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Abstract

We explore different ways in which the human visual system can adapt for perceiving and cate-
gorizing the environment. There are various accounts of supervised (categorical) and unsupervised
perceptual learning, and different perspectives on the functional relationship between perception and
categorization. We suggest that common experimental designs are insufficient to differentiate between
hypothesized perceptual learning mechanisms and reveal their possible interplay. We propose a
relatively underutilized way of studying potential categorical effects on perception, and we test the pre-
dictions of different perceptual learning models using a two-dimensional, interleaved categorization-
plus-reconstruction task. We find evidence that the human visual system adapts its encodings to the
feature structure of the environment, uses categorical expectations for robust reconstruction, allocates
encoding resources with respect to categorization utility, and adapts to prevent miscategorizations.

Keywords: Perceptual learning; Categorization; Perceptual reconstruction; Top-down effects on per-
ception

1. Introduction

Human perception is highly adaptable to the structure of the environment and individ-
ual cognitive demands. To serve an individual’s information needs, perceptual systems have
to both efficiently encode environmental inputs using limited resources and provide robust
and refined information about cognitively useful features under different conditions (lighting,
occluding, and different angles) in constantly changing environments.

The stimuli for all experiments, the data, and the scripts used to create the experiments, generate the plots, and
run all the analyses are available on OSF: https://osf.io/2xr54/
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Adaptive perceptual changes can be divided into unsupervised (task-irrelevant) and super-
vised (task-relevant). Unsupervised perceptual learning refers to adaptation to the structure
of sensory experiences alone. These effects include, but are not limited to, sensitization and
habituation, assimilation to or contrast from the statistical norms of a set of stimuli, and adap-
tive allocation of encoding resources on the basis of stimuli statistics. Supervised perceptual
learning, in turn, refers to adaptation that occurs on the basis of particular behavioral tasks
with feedback. Many supervised perceptual learning effects have been reported and repli-
cated, but most of them remain controversial (see Firestone & Scholl, 2016, for a critical
review). Supervised effects include selective attention and tuning of perceptual encodings to
task-relevant stimuli or dimensions, and assimilation to or contrast from the norms of the
stimulus categories relevant for the particular task.

A broad range of evidence suggests that our perceptual systems adaptively respond to the
demands of categorization and change on the basis of categories we learn. One phenomenon,
acquired categorical perception, refers to situations when, after acquiring a categorical dis-
tinction, items belonging to the same category tend to be encoded as being more similar to
each other than before the category learning (compression), and/or items from different cat-
egories appear more different (expansion) (Goldstone & Hendrickson, 2010). For example,
we are experts at discriminating our native language phonemes, yet we face difficulties trying
to understand the differences between other languages’ sounds that are not reflected in the
phonemic structure of our native language (Kuhl, 1991; Kuhl, 1994; Liberman, Harris, Hoff-
man, & Griffith, 1957). It is difficult for Japanese speakers to distinguish between “r” and “l,”
which is a trivial task for native speakers of English, where these sounds constitute differ-
ent phonemic categories (Iverson et al., 2003). Similar effects are observed in human vision.
Hues of the same color category (“yellow”) are discriminated more slowly and less accurately
than hues that receive different language-specific color labels (“yellow” vs. “orange”) even
when both pairs are equidistant in a psychologically scaled color space (Roberson, David-
off, Davies, & Shapiro, 2005; Roberson, Davies, & Davidoff, 2000; Winawer et al., 2007).
Categorical perception effects have also been reported for multidimensional stimuli, such as
face identities (Beale & Keil, 1995) and facial expressions (Etcoff & Magee, 1992; Roberson,
Damjanovic, & Pilling, 2007). Results of experiments with participants acquiring new artifi-
cial categories indicate that within-category items are identified as more similar than between-
category items on the categorization-relevant dimensions (e.g., Goldstone, 1994; Goldstone,
1995; Levin & Beale, 2000; Livingston, Andrews, & Harnad, 1998).

Other studies suggest that the structure of the categories to be learned influences the fidelity
of the perceptual encoding of different features in multidimensional stimuli. In particular,
dimensions or feature ranges relevant for the categorical discrimination are encoded more
accurately than the ones that are irrelevant to the categorization task (Bates, Lerch, Sims, &
Jacobs, 2019; de Beeck, Wagemans, & Vogels, 2003; Folstein, Palmeri, & Gauthier, 2013;
Goldstone & Steyvers, 2001; Gureckis & Goldstone, 2008; Hockema, Blair, & Goldstone,
2005; Livingston et al., 1998; Notman, Sowden, & Özgen, 2005). The effects of learned
categorical perception have been shown to be robust across different measurement methods,
such as similarity ratings, same-different judgments, and XAB tasks (de Leeuw, Andrews,
Livingston, & Chin, 2016).
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The empirical evidence for the existence of categorical perception effects has also been
criticized as suffering from methodological pitfalls (Firestone & Scholl, 2016). Most of the
criticisms question the ability of studies to differentiate between “pure perceptual” effects
from the ones related to the mechanisms of memory or decision making. Therefore, the per-
ceptual nature of the reviewed effects (and even the name of the subfield: categorical percep-
tion) remains controversial. In this study, we aimed to elucidate whether category learning
affects perception by using an experimental paradigm which, in our view, is less prone to the
alternative interpretations of the results.

In this paper, we suggest that the commonly used perceptual discrimination (such as
Goldstone, 1994) and similarity judgment (e.g., Livingston et al., 1998) tasks are not
sufficient to reveal the nature of different perceptual learning effects that could manifest
themselves in a single experimental situation. They are data-inefficient and provide poor
one-dimensional measurements of the dynamic, multidimensional processes of perceptual
learning. Considering the variety of potential perceptual learning mechanisms that could
affect the results of a single study, we suggest using more data-efficient and rich experimental
paradigms that could differentiate between these mechanisms and reveal their possible
interplay.

We propose a relatively underutilized way of studying potential categorical perception
effects using interleaved categorization and reconstruction tasks. We articulate various super-
vised and unsupervised perceptual learning mechanisms and test the predictions they make
for performance in our reconstruction task. We find that some effects of categorical perception
manifest themselves in a stimulus reconstruction task even when a probed stimulus is present
on a screen at the time when a perceptual judgment bearing on it is made. Our results sug-
gest that multiple, distinguishable categorical perception effects reflect changes in perceptual
reconstructions.

2. Interleaved categorization-reconstruction task

During the experiment, participants perform both categorization and stimulus reconstruc-
tion tasks (Fig. 1), where stimulus reconstruction trials follow categorization trials with a
constant rate (20% in our case). On categorization trials, participants see a stimulus on the
screen, guess which category it belongs to, and then receive immediate feedback on
the accuracy of their response. The reconstruction task requires participants to reproduce
the “probed” stimulus as accurately as possible by adjusting a second “matching” stimu-
lus which is presented on the screen at the same time (see https://www.indiana.edu/∼pcl/
robsexperiments/tests&examples/fishCatReproducevisible.html for a demonstration of the
experiment). This can be done by using a mouse to move a cursor on the screen where x and
y axes correspond to different dimensions of the image to be reconstructed. As participants
move the cursor, they see instantaneous changes in the reconstructed image and can submit
their response whenever they think that the reconstructed image exactly matches the probed
stimulus currently present in another part of the screen.

https://www.indiana.edu/~pcl/robsexperiments/tests&examples/fishCatReproducevisible.html
https://www.indiana.edu/~pcl/robsexperiments/tests&examples/fishCatReproducevisible.html
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Fig. 1. Interleaved categorization-reconstruction task.

Previous research has employed a reconstruction task for studying categorization and
its effects on perception. For example, Busemeyer and Myung (1988) proposed a simi-
lar paradigm to study how a learner’s category prototype changes over training. Goldstone
(1995), Huttenlocher, Hedges, and Vevea (2000), and Duffy, Huttenlocher, Hedges, and Craw-
ford (2010) used one-dimensional reconstruction tasks where the matching stimulus was pre-
sented before or at the same time as its reconstruction was performed, to study categorical
effects on perception. In contrast to this previous work, in the current study, we use this
experimental paradigm to investigate how categorization affects perception of multidimen-
sional naturalistic objects, as opposed to studying the encoding of single dimensions such as
size, hue, or brightness.

We suggest that the reconstruction task used in our study weakens the alternative inter-
pretations of potential effects as resulting from judgment and memory-based processes that
are irrelevant to everyday perception. In particular, this experimental paradigm minimizes the
scale-dependent judgment effects by using the reconstruction response scale that corresponds
to the physical scale of the stimuli. Moreover, the immediate reconstruction task eliminates
the long-term memory interpretations of the results. Thus, we suggest that any processes
that affect stimulus reconstruction in this multidimensional perceptual reconstruction task are
likely to play a role in everyday operation of the human visual system.

We propose that the multidimensional perceptual reconstruction task can provide rich
data on unsupervised and supervised (categorical) perceptual learning with far fewer trials
than perceptual match or discrimination tasks. The reconstruction trials are beneficial for
investigating the potential trajectories of perceptual change on the reconstruction space and
over the training, which can shed light on how categorization influences visual perception
of multidimensional objects and their features, such as overall shape or texture. These data
are valuable for studying the dynamics of perceptual changes and the interplay of different
learning mechanisms underlying them.
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2.1. Potential effects of perceptual learning

Different unsupervised and supervised learning effects may manifest themselves in an
interleaved categorization-reconstruction study. Unsupervised effects result from experienc-
ing a particular clustering of stimuli (in our case, fish images) over the time of the exper-
iment. Supervised effects correspond to potential changes in perceptual encoding resulting
from learning to categorize stimuli with feedback. In our review, we try to focus on computa-
tional level models (Marr, 1982) and note that there are many insightful algorithms incorpo-
rating task-relevant and task-irrelevant perceptual learning that deserve a separate paper. By
comparing computational rather than algorithmic models, we also do not make any additional
assumptions on particular mechanisms (e.g., attention) that induce the characterized adaptive
changes in perception.

2.1.1. Unsupervised effects
In this subsection, we briefly review potential unsupervised effects of perceptual learning

that might affect the reconstruction of stimuli in our task (Fig. 2). Unsupervised influences of
stimuli on encoding do not involve any feedback about their correct categorization. Instead,
these influences come from statistical properties inherent to the distribution of stimuli them-
selves.

2.1.1.1. Perceptual differentiation. The ecological perception perspective (Gibson, 1969;
Gibson & Gibson, 1955) suggests that perceptual learning corresponds to the improvement
of an individual’s ability to extract features from the environment. It has been suggested that
individuals’ perceptual experiences refine over time as a result of active perceptual tuning.
Perceptual differentiation effects have been claimed to be responsible for differences in expert
and novice perceptual recognition and estimation. For example, professional musicians are
better than novices in recognizing pitches and sounds of different instruments, while habitual
birdwatchers are better than other people in looking for, detecting, and differentiating bird
species. In the context of our study, perceptual differentiation effects would correspond to
the refinement of stimulus reconstructions with training. If differentiation occurs, the average
deviation of an observer’s reconstruction of a stimulus from its actual value should decrease
with experience for all stimuli dimensions (Fig. 2a).

2.1.1.2. Bayesian perception. Bayesian accounts claim that perception is a rational act of
reconstructing (inferring) the source perceptual features. It works by integrating received sen-
sory data (noisy and ambiguous) and prior beliefs on the probabilities of different features’
occurrences (Geisler, 2003; Knill, Kersten, & Yuille, 1996). From a Bayesian perspective
on unsupervised perceptual learning, each received sensory stimulation updates the expecta-
tions (prior beliefs) on the probability of its occurrence. The prior expectations on perceptual
experiences might be hierarchical, with different distributions for the perceptual features of
different complexity: from pixel-wise brightness to shapes, textures, and patterns manifest
on larger spatial scales, and conditional on other information present. After receiving new
sensory data, a Bayesian observer integrates the prior expectations of how likely different
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Fig. 2. Potential unsupervised perceptual learning effects. Left: before learning; right: after learning. Black circles
correspond to the probed stimulus locations in the morph space. (a) Blue circles represent the variance of the
perceptual reconstruction. (b) Yellow arrows represent systematic distortions (biases) in perceptual reconstruction.
Note: This is a simplistic illustration of the expected qualitative effects. The exact values and ratios are arbitrary.

percepts are with the actual data. As a result, the perception of a particular feature or a com-
bination of features is shifted toward the prior probability distribution (Kersten, Mamassian,
& Yuille, 2004; Körding, 2007). Bayesian perception effects rely on the formalization of the
priors, whereas in most cases, and for our fish images in particular, the perceptual priors
are unknown. For the purpose of this paper, we start with the weak assumption of a uniform
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Fig. 3. Potential supervised perceptual learning effects. Left: before learning, right: after learning. Black circles
correspond to the probed stimuli locations in the psychological representation space (a) or the morph space (b, c).
The red vertical line represents a horizontal categorical boundary. (b) and (c) Yellow arrows represent the distortion
(bias) in the perceptual reconstructions. (c) Blue circles represent the variance of the perceptual reconstruction.
Note: This is a simplistic illustration of the expected qualitative effects. The exact values and ratios are arbitrary.

distribution prior for the stimuli’s feature ranges used in our experiment. Then, due to the uni-
form distribution of the dimension values’ occurrences in our stimuli, unsupervised learning
of a Bayesian observer will result in a global assimilation effect (Fig. 2b). The reconstructed
stimuli would shift toward the overall mean values on both dimensions, with central stimuli
being shifted less than stimuli on the periphery of the dimensional space. The rate distortion
model (Sims, 2016; discussed in detail in the next section) makes a similar prediction of the
global assimilation effect in a case of unsupervised learning.

2.1.2. Supervised effects
In this subsection, we review potential effects of categorization on perception, drawing

from previously proposed explanatory accounts and computational models (Fig. 3).

2.1.2.1. Perceptual warping (expansion or compression). The simplest high-level expla-
nation for categorical perception effects suggests that the perceptual representation space
undergoes transformations as a result of categorization training. In particular, two types of
warping have been proposed: compression leading to items from the same category moving
closer together, and expansion that leads to items from different categories moving farther
away from each other in a perceptual representation space (Livingston et al., 1998; for a sim-
ilar proposal for auditory perception, see Kuhl, 1994) (Fig. 3a). Simulations of simple neural
network models have been used to support this perspective (Goldstone, 2003; Harnad, Han-
son, & Lubin, 1991; Harnad, Hanson, & Lubin, 1995). For example, Harnad et al. (1991)
trained a shallow neural network with backpropagation to discriminate and then categorize
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stimuli. Their simulations suggest that the network achieves good performance in the second
task by altering distances of internal representations for different category members (“warp-
ing”). In our experiment, perceptual warping would be expected to lead to the tendency of the
reconstructions not to cross the categorical boundary (boundary aversion effect). Compres-
sion might also be thought to occur along the dimension that is irrelevant for categorization.
However, such compression effects might be the result of greater selective attention to the
category-relevant relative to category-irrelevant dimension. Accordingly, for supervised per-
ceptual warping, we restrict ourselves to the comparison of categorization-relevant dimension
differences that either do or do not cross category boundaries, reserving discussion of differ-
ential learning effects on category-relevant versus category-irrelevant dimension to later (in
the rate distortion section).

2.1.2.2. Bayesian perception. From a Bayesian perspective, category learning represents
gradual belief accumulation on the perceptual features conditioned on the category. Cate-
gories are represented as probability densities in the one- or multidimensional feature space,
and these representations are updated after seeing each new category example. Perception of
new instances of a category is formalized as Bayesian inference of perceptual features inte-
grating prior beliefs (a probabilistic representation of the category in the feature space) and
the received sensory data. Bayesian observer models, such as the Category Adjustment Model
(Huttenlocher et al., 2000), predict that the perception of new exemplars shifts toward the cat-
egory prototype with the closer items being shifted less than the farther ones for our within-
category stimuli distributions (see also the adaptations of this model for auditory domain and
Sapir–Whorf effects in color perception: Cibelli, Xu, Austerweil, Griffiths, & Regier, 2016;
Feldman, Griffiths, & Morgan, 2009). In our experiment, the supervised Bayesian perception
effects would lead to the assimilation of reconstructions toward the categorical means on both
dimensions (Fig. 3b).

2.1.2.3. Rate distortion model. Information theory adds one more component to the
Bayesian observer story––the optimal encoding of the sensory signals in a limited capac-
ity perceptual channel. There are infinitely many gradations of the physical sensory signals,
while our perceptual systems can represent only a limited number of them. The rate distortion
model formalizes an optimal way to allocate limited perceptual coding resources that mini-
mizes the cost of perceptual error, where the latter reflects how deleterious it is to misrepresent
a particular sensory stimulation (Bates & Jacobs, 2020; Sims, 2016; Sims, 2018). The super-
vised categorization task adds a cost of perceptual misrepresentation to the categorization-
relevant dimensions or stimulus ranges. Hence, the rate distortion account claims that more
encoding resources will be allocated to the categorization-relevant stimulations. For percep-
tion of multidimensional stimuli, it predicts the perceptual “tuning“ for categorically diag-
nostic dimensions, resulting in more accurate encoding along them (Bates & Jacobs, 2020)
(Fig. 3c; Bates et al., 2019). The prediction of greater precision of encodings for category-
relevant than category-irrelevant dimensions is also made by selective attention accounts in
which learning is suggested to increase the salience of dimensions that are relevant, compared
to irrelevant, for a category discrimination task (Lawrence, 1949).
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Depending on the details of the cost function, the rate distortion model could also suggest
that the items close to the category boundary are represented more accurately as the cost of
their misperception is higher. The optimal encoding model with a Bayesian decoder natu-
rally predicts perceptual assimilation toward the category prototype, with higher assimilation
for the categorization-irrelevant dimensions which are represented less accurately (Fig. 3c).
Strength of the assimilation effect toward the category prototype depends on the amount of
encoding resources available and relative costs of different tasks perceptual systems deal with
(e.g., categorization and reconstruction) (Bates & Jacobs, 2019; Bates & Jacobs, 2020).

The aforementioned Bayesian perception models and the rate distortion model both for-
malize categorical perception effects as resulting from rational computations. However, they
conceptually differ in their assumptions regarding the goal of these adaptations. The Bayesian
models view categorical effects as shaping perception to make it more robust to noise, ambi-
guity, and changing conditions. The rate distortion model additionally claims that these effects
reflect the adaptiveness of perception to better serve categorization needs. The latter view is
compatible with ecological approaches to perception that claim that we learn to extract infor-
mation useful for the tasks we deal with (Gibson, 1979) and a Bayesian ideal observer frame-
work incorporating utility functions related to the tasks (not necessarily perceptual) (Geisler,
2003; Geisler & Diehl, 2003).

The processes described by the Bayesian and rate distortion models of categorical percep-
tion can be motivated by predictive coding, the idea that human cognition aims to minimize its
surprise about its environment (Clark, 2013; Friston & Kiebel, 2009), viewing perception as a
constructive inferential process affected by those expectations (Barlow, 1990). Such a system
uses any resource that helps it to predict the upcoming information, including perceptual fea-
tures of an object or its categorical label (Lupyan, 2015; Lupyan & Clark, 2015; Lupyan et al.,
2020). Optimizing one’s prediction naturally leads to biases in these perceptual predictions,
well described by the aforementioned computational models, depending on the assumed task
structure and resource limitations. By an alternative account, the supervised (e.g., category-
dependent) distortions are motivated by reinforcement learning, which often requires concise,
robust, and task-motivated representations (Gershman & Niv, 2010; Niv et al., 2015).

3. Method

3.1. Participants

Sixty-three undergraduate students from Indiana University participated in the experiment
to fulfill course requirements. Participants were pseudo-randomly assigned to the horizontal
and vertical categorization rule conditions when they started the experiment on a computer.

3.2. Stimuli

Two hundred and twenty-five morph images of fish were created in Abrosoft FantaMorph
to constitute the stimuli for the experiment. We started with four actual fish images to create
two different axes in the feature space (Fig. 4a). The horizontal dimension was conceptual-
ized as morphing from an image of Pagrus auratus (a species of the fish commonly known
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Fig. 4. Morph stimuli used in our experiment. (a) Four source fish images used to form x and y axes, and the morph
image in the middle. (b) Morph stimuli for the categorization trials with the horizontal categorical boundary being
shown.

as snapper) to Lutjanus johnii (another species of snapper). The vertical dimension morphed
between Pomadasys kaakan (a species of javelin fish) to Pomadasys maculatus (javelin).
Every fish in a 15×15 matrix of fish was constructed by integrating the images corresponding
to its horizontal and vertical dimensions. Thus, the upper left-hand fish of the 15×15 matrix
consisted of a morph halfway between Pagrus auratus and Pomadasys kaakan. The lower-left
fish was halfway between Pagrus auratus and Pomadasys maculatus. The upper-right fish was
halfway between Lutjanus johnii and Pomadasys kaakan. The lower-right fish was halfway
between Lutjanus johnii and Pomadasys maculatus. The rest of the matrix of fish was
populated by creating equally spaced, linearly interpolated images in both shape and texture
components. For example, the fish located at the coordinate {10,5} was two-thirds of the
way from Pagrus auratus to Lutjanus johnii on the horizontal dimension, and one-third
of the way from Pomadasys kaakan to Pomadasys maculatus on the vertical dimension.
Shape morphs were created by first regularizing the four source fish images so that they had
roughly equal outer shape outlines. Eighty-eight aligned control points were identified for
each of the four images based on relatively clear image landmarks, such as the leftmost point
on the eye, the tip of the dorsal fin, and tip of the lower lip. None of the stimuli used in the
experiment correspond to the source images.

All 225 stimuli could be shown during the reconstruction phase of the experiment, but only
a subset of the fish were used during categorization. In particular, categorizations involved the
4×4 subset of the 225 fish located at positions 2, 5, 8, and 11 out of the 15 possible values
along each of the two dimensions (Fig. 4b). Fish images were assigned to different categories
(A and B) relative to their location in the two-dimensional morph space. For the horizontal
categorization rule condition, the stimuli were evenly distributed to the categories on the basis
of their location on the x-axis. For the vertical categorization rule condition, categorical labels
were assigned on the basis of stimuli locations on the y-axis. Thus, values of 2 and 5 were
assigned Category “P” and values 8 and 11 were assigned Category “Q” for roughly half of
the participants, and vice versa for the other half.
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3.3. Task and procedure

Every trial consisted of a categorization trial with the image randomly selected from the
4×4 matrix of categorization fish. On random 20% of categorization trials, a reconstruction
trial immediately followed categorization, and on the remaining trials, one categorization trial
immediately followed another.

During categorization trials, participants saw a fish morph image and guessed its category
(P or Q). They received immediate feedback after their response in the form of either “Incor-
rect. This fish is [P/Q]” or “Correct. This fish is [P/Q].”

Reconstruction trials required participants to match the fish image on a left side repro-
duction window to the probed exemplar which was present on the right side of the screen.
The category label (“P” or “Q”) appeared next to the probed fish image on the screen, and
below the fish there was a reminder message: “This is the fish you just categorized.” Partic-
ipants adjusted the reconstructed fish image by moving the mouse within the reconstruction
window. The initial mouse positions were determined by the last position on the previous
trial, and the image on the reproduction window corresponded to its location in the 15×15
2D morph space. The image on the reconstruction window gradually changed as participants
moved the mouse so that from the participants’ perspective, the reconstructed image looked
like it was dynamically morphing as participants moved their mouse.

We recorded the categorization judgments (for categorization trials) and the coordinates of
the reproduced images on the 2D morph plane (for reconstruction trials).

4. Results

4.1. Analysis

Data were excluded prior to the analysis on the following bases:

1. Participants who did not finish the study (one participant).
2. Participants who accidentally participated in both experimental conditions and it was

impossible to determine which one was taken first (one participant).
3. Participants whose overall categorization performance was worse than or equal to

chance (50% correct) (three participants).
4. Participants whose average reproduction error (Euclidean distance from the probe)

exceeded three standard deviations from average of all the participants (one partici-
pant).

5. Individual reconstruction trials that correspond to moving the mouse one of four cor-
ners (i.e., with coordinates 0,0) (364 reconstruction trials which constitute 8% of the
reconstruction data).

6. Individual reconstruction trials that are more likely to have been generated by
random guesses. We first simulated random reconstruction data by sampling recon-
struction coordinates from a uniform distribution and then computing their Euclidean
distances from coordinates of a randomly chosen probe stimulus for every trial. We
then compared the empirical distribution of reconstruction distances with a random
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Fig. 5. The average reconstructions for different categorization rule conditions. Left: horizontal categorization
rule; right: vertical categorization rule. The circles correspond to the probed example’s positions on the 2D morph
space. Triangles correspond to the average of per-participant mean reproduction coordinates. Notice that the recon-
structed images tended to migrate to the global average values on both dimensions.

distribution and eliminated reconstruction trials with distances that have higher prob-
ability under the random guess distribution (see Appendix A) (1,077 trials which con-
stitute 27% of the remaining reconstruction data after step 5). This criterion reflected
the best way that we found to eliminate all the data potentially resulting from inatten-
tive reconstruction by filtering out all the reconstruction trials that are more likely to
have been generated by randomly guessing a coordinate on the reconstruction space
than by reproducing the actual position with noise. We also report results of alternative
analysis with milder criterion, where reconstruction trials with distances higher than
two standard deviations from mean were eliminated (95 trials which constitute 2%
of the remaining reconstruction data after step 5) (see Appendices A, B, and C). The
dominant and the alternative criteria were determined prior to the analyses.

Two-way ANOVA and mixed linear regression analyses were performed to test the experi-
mental hypotheses on the data from the reconstruction trials.

4.2. Visualization and exploratory analysis

We observed a strong overall assimilation effect toward the average values on both dimen-
sions (Figs. 5 and 6).

The categorization performance of most of the participants was high (Fig. 7) and stayed rel-
atively stable during the course of learning, suggesting that the task was quite easy. Moreover,
participants in the horizontal categorization group were generally more accurate in recon-
structing horizontal than vertical dimension (Fig. 7).
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Fig. 6. Accumulated density plot of the reconstructed stimuli distances from probed stimuli for different cate-
gorization rule conditions. Sixteen probed stimuli are divided into four groups (A, B, C, and D) on the basis
of their relative position with respect to the categorical boundaries (see bottom right corner). The data for these
groups were combined: reconstruction deviations were projected to correspond to the same direction of movement
relative to categorical boundaries (see bottom right corner). Notice that the horizontal categorization rule partic-
ipants demonstrated greater variability in the vertical dimension reconstruction than the vertical categorization
rule participants, and vice versa for the horizontal dimension. Moreover, the vertical categorization rule partici-
pants’ reconstructions are less likely to be close to the vertical categorical boundary than the reconstructions of
the horizontal categorization rule participants, and vice versa for the horizontal categorical boundary.

4.3. Perceptual differentiation

According to unsupervised differentiation theory, simple repeated exposure to the stimuli
should improve their reconstruction accuracy. To test this, we computed Euclidean distances
of the reconstructed images from the respective probed images on the morph space. Then, we
applied a mixed linear model with the formula: distance ∼ trial_number + (1|subject). The
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Fig. 7. The mean deviations of stimuli reconstructions and average categorization accuracies per participant for
different categorization rule conditions. Left: horizontal categorization rule; right: vertical categorization rule.

effect of the trial number was insignificant [t = –0.54, p = .59, est = –0.00]. For the test on
reconstruction variance, we divided all the trials into four successive blocks and computed
standard deviations of reconstructions for trial blocks per each participant. Then, we applied
mixed linear model with the formula: reconstruction_std ∼ block + (1|subject). The effect of
trial block was insignificant [t = –0.99, p = .32, est = –0.02]. These results replicated in the
alternative analysis (Appendix B).

4.4. Reconstruction refinement on categorically relevant dimensions

Models of perceptual encoding/attention resources allocation predict the refinement of
the reconstructions on categorically relevant dimensions. For this analysis, we computed
the absolute distances between the x and y coordinates of the source images and the x and
y coordinates of the reconstructed images, respectively. There was a significant interaction
between the effects of categorization rule (horizontal or vertical) and the axis of computed
deviation from the actual stimuli (horizontal or vertical) [two-way ANOVA: F = 15.46,
p<.001, ges = 0.1]: Participants learning the horizontal categorization rule were more
accurate in reconstructing the horizontal dimension than the vertical categorization rule par-
ticipants, whereas participants assigned to the vertical categorization rule were more accurate
in reconstructing the vertical dimension than the horizontal categorization rule participants.
The vertical dimension (y-axis) was significantly harder to reconstruct in general [F = 5.85,
p<.05, ges = 0.04]. The effect of categorization rule on the reconstruction deviations was
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Fig. 8. Left: Reconstruction refinement on category-relevant dimensions. Middle: Reconstruction bias with respect
to the categorical boundary (boundary aversion effect). Right: Assimilation toward category prototype.

insignificant [F = 0.02, p = .88, ges = 0.0002] (Fig. 8a). All the results replicated in the
alternative analysis (Appendix B).

4.5. Boundary aversion

Perceptual warping predicts that perceptual reconstructions are less likely to move toward
the categorical boundary and cross it, rather than move in the opposite direction. We computed
the signed distances between the categorical boundary and the reconstructed images’ coordi-
nates. The signs of the deviations from boundary were reversed for the data points on one
side of it so as to correspond to the same relative directions of movement (positive deviation
= toward the boundary, negative = away from the boundary). All the groups demonstrated
strong reconstruction bias toward the boundary, consistent with global assimilation. The hor-
izontal categorization rule participants demonstrated smaller reconstruction bias toward the
horizontal boundary than the vertical categorization rule participants, and vice versa for the
vertical categorization rule participants (Fig. 8). This effect, however, was insignificant in our
main analysis [F = 2.58, p = .11, ges = 0.01]. The effects of reconstruction dimension [F =
1.42, p = .24, ges = 0.006] and categorization rule were also insignificant [F = 0.22, p =
.64, ges = 0.003] (Fig. 8b). In the alternative analysis, the effects of reconstruction dimension
and interaction of reconstruction dimension and categorization rule were significant: Partic-
ipants in both groups generally demonstrated higher global assimilation bias in the vertical
dimension, and the assimilation bias for each dimension was smaller when it was diagnostic
for categorization (Appendix B).

4.6. Perceptual compression (assimilation) to the prototype

Assimilation of reconstructions toward the category prototype is a prediction of the
Bayesian models of categorical perception. We looked at the absolute deviations of stim-
uli reconstructions from the categorical means in both dimensions. The distances from both
vertical and horizontal categorical means were computed for each participant (with no regard
to their actual categorization rules) to compare two categorization groups. We performed a
two-way ANOVA to test the effects of categorization rule (horizontal or vertical), and the pro-
totype dimension (horizontal or vertical) on the absolute reconstruction distances. All three
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effects were insignificant in our main analysis [reconstruction dimension: F = 0.0004, p =
.98, ges = 0.00; categorization rule: F = 0.05, p = .82, ges = 0.0004; categorization rule and
prototype dimension interaction: F = 3.39, p = .07, ges = 0.03] (Fig. 8c). In the alternative
analysis, the effects of reconstruction dimension and interaction of reconstruction dimension
and categorization rule were significant: Participants in both groups demonstrated stronger
assimilation to the prototype in horizontal dimension. More importantly, the horizontal cate-
gorization rule participants demonstrated stronger assimilation to the prototype in horizontal
dimension than the vertical categorization rule participants, and vice versa for the vertical
categorization rule group (Appendix B).

5. Discussion

Our study demonstrates that a variety of potential perceptual learning mechanisms could
play a role in a single experiment measuring reconstruction error and systematic bias.
However, the categorical perception literature and models often neglect other unsupervised
and supervised effects that can affect the results and their interpretation. We suggest that
perceptual learning mechanisms cannot be studied in isolation and argue for a systems
approach to understanding perceptual learning.

In this paper, we propose an experimental method that can provide rich data on how
different perceptual learning mechanisms work and interact. We reviewed computational
unsupervised and supervised (categorical) perceptual learning models and articulated their
predictions for our task. We tested these effects using an interleaved categorization-
reconstruction experimental design with immediate reconstruction trials.

First, we observed a strong unsupervised assimilation effect. Specifically, participants con-
sistently biased their reconstruction responses toward the global average values on both
dimensions. This effect is compatible with many Bayesian perception and rate distortion mod-
els that formalize perception as an optimal stimulus reconstruction process. It is not clear,
however, if the global assimilation bias found in our experiment is perceptual: Our experi-
mental design does not completely eliminate potential decision making or mouse movement
strategies that could lead to this effect.

The interpretation of some of the supervised effects that we found evidence for is weak-
ened by the potential nonperceptual explanations as well. In particular, our experimental
design is susceptible to the El Greco methodological fallacy (Firestone & Scholl, 2014;
Firestone & Scholl, 2016), named after a case from art history. In the original story, art
experts suggested that the elongated human figures in paintings by El Greco resulted from his
astigmatic “stretched” perception of the environment. However, the logic of this argument is
inconsistent. The astigmatism should have also stretched the perception of the canvas itself,
leading to these perceptual effects cancelling each other out, so the painted bodies would
look normal. The same logic applied to categorical perception studies challenges experiments
in which the examples of the same category are compared or matched to reveal the potential
categorical effects (e.g., Goldstone, 1995). Given the hypothesized perceptual nature of these
effects, the items from the same category should be distorted in the same way, so the effects
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should cancel each other out and lead to the undistorted matchings in such experimental
designs. In the reconstruction trials of our experiment, the probed and the accurately matched
stimuli belong to the same category. Therefore, the categorical biases should affect the
perception of both of them in the same direction. In such a case, Firestone and Scholl argued
that the experiment is unable to distinguish between situations with and without perceptual
changes and the reported distortions cannot be explained in terms of perceptual processes. We
address this criticism in the discussion of particular categorical effects that we found evidence
for.

The overall reconstruction bias and the variance did not decrease over learning blocks as
suggested by the perceptual differentiation theory. However, participants became more accu-
rate in reconstructing the category-relevant dimension. This suggests that the allocation of
perceptual encoding or attention resources is affected by the task structure, with categoriza-
tion being an example of such a task. To our knowledge, this is the first time the selective
refinement of category-relevant dimensions on an immediate (rather than delayed) recon-
struction has been demonstrated. Moreover, this effect excludes potential “El Greco-effect”
explanations––this encoding effect is not related to biases in perceptual representations but
rather only relates to how refined these representations are.

Participants’ reconstructions were less biased toward the global mean on the category-
relevant dimension (boundary aversion effect). Perceptual warping, Bayesian, and rate distor-
tion models of categorical perception are consistent with this result. We also found evidence
for assimilation toward the category prototypes (along the categorization-diagnostic dimen-
sions) as suggested by the Bayesian perception and rate distortion models. These two effects,
however, were supported by one of our two alternative analyses. We explain it by lower sta-
tistical power of the dominant analysis, caused by exclusion of more data; in fact, patterns
in the data determined by two alternative exclusion criteria were very similar (see Fig. 8 and
Appendix B). Moreover, we cannot eliminate the alternative “El Greco” explanation of these
two effects which remains to be addressed in future studies. However, given that the alterna-
tive, nonperceptual, interpretations are minimized in the immediate perceptual reconstruction
task, we suggest that a potential nonperceptual interpretation for these effects is clarified.

We did not have sufficient data to reveal the trajectories of perceptual change during cat-
egory learning. Most of the participants achieved good performance during the first 25% of
their categorization trials and maintained it until the end of the experiment. We explain the
high categorization accuracy by the relative simplicity of the categorization rules, despite their
perceptual subtlety, and the interpretability of stimuli dimensions.

The supervised effects found in our experiment suggest that perception is not an indepen-
dent encoding and preprocessing of sensory data––it serves particular higher-level cognitive
demands such as categorization, and it is adapted with respect to them. First, visual perception
allocates its limited encoding resources with respect to categorization utility. Second, it biases
the stimuli representations away from the category boundary, preventing miscategorization of
the stimulus as a result. This supervised, categorization-influenced effect operates additively
with the strong unsupervised assimilation toward the global average stimulus. As a result, the
reproduced stimuli are not overall distorted away from category boundaries, but are just less
distorted toward them. Finally, categorical labels support robust perceptual reconstruction by
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providing additional information on what perceptual stimulations are more likely, leading to
the reconstruction bias toward categorical prototypes.

6. Conclusion

Visual perception is highly adaptive both to the structure of the environment and to higher-
level cognitive demands. In particular, vision adapts its attentional or encoding resources
with respect to their categorization utility, making the representations of category-relevant
dimensions more accurate. It adaptively uses categorical information to improve reconstruc-
tion under uncertainty and with limited representational resources, biasing perceptual rep-
resentations toward category prototypes. Moreover, the human visual system also biases its
perceptual encodings away from the category boundary to prevent miscategorizations, par-
tially compensating for the countervailing unsupervised assimilation to the global mean of
the entire set of stimuli. We suggest that perceptual learning mechanisms can be effectively
studied as a system, using experimental tasks that provide rich data on absolute and direc-
tional perceptual changes.
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APPENDIX A: Exclusion criteria
Here, we show where both exclusion criteria belong with respect to empirical distribution
of reconstruction deviations and simulated distribution of random guesses (Fig. A1). Note
that exclusion criterion which eliminates reconstruction trials that are more than two standard
deviations away from the average is much milder than the exclusion criterion eliminating all
the trials that are more likely to have been generated by randomly guessing a coordinate on
the reconstruction space than by reproducing the actual position with noise.

Fig. A1. Exclusion criteria based on the comparison with distribution of random guesses (red) and two standard
deviations from the mean reconstruction (black). Histograms of the empirical (blue) and simulated (orange) recon-
struction data.
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APPENDIX B: Results of alternative analysis
Here, we report detailed results of the alternative analysis performed after the milder exclu-
sion criterion (Fig. B1) was applied to the data.

1.1. Perceptual differentiation

We applied a mixed linear model with the formula: distance ∼ trial_number + (1|subject).
The effect of the trial number was insignificant [t = 0.33, p = .74, est = 0.0001]. For the test
on reconstruction variance, we divided all the trials into four successive blocks and computed
standard deviations of reconstructions for trial blocks per each participant. Then, we applied
mixed linear model with formula: reconstruction_std ∼ block + (1|subject). The effect of
trial block was insignificant [t = 0.02, p = .99, est = 0.0004].

1.2. Reconstruction refinement on categorically relevant dimensions

We found a significant interaction between the effects of categorization rule (horizontal or
vertical) and the dimension of computed deviation from the actual stimuli (horizontal or ver-
tical) [F = 6.22, p<.05, ges = 0.03]: Participants learning the horizontal categorization rule
were more accurate in reconstructing the horizontal dimension than the vertical categorization
rule participants, whereas participants assigned to the vertical categorization rule were more
accurate in reconstructing the vertical dimension than the horizontal categorization rule par-
ticipants. Vertical dimension (y-axis) was significantly harder to reconstruct in general [F =
26.9, p<.001, ges = 0.11]. The effect of categorization rule on the reconstruction deviations
was insignificant [F = 0.002, p = .97, ges = 0.00].

1.3. Boundary aversion

Horizontal categorization rule group demonstrated significantly smaller reconstruction bias
toward the horizontal boundary than the vertical categorization rule group, and vice versa
for the vertical categorization rule group [F = 5.69, p<.05, ges = 0.03]. Participants in
both groups demonstrated significantly higher global assimilation effect in vertical than the

Fig. B1. Hypotheses testing performed on the data with alternative exclusion criteria. Left: reconstruction refine-
ment on category-relevant dimensions. Middle: reconstruction bias with respect to the categorical boundary
(boundary aversion effect). Right: assimilation toward category prototype.
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horizontal dimension [F = 16.4, p<.001, ges = 0.08]. The effect of categorization rule was
insignificant [F = 0.77, p = .38, ges = 0.01].

1.4. Perceptual compression (assimilation) to the prototype

Participants demonstrated higher assimilation to the prototype in a dimension when it was
diagnostic for categorization [F = 4.1, p<.05, ges = 0.02]. Participants in both groups showed
significantly higher assimilation to the prototype in horizontal than vertical dimension [F =
8.56, p<.01, ges = 0.05]. The effect of categorization rule was insignificant [F = 0.02, p =
.89, ges = 0.0003].

APPENDIX C: Original analysis
We performed one data analysis prior to the manuscript submission. For the original analysis,
we excluded all the reconstruction trials with Manhattan distance higher than 6 and used
Manhattan distance when it was applicable. Other procedures are identical in the original and
new analyses. Due to the reviewers’ objection to the exclusion criterion and distance metric
that we used, we decided to reanalyze the data using new exclusion criteria and Euclidean
distance. Here, we report our original results.

1.1. Perceptual differentiation

We first applied a mixed linear model with the formula: distance ∼ trial_number + (1|sub-
ject). The effect of the trial number was insignificant [t = –0.76, p = .45, est = –0.0002]. For
the test on reconstruction variance, we divided all the trials into four successive blocks, and
computed standard deviations of reconstructions for trial blocks per each participant. Then,
we applied mixed linear model with formula: reconstruction_std ∼ block + (1|subject). The
effect of trial block was insignificant [t = –0.237, p = .81, est = –0.004].

1.2. Reconstruction refinement on categorically relevant dimensions

We computed the absolute distances between the x and y coordinates of the source images
and the x and y coordinates of the reconstructed images, respectively. There was a significant

Fig. C1. Hypotheses testing performed on the data with original exclusion criteria. Left: reconstruction refinement
on category-relevant dimensions. Middle: reconstruction bias with respect to the categorical boundary (boundary
aversion effect). Right: assimilation toward category prototype.
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interaction between the effects of categorization rule (horizontal or vertical) and the axis
of computed deviation from the actual stimuli (horizontal or vertical) [two-way ANOVA:
F = 14.03, p<.001, ges = 0.11]. The vertical dimension (y-axis) was significantly harder to
reconstruct in general [F = 6.52, p<.05, ges = 0.06]. The effect of categorization rule on the
reconstruction deviations was insignificant [F = 0.1, p = .75, ges = 0.0009].

1.3. Boundary aversion

All the groups demonstrated strong reconstruction bias toward the boundary, consistent
with global assimilation. There was a significant interaction between the effects of partici-
pants’ categorization rule (horizontal or vertical) and the dimension of deviation (horizontal
or vertical) in the predicted direction [F = 4.64, p<.05, ges = 0.02]. In particular, the hor-
izontal categorization rule participants demonstrated smaller reconstruction bias toward the
horizontal boundary than the vertical categorization rule participants, and vice versa for the
vertical categorization rule participants. The effects of the reconstruction dimension and cat-
egorization rule were insignificant [reconstruction dimension: F = 1.9, p = .17, ges = 0.01;
categorization rule: F = 0.53, p = .47, ges = 0.007].

1.4. Perceptual compression (assimilation) to the prototype

All three effects were insignificant in our main analysis [reconstruction dimension: F =
0.03, p = .86, ges = 0.0003; categorization rule: F = 0.23, p = .63, ges = 0.002; categoriza-
tion rule and prototype dimension interaction: F = 3.86, p = .05, ges = 0.03].


