large set of unlabeled
concepts. These early concepts may reflect
the correlational structure in the environment
of the young child, as suggested by Rosch
et al. (1976). For example, a child may form
a concept of dog around the correlated prop-
erties of four legs, tail, wagging, slobbering,
and so forth. The subsequent learning of a
word meaning should be relatively easy to
the extent that one can map that word onto
one of these existing concepts.

Different kinds of words may vary in
the extent to which they map directly onto
existing concepts, and thus some types of
words may be learned more easily than
others. For example, Gentner (1981, 1982;
Gentner & Boroditsky, 2001) has proposed
that nouns can be mapped straightforwardly
onto existing object concepts, and thus nouns
are learned relatively early by children.
The relation of verbs to prelinguistic event

categories, on the other hand, may be less
straightforward. The nature of prelinguistic
event categories is not very well understood,
but the available evidence suggests that
they are structured quite differently from
verb meanings. For example, research by
Kersten and Billman (1997) demonstrated
that when adults learned event categories in
the absence of category labels, they formed
those categories around a rich set of corre-
lated properties, including the characteristics
of the objects in the event, the motions of
those objects, and the outcome of the event.
Research by Casasola (2005, 2008) has simi-
larly demonstrated that 10- to 14-month-old
infants form unlabeled event categories
around correlations among different aspects
of an event, in this case involving particular
objects participating in particular spatial
relationships (e.g., containment, support)
with one another. These unlabeled event
categories learned by children and adults
differ markedly from verb meanings. Verb
meanings tend to have limited correlational
structure, instead picking out only one or
a small number of properties of an event
(Huttenlocher & Lui, 1979; Talmy, 1985).
For example, the verb collide involves two
objects moving into contact with one another,
irrespective of the objects involved or the
outcome of the collision.

It may thus be difficult to directly map
verbs onto existing event categories. Instead,
language-learning experience may be nec-
essary to determine which aspects of an
event are relevant and which aspects are
irrelevant to verb meanings. Perhaps as a
result, children learning a variety of different
languages have been found to learn verbs
later than nouns (Bornstein et al., 2004;
Gentner, 1982; Gentner & Boroditsky, 2001;
Golinkoff & Hirsh-Pasek, 2008; but see
Gopnik & Choi, 1995 and Tardif, 1996 for
possible exceptions). More generally, word
meanings should be easy to learn to the
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extent that they can be mapped onto existing
concepts.

There is greater controversy regarding the
extent to which language may influence one’s
concepts. Some influences of language on
concepts are fairly straightforward, however.
As one example, words in a language provide
convenient “handles” for referring to patterns
of correlated features that would otherwise
be overwhelmingly complex (Lupyan, 2012).
As a second example, whether a concept is
learned in the presence or absence of lan-
guage (e.g., a category label) may influence
the way in which that concept is learned.
When categories are learned in the pres-
ence of a category label in a supervised
classification task, a common finding is
one of competition among correlated cues
for predictive strength (Gluck & Bower,
1988; Shanks, 1991). In particular, more
salient cues may overshadow less salient
cues, causing the concept learner to fail to
notice the predictiveness of the less salient
cue (Gluck & Bower, 1988; Kruschke, 1992;
Shanks, 1991).

When categories are learned in the absence
of category labels in unsupervised or obser-
vational categorization tasks, on the other
hand, there is facilitation rather than competi-
tion among correlated predictors of category
membership (Billman, 1989; Billman &
Knutson, 1996, Kersten & Billman, 1997).
The learning of unlabeled categories can be
measured in terms of the learning of corre-
lations among attributes of a stimulus. For
example, one’s knowledge of the correlation
between a wagging tail and a slobbering
mouth can be used as a measure of one’s
knowledge of the category dog. Billman and
Knutson (1996) used this unsupervised cate-
gorization method to examine the learning of
unlabeled categories of novel animals. They
found that participants were more likely to
learn the predictiveness of an attribute when
other correlated predictors were also present.

Related findings come from Chin-Parker
and Ross (2002, 2004). They compared cate-
gory learning in the context of a classification
task, in which the goal of the participant
was to predict the category label associated
with an exemplar, to an inference-learning
task, in which the goal of the participant
was to predict a missing feature value. When
the members of a category shared multiple
feature values, one of which was diagnos-
tic of category membership and others of
which were nondiagnostic (i.e., they were
also shared with members of the contrasting
category), participants who were given a
classification task homed in on the feature
that was diagnostic of category membership,
failing to learn the other feature values that
were representative of the category but were
nondiagnostic (see also Yamauchi, Love, &
Markman, 2002). In contrast, participants
who were given an inference-learning task
were more likely to discover all of the feature
values that were associated with a given
category, even those that were nondiagnostic.

There is thus evidence that the presence
of language influences the way in which a
concept is learned. A more controversial sug-
gestion is that the language that one speaks
may influence the types of concepts that
one learns. This suggestion, termed the lin-
guistic relativity hypothesis, was first made
by Whorf (1956), on the basis of apparent
dramatic differences between English and
Native American languages in their expres-
sions of ideas such as time, motion, and color.
For example, Whorf proposed that the Hopi
make no distinction between the past and
present because the Hopi language provides
no mechanism for talking about this distinc-
tion. Many of Whorf’s linguistic analyses
have since been debunked (see Pinker, 1994,
for a review), but his theory remains a source
of controversy.

Early experimental evidence suggested
that concepts were relatively impervious
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to linguistic influences. In particular,
Heider’s (1972) classic finding that speakers
of Dani, a language with only two color
words, learned new color concepts in a
similar fashion to English speakers sug-
gested that concepts were determined by
perception rather than by language. More
recently, however, Roberson and colleagues
(Roberson, Davidoff, Davies, & Shapiro,
2005; Roberson, Davies, & Davidoff, 2000)
attempted to replicate Heider’s findings with
other groups of people with limited color
vocabularies, namely speakers of Berinmo
in New Guinea and speakers of Himba in
Namibia. In contrast to Heider’s findings,
Roberson et al. (2000) found that the Berinmo
speakers did no better at learning a new color
category for a color that was easy to name
in English than for a hard to name color.
Moreover, speakers of Berinmo and Himba
did no better at learning a category discrimi-
nation between green and blue (a distinction
not made in either language) than they did
at learning a discrimination between two
shades of green. This result contrasted with
the results of English-speaking participants
who did better at the green/blue discrim-
ination. It also contrasted with superior
performance in Berinmo and Himba speakers
on discriminations that were present in their
respective languages. These results suggest
that the English division of the color spec-
trum may be more a function of the English
language and less a function of human color
physiology than was originally believed.

Regardless of one’s interpretation of the
Heider (1972) and Roberson et al. (2000,
2005) results, there are straightforward rea-
sons to expect at least some influence of
language on one’s concepts. Research dating
back to Homa and Cultice (1984) has demon-
strated that people are better at learning
concepts when category labels are provided
as feedback. Verbally labeling a visual target
exaggerates the degree to which conceptual

categories penetrate visual processing
(Lupyan, 2008b). Thus, at the very least, one
may expect that a concept will be more likely
to be learned when it is labeled in a language
than when it is unlabeled. Although this
may seem obvious, further predictions are
possible when this finding is combined with
the evidence for influences of concepts on
perception reviewed earlier. In particular, on
the basis of the results of Goldstone (1994a),
one may predict that when a language makes
reference to a particular dimension, thus
causing people to form concepts around
that dimension, people’s perceptual sensi-
tivities to that dimension will be increased.
Kersten, Goldstone, and Schaffert (1998)
provided evidence for this phenomenon and
referred to it as attentional persistence. This
attentional persistence, in turn, would make
people who learn this language more likely
to notice further contrasts along this dimen-
sion. Thus, language may influence people’s
concepts indirectly through one’s perceptual
sensitivities.

This proposal is consistent with L. B.
Smith and Samuelson’s (2006) account of
the apparent shape bias in children’s word
learning. They proposed that children learn-
ing languages such as English discover over
the course of early language acquisition that
the shapes of objects are important in distin-
guishing different nouns. As a result, they
attend more strongly to shape in subsequent
word learning, resulting in an acceleration in
subsequent shape word learning. Consistent
with this proposal, children learning English
come to attend to shape more strongly and
in a wider variety of circumstances than do
speakers of Japanese, a language in which
shape is marked less prominently and other
cues, such as material and animacy, are more
prominent (Imai & Gentner, 1997; Yoshida &
Smith, 2003).

Although languages differ to some extent
in the ways they refer to object categories,
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languages differ perhaps even more dra-
matically in their treatment of less concrete
domains, such as time (Boroditsky, 2001),
number (Frank, Everett, Fedorenko, &
Gibson, E., 2008), space (Levinson, Kita,
Haun, & Rasch, 2002), motion (Gentner &
Boroditsky, 2001; Kersten, 1998a, 1998b,
2003), and blame (Fausey & Boroditsky,
2010, 2011). For example, when describ-
ing motion events, languages differ in the
particular aspects of motion that are most
prominently labeled by verbs. In English, the
most frequently used class of verbs refers
to the manner of motion of an object (e.g.,
running, skipping, sauntering), or the way
in which an object moves around (Talmy,
1985). In other languages (e.g., Spanish),
however, the most frequently used class of
verbs refers to the path of an object (e.g.,
entering, exiting), or its direction with respect
to some external reference point. In these lan-
guages, manner of motion is relegated to an
adverbial, if it is mentioned at all. If language
influences one’s perceptual sensitivities, it is
possible that English speakers and Spanish
speakers may differ in the extent to which
they are sensitive to motion attributes such as
the path and manner of motion of an object.

Initial tests of English and Spanish speak-
ers’ sensitivities to manner and path of motion
(e.g., Gennari, Sloman, Malt, & Fitch, 2002;
Papafragou, Massey, & Gleitman, 2002)
only revealed differences between the two
groups when they were asked to describe
events in language. These results thus pro-
vide evidence only of an influence of one’s
prior language-learning history on one’s
subsequent language use, rather than an
influence of language on one’s nonlinguistic
concept use. More recently, however, Kersten
et al. (2010) revealed effects of one’s lan-
guage background on one’s performance in a
supervised classification task in which either
manner of motion or path served as the diag-
nostic attribute. In particular, monolingual

English speakers, monolingual Spanish
speakers, and Spanish/English bilinguals
performed quite similarly when the path of
an alien creature was diagnostic of category
membership. Differences emerged when a
novel manner of motion of a creature (i.e., the
way it moved its legs in relation to its body)
was diagnostic, however, with monolingual
English speakers performing better than
monolingual Spanish speakers. Moreover,
Spanish/English bilinguals performed differ-
ently depending upon the linguistic context
in which they were tested, performing like
monolingual English speakers when tested
in an English language context but per-
forming like monolingual Spanish speakers
when tested in a Spanish language context
(see also Lai, Rodriguez, & Narasimhan,
2014). Importantly, the same pattern of
results was obtained regardless of whether
the concepts to be learned were given novel
linguistic labels or were simply numbered,
suggesting an influence of native language
on nonlinguistic concept formation.

Thus, although the notion that language
influences concept use remains controver-
sial, there is a growing body of evidence
that speakers of different languages perform
differently in a variety of different catego-
rization tasks. Proponents of the universalist
viewpoint (e.g., Li, Dunham, & Carey, 2009;
Pinker, 1994) have argued that such findings
simply represent attempts by research partic-
ipants to comply with experimental demands,
falling back on overt or covert language use
to help them solve the problem of “What
does the experimenter want me to do here?”
According to these accounts, speakers of
different languages all think essentially the
same way when they leave the laboratory.
Unfortunately, we do not have very good
methods for measuring how people think
outside of the laboratory, so it is difficult
to test these accounts. Rather than arguing
about whether a given effect of language
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observed in the laboratory is sufficiently
large and sufficiently general to count as a
Whorfian effect, perhaps a more constructive
approach may be to document the various
conditions under which language does and
does not influence concept use. This strategy
may lead to a better understanding of the
bidirectional relationship between concepts
and language, and the three-way relationship
among concepts, language, and perception
(Winawer et al., 2007).

HOW TO IMPROVE CATEGORY
LEARNING?

A diverse set of research has shown that there
are many factors that influence the effective-
ness of category learning. A central question
in this research is how to best configure a
category-learning context to promote the
acquisition of the relevant concept and the
ability to apply that knowledge to new exem-
plars or situations where that knowledge is
useful. As an example, students and teachers
in every school, university, and training
center struggle to make learning efficient and
generalizable. Proposals for how to optimize
category learning range from selecting the
appropriate type of examples to be studied
(Gibson, Rogers, & Zhu, 2013), choosing the
right type of task, and shifting how a student
should approach the task.

An important way to promote learning
and transfer of concepts is by establishing
comparisons between similar items and
making use of analogical reasoning while
learning. When learners study two or more
instances of the same concept side by side,
transfer to more remote instances (e.g.,
Gick & Holyoak, 1983; Meagher, Carvalho,
Goldstone, & Nosofsky, 2017; Omata &
Holyoak, 2012; Quilici & Mayer, 2002) or
acquisition of a new category (e.g., Gentner &
Namy, 1999) is more likely than when only

one instance is studied at a time. Moreover, if
the instances being studied (even if individu-
ally) include a high level of variation along
the irrelevant dimensions, learners are gen-
erally more likely to transfer their learning
to novel situations (e.g., Ben-Zeev & Star,
2001; Chang, Koedinger, & Lovett, 2003;
Braithwaite & Goldstone, 2015; H. S. Lee,
Betts, & Anderson, 2015). One explanation
for this benefit is that studying a superficially
diverse set of items allows the learner to
notice and extrapolate the common prop-
erties, central to the concept being learned
(Belenky & Schalk, 2014; Day & Goldstone,
2012; Gentner, 1983; Gick & Holyoak,
1983). However, item variability has also
been shown to have no effect on learning
effectiveness (e.g., Reed, 1989). Braithwaite
and Goldstone (2015) have presented empir-
ical evidence and computational modeling
showing that learners with a lower initial
knowledge level benefit from less variation
among study items, while learners with high
levels of prior knowledge benefit from work-
ing through examples with more variability
(see also Novick, 1988).

Similarly, Elio and Anderson (1984)
proposed that learning should start with
low-variability items (e.g., items that do not
differ much from one another or from the cen-
tral tendency of the category), and items with
greater variability should be introduced later
(for similar evidence with young learners
see Sandhofer & Doumas, 2008). However,
not all learners benefit from this approach.
The authors also show that if the learners’
approach to the task is to consciously gen-
erate hypotheses for category membership,
the pattern of results is reversed (Elio &
Anderson, 1984). One possibility is that
how the learner approaches the task changes
what type of information gets encoded and,
consequently, what information is most rel-
evant (Elio & Anderson, 1984). It has also
been suggested that for optimal transfer of
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category learning, the study situation should
emphasize items that promote a coherent
generalization based on the properties that
frequently occur (Elio & Anderson, 1981).
Moreover, in situations where one needs to
learn several items that promote different
types of generalizations, the best learning
is achieved by studying items that promote
similar generalizations close in time (Elio &
Anderson, 1981; Mathy & Feldman, 2009).

From the brief survey just provided a
question surfaces: Should learning start with
difficult items and progress toward easier
ones or the other way around? In general,
research seems to indicate that learning ben-
efits from study with examples organized in
increasing order of complexity or difficulty,
that is, from the easiest and simplest to
the hardest and more complex (Ahissar &
Hochstein, 1997; Baddeley, 1992; Hull, 1920;
Terrace, 1964; Wilson, Baddeley, Evans, &
Shiel, 1994). However, this might be the
case only for categories requiring integration
across different dimensions (Spiering &
Ashby, 2008), but the reverse may hold for
categories organized around a clear rule.
Consistent with this latter provision, E. S.
Lee, MacGregor, Bavelas, and Mirlin (1988)
showed that learners who start by studying
examples that other learners classified incor-
rectly made fewer errors during classification
tests than learners who studied the examples
in the opposite order.

When it is not possible to change type of
examples, their difficulty, or the task, cate-
gory learning can nonetheless be improved
by a careful sequential organization of the
examples (Carvalho & Goldstone, 2015).
It has been shown before that alternat-
ing presentation of items from different
hard-to-discriminate categories improves
category learning and transfer (Birnbaum,
Kornell, Bjork, & Bjork, 2013; Carvalho &
Goldstone, 2014; Rohrer, Dedrick, &
Stershic, 2015). On the other hand, when

the goal is to acquire an independent charac-
terization of each concept, presenting several
examples of the same category in close suc-
cession improves transfer to a greater degree
than frequent alternation (Carpenter &
Mueller, 2013; Carvalho & Goldstone, 2014,
2015; Zulkiply & Burt, 2013). Moreover,
because greater delays between presenta-
tions make it harder to retrieve previous
encounters, spaced presentation of items
of a single category can promote learning
and constitute a desirable difficulty (Bjork,
1994). Consistent with this idea, Birnbaum
et al. (2013) showed that while introducing a
temporal delay between successive presenta-
tions of different categories hindered learning
and transfer, increasing the temporal delay
between successive presentations of items
of the same category improved it (see also
Kang & Pashler, 2012). Similarly, research
with young children has shown that category
generalization benefits from play periods
between successive presentations of items
of the same category (Vlach, Sandhofer, &
Kornell, 2008), and from study with increas-
ingly greater temporal delays between
successive repetitions of the same category
(Vlach, Sandhofer, & Bjork, 2014).

Finally, an increasingly important issue is
whether category learning can be improved
by just leaving it in the hands of those who
might care the most about it—the learn-
ers themselves. Is self-regulated learning
better than being given the best study for-
mat and organization as determined by an
informed teacher? On the one hand, it has
been shown that learners are often unaware
of how to improve concept learning and
fall victim to a series of biases (Bjork,
Dunlosky, & Kornell, 2013). On the other
hand, self-regulated study is often relatively
effective. For example, learners deciding
how to sample information outperform
those who receive a random sampling of
examples or who are yoked to the selections
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of another learner in a categorization
task (e.g., Markant & Gureckis, 2014) or a
recognition memory task (Markant, DuBrow,
Davachi, & Gureckis, 2014). The mechanism
behind this advantage is still an open ques-
tion. It might be the result of efficient sam-
pling of information given the data available,
the process of sampling itself, the greater
effort afforded by actively learning, or deci-
sional processes (Gureckis & Markant, 2012).

Understanding how concept learning can
be optimized will contribute to designing
better instructional techniques and sys-
tems (Koedinger, Booth, & Klahr, 2013).
Furthermore, it will also contribute to
our foundational understanding of the
mechanisms underlying concept learning
(Carvalho & Goldstone, 2015). Methods
for constructing optimal sets of training
items given a known learning algorithm and
well-defined educational goal have proven
informative for understanding both human
and machine learning, their commonalities,
and their differences (Zhu, 2015).

CONCLUSION

The field of concept learning and represen-
tation is noteworthy for its large number of
directions and perspectives. While the lack of
closure may frustrate some outside observers,
it is also a source of strength and resilience.
With an eye toward the future, we describe
some of the most important avenues for future
progress in the field.

First, as the last section suggests, we
believe that much of the progress of research
on concepts will be to connect concepts to
other concepts (Goldstone, 1996; Landauer &
Dumais, 1997), to the perceptual world, and
to language. One of the risks of viewing
concepts as represented by rules, prototypes,
sets of exemplars, or category boundaries is
that one can easily imagine that one concept

is independent of others. For example, one
can list the exemplars that are included in
the concept bird, or describe its central ten-
dency, without making recourse to any other
concepts. However, it is likely that all of our
concepts are embedded in a network where
each concept’s meaning depends on other
concepts, as well as perceptual processes and
linguistic labels. The proper level of analysis
may not be individual concepts as many
researchers have assumed, but systems of
concepts. The connections between concepts
and perception on the one hand and between
concepts and language on the other hand
reveal an important dual nature of concepts.
Concepts are used both to recognize objects
and to ground word meanings. Working
out the details of this dual nature will go a
long way toward understanding how human
thinking can be both concrete and symbolic.

A second direction is the development of
more sophisticated formal models of concept
learning. One important recent trend in math-
ematical models has been the extension of
rational models of categorization (Anderson,
1991) to Bayesian models that assume that
categories are constructed to maximize the
likelihood of making legitimate inferences
(Goodman et al., 2008; Griffiths & Tenen-
baum, 2009; Kemp & Tenenbaum, 2009).
In contrast to this approach, other researchers
are continuing to pursue neural network
models that offer process-based accounts of
concept learning on short and long timescales
(M. Jones, Love, & Maddox, 2006; Rogers &
McClelland, 2008), and still others chas-
tise Bayesian accounts for inadequately
describing how humans learn categories in
an incremental and memory-limited fashion
(M. Jones & Love, 2011). Progress in neural
networks, mathematical models, statistical
models, and rational analyses can be gauged
by several measures: goodness of fit to human
data, breadth of empirical phenomena accom-
modated, model constraint and parsimony,
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and autonomy from human intervention. The
current crop of models is fairly impressive in
terms of fitting specific data sets, but there
is much room for improvement in terms
of their ability to accommodate rich sets
of concepts, and process real-world stimuli
without relying on human judgments or hand
coding (Goldstone & Landy, 2010).

A third direction for research is to
tackle more real-world concepts rather
than laboratory-created categories, which
are often motivated by considerations of
controlled construction, ease of analysis, and
fit to model assumptions. Some researchers
have, instead, tried to tackle particular con-
cepts in their subtlety and complexity, such
as the concepts of food (Ross & Murphy,
1999), water (Malt, 1994), and political party
(Heit & Nicholson, 2010). Others have made
the more general point that how a concept
is learned and represented will depend on
how it is used to achieve a benefit while
interacting with the world (Markman &
Ross, 2003; Ross, Wang, Kramer, Simons, &
Crowell, 2007). Still others have worked
to develop computational techniques that
can account for concept formation when
provided with large-scale, real-world data
sets, such as library catalogs or corpuses of
one million words taken from encyclopedias
(Glushko, Maglio, Matlock, & Barsalou,
2008; Griffiths, Steyvers, & Tenenbaum,
2007; Landauer & Dumais, 1997). All of
these efforts share a goal of applying our the-
oretical knowledge of concepts to understand
how specific conceptual domains of interest
are learned and organized, and in the process
of so doing, challenging and extending our
theoretical knowledge.

A final important direction will be to
apply psychological research on concepts.
Perhaps the most important and relevant
application is in the area of educational
reform. Psychologists have amassed a large
amount of empirical research on various

factors that impact the ease of learning and
transferring conceptual knowledge. The liter-
ature contains excellent suggestions on how
to manipulate category labels, presentation
order, learning strategies, stimulus format,
and category variability in order to optimize
the efficiency and likelihood of concept
attainment. Putting these suggestions to use
in classrooms, computer-based tutorials, and
multimedia instructional systems could have
a substantial positive impact on pedagogy.
This research can also be used to develop
autonomous computer diagnosis systems,
user models, information visualization sys-
tems, and databases that are organized in a
manner consistent with human conceptual
systems. Given the importance of concepts
for intelligent thought, it is not unreasonable
to suppose that concept-learning research
will be equally important for improving
thought processes.
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