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Abstract

Several models of categorization assume that fixed
perceptual representations are combined together to
determine categorizations.  This research explores the
possibility that categorization experience alters, rather
than simply uses, descriptions of objects.  Based on
results from human experiments, a  model is presented
in which a competitive learning network is first given
categorization training, and then is given a subsequent
segmentation task, using the same network weights.
Category learning establishes detectors for stimulus
parts that are diagnostic, and these detectors, once
established, bias the interpretation of subsequent
objects to be segmented.

Concept Learning and Perception

The current research explores the influence that learning a
new concept has on the segmentation of objects into
component parts. Recently a number of researchers have
argued that in many situations, concept learning influences
the featural descriptions used to describe a set of objects.
Rather than viewing perceptual descriptions as fixed by
low-level sensory processes, this view maintains that
perceptual descriptions are dependent on the higher-level
processes that use the descriptions (Goldstone, Steyvers
Spencer-Smith, & Kersten, 2000; Schyns, Goldstone, &
Thibaut, 1998).  Evidence for this view comes from the
study of expert/novice differences (Lesgold et al., 1988),
influences of acquired concepts on the interpretation of
stimuli (Wisniewski & Medin, 1994), and influences of
category learning on psychophysical measurements of
perceptual sensitivity (Goldstone, 1994).

Experiential Influences on Object Segmentation
One type of influence of concept learning on perceptual
learning may be to alter how objects are segmented into
parts.  Objects often have more than one possible
segmentation.  The letter “X” can be viewed as comprised
of two crossing diagonal lines, or as a “V” and an upside-
down “V” that barely touch at their vertices. The
segmentation of scenes into parts depends upon experience.
Behrmann, Zemel, and Mozer (1998) found that judgments
about whether two parts had the same number of humps
were faster when the two parts belonged to the same object
rather than different objects. Further work has found an
influence of experience on subsequent part comparisons.
Two stimulus components are interpreted as belonging to
the same object if they have co-occurred many times
(Zemel, Behrmann, Mozer, & Bavelier, 1999).  Thus,

experience with particular feature combinations determines
whether or not features will be integrated into a single
object.

Pevtzow and Goldstone (1994; reported in Goldstone et
al., 2000) explored the influence of category learning on
segmentation with the materials shown in Figure 1.  We
pursued the idea that how psychologically natural a part is
might depend on whether it has been useful for previous
categorizations.  Naturalness was measured by how quickly
subjects could confirm that the part was contained within a
whole object (Palmer, 1978). To test this conjecture, we
gave participants a categorization task, followed by
part/whole judgments.  During categorization, participants
were shown distortions of the objects A, B, C, and D shown
in Figure 1.  The objects were distorted by adding a random
line segment that connected to the five segments already
present.  Subjects were given extended training with either a
vertical or horizontal categorization rule.  For participants
who learned that A and C were in one category, and B and
D were in another (a vertical categorization rule) the two
component parts at the bottom of Figure 1 were diagnostic.
For participants who learned that A and B belonged in one
category, and C and D belonged to the other category (a
horizontal rule), the components on the right were
diagnostic.

Figure 1: Pevtzow and Goldstone (1994) stimuli

During part/whole judgments, participants were shown a
whole, and then a part, and were asked whether the part was
contained in the whole.  Participants were given both
present and absent judgments, and examples of these
judgments are shown in Figure 2.  Note that the two parts
shown in Figure 2 were both potentially diagnostic during
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the earlier categorization training.  Whether or not a part
was diagnostic was independent of the appearance of the
part itself, depending only on how the four objects of Figure
1 were grouped into categories.

Figure 2: Part/whole present and absent judgments

The major result was that subjects were faster to correctly
respond “present” when the part was diagnostic than when it
was non-diagnostic.  To the extent that one can find
response time analogs of signal detection theory sensitivity
and bias, this effect seems to be a sensitivity difference
rather than a bias difference, because absent judgments also
tended to be faster for diagnostic than nondiagnostic parts.
Given that a category part that was diagnostic for the
horizontal categorization group was nondiagnostic for the
vertical group, these results indicate that it is not simply the
physical stimulus properties that determine how readily a
person can segment an object into a particular set of
components; segmentation is also influenced by the learned
categorical diagnosticity of the components

Modeling Interactions Between Concept
Learning and Segmentation

We model the result from these experiment using a modified
competitive learning network (Rumelhart & Zipser, 1985).
As with the experiment, the network is first given
categorization training, and then is given a subsequent
segmentation task, using the same network weights.  The
goal of the modeling is to show how categorization training
can prime the segmentation network such that objects will
tend to be segmented into parts that were previously
diagnostic for categorization.

The Categorization Network
The categorization network has three layers of units: one

representing the input patterns, one representing a bank of
learned detectors, and one reflecting the category
assignments of the inputs.  Both the weights from the input
patterns to the detectors and the weights from the detectors
to categories are learned.  The categorization task uses a
modified unsupervised competitive learning algorithm
(Rumelhart & Zipser, 1985), but includes a top-down
influence of category labels that incorporates supervised
learning.  The network begins with random weights from a
two-dimensional input array to a set of detector units, and
from the detectors to the category units.  When an input
pattern is presented, the unit with the weight vector that is
closest to the input pattern is the "winner," and will
selectively adjust its weights to become even more
specialized toward the input.  By this mechanism, the
originally homogenous detectors will become differentiated

over time, splitting the input patterns into categories
represented by the detectors.  The competitive learning
algorithm automatically learns to group input patterns into
the clusters that the patterns naturally form.  However, given
that we want the detectors to reflect the experiment-supplied
categories, we need to modify the standard unsupervised
algorithm.  This is done by including a mechanism such that
detectors that are useful for categorizing an input pattern
become more likely to win the competition to learn the
pattern.  The usefulness of a detector is assumed to be
directly proportional to the weight from the detector to the
presented category which is provided as a label associated
with an input pattern.  The input-to-detector weights do not
have to be set before the weights from detectors to
categories are learned.

In addition to modifying the unsupervised development of
hidden-layer detectors by considering their usefulness for
categorization, a second modification of the standard
competitive learning algorithm is required to fix one of its
general problems in optimally making use of all detectors to
cover a set of input patterns.  This problem is that if
multiple input patterns are presented that are fairly similar to
each other, there will be a tendency for one detector to be
the winner for all of the patterns.  As a result, the winning
detector’s weight vector will eventually become similar to
the average of the input patterns’ activations, while the rest
of the detectors do not learn at all.  This situation is
suboptimal because the input patterns are not covered as
well as they would be if the unchanging detectors learned
something.  The standard solution to this problem is called
"leaky learning" and involves adjusting both winning and
losing detectors, but adjusting losing detectors at a slower
rate (Rumelhart & Zipser, 1985).  To understand the more
subtle problem with this solution, imagine, for example, that
four input patterns naturally fall into two groups based on
their similarities, and the network is given four detectors.
Ideally, each of the detectors would become specialized for
one of the input patterns.  However, under leaky learning,
one detector will tend to become specialized for one cluster,
a second will become specialized for the other cluster, and
the remaining two detectors will be pulled equally by both
clusters, becoming specialized for neither.  Note that it does
not help to supplement leaky learning by the rule that the
closer a detector is to an input pattern, the higher its learning
rate should be.  There is no guarantee that the two "losing"
units will evenly split such that each is closer to a different
cluster.

Other researchers have noted related but not identical
problems with competitive learning and have suggested
solutions (Grossberg, 1987).  Our current solution is to
conceptualize competitive learning as not simply a
competition among detectors to accommodate a presented
input pattern, but also as a competition among input patterns
to be accommodated by a given detector.  Input patterns are
presented sequentially to the network, and as they are
presented, the closest input pattern to each detector is
determined.  The learning rate for a detector is set to a
higher value for its closest input pattern than for other
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inputs.  In this manner, detectors that are not the winning
detector for a pattern can still become specialized by
becoming unequally influenced by different patterns.  In
addition, the learning rate for a detector when presented
with an input pattern will depend upon how well the input is
currently covered by existing detectors.  This dependency is
required to allocate detectors to input regions where they are
required.  Putting these considerations together, the
activation of detector i when presented with pattern p, is

where Ih,p is the activation of input unit h for pattern p, Wi,h

is the weight from input h to detector i, S is the strength of
the top-down pressure on detector development, T is the
teacher signal (if Pattern p belongs to Category j then T=1,
otherwise T=-1), and Wj,i is the weight from Detector i to
Category Unit j.  The second term increases the activation of
a detector to the extent that it is useful for predicting the
input pattern’s categorization.  The detector activation will
determine which detector is the “winner” for an input
pattern.  As such, detectors that are useful for categorization
will tend to become winners, thus increasing their learning
rate.

Input-to-detector weights are learned via top-down biased
competitive learning using the following equation for
changing weights from input pattern h to Detector i:

where M, N, and O are learning rates (M>N>O), and Kp is
the distance between pattern p and its closest detector. This
distance is inversely related to the cosine of the angle
between the vector associated with the closest detector and
p.  This set of learning rules may appear non-local in that all
detectors are influenced by the closest detector to a pattern,
and depend on previous presented inputs.  However, the
rules can be interpreted as local if the pattern itself transmits
a signal to detectors revealing how well covered it is, and if
detectors have memories for previously attained matches to
patterns.  When an input pattern is presented, it will first
activate the hidden layer of detectors, and then these
detectors will cause the category units to become activated.
The activation of the category unit Aj will be

where d is the number of detectors.  Detector-to-category
weights are learned via the delta rule ∆W j ,i = L(T − Aj )Ai

where L is a learning rate and T is the teacher signal
described above.

We formed a network with 2 detectors units and 2
category units, and presented it with four input patterns.  We
gave the network four patterns that were used in
experiments with human subjects.  These patterns are not
identical to the patterns shown in Figure 1, but are of the

same abstract construction.  When the patterns were
categorized as shown in Figure 3A, such that the first two
patterns belonged to Category 1, and the second two
patterns belonged to Category 2, then on virtually every run,
the detectors that emerged were those reflecting the
diagnostic segments -- those segments that were reliably
present on Category 1 or Category 2 trials.  The picture
within a detector unit in Figure 3 reflects the entire weight
vector from the 15 X 15 input array to the detector.  When
the same patterns are presented, but are categorized in the
orthogonal manner shown in Figure 3B, then different
detectors emerge that again reflect the category-diagnostic
segments.  In both cases, each detector will have a strong
association to one and only one of the category units.  This
is expected given that one of the factors influencing the
development of detectors was their categorical diagnosticity.
For the results shown here, and the later simulations to be
reported, the following parameter values were chosen:
M=0.1, N=0.05, O=0.02, and S=0.1.  Activation values
were between –1 and +1.  One hundred passes through the
input materials were presented to the network.  In the
example shown in Figure 3, only 30 passes with each of the

Figure 3:  Categorization-dependent detectors are acquired

4 patterns was required for the complete specialization of
detectors to input patterns.

The Segmentation Network
The basic insight connecting categorization and
segmentation tasks is that segmentation can also be modeled
using competitive learning, and thus the two tasks can share
the same network weights and consequently influence on
each other.  Competitive learning for categorization sorts
complete, whole input patterns into separate groups.
Competitive learning for segmentation takes a single input
pattern, and sorts the pieces of the pattern into separate
groups.  For segmentation, instead of providing a whole
pattern at once, we feed in the pattern one pixel at a time, so
instead of grouping patterns, the network groups pixels
together.  Thus, each detector will compete to cover
individual pixels of an input pattern such that the detector
with the pixel-to-detector weight that is closest to the pixel’s
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actual value will adapt its weight toward the pixel’s value,
and inhibit other detectors from so adapting.  With this
technique, if the pattern in Figure 4 is presented to the
network, the network might segment it in the fashion shown
in Panel A.  Panels A-D show the weights from the 15 X 15
input array to each of two detectors, and reflect the
specializations of the detectors.  The two segments are
complements of each other — if one detector becomes
specialized for a pixel, the other detector does not.

Unfortunately, this segmentation is psychologically
implausible.  No person would decompose the original
figure into these parts.  To create psychologically plausible
segmentations, we modify the determination of winners.
Topological constraints on detector creation are
incorporated by two mechanisms: A) input-to-detector
weights "leak" to their neighbors in an amount proportional
to their proximity in the 15 X 15 array, and B) input-to-
detector weights also spread to each other as a function of
their orientation similarity, defined by the inner-product of
four orientation filters  The first mechanism produces
detectors that tend to respond to cohesive, contiguous
regions of an input.  The second mechanism produces
detectors that follow the principle of good continuation,
dividing the figure "X" into two crossing lines rather than
two kissing sideways "V"s, because the two halves of a
diagonal line will be linked by their common orientation.
Thus, if a detector wins for pixel X (meaning that the
detector receives the more activation when Pixel X is on
than any other detector), then the detector will also tend to
handle pixels that are close to, and have similar orientations
to, Pixel X.  The segmentation network, augmented by
spreading weights according to spatial and orientational
similarity, produces segmentations such as the one shown in
Panel B of Figure 4.

Although the segmentation in Panel B is clearly superior
to Panel A’s segmentation, it is still problematic.  The pixels
are now coherently organized in line segments, but the line
segments are not coherently organized into connected parts.
Spreading weights according to spatial similarity should
ideally create segmentations with connected lines, but such
segmentations are often not found because of local minima
in the harmony function (the value N defined on the next
page).  Local minima occur when a detector develops
specializations for distantly related pixels, and these
specializations develop into local regions of mutually
supporting pixels.  Adjacent regions will frequently be
controlled by different detectors.  Each of the detectors may
have sufficiently strong specializations for local regions that
they will not be likely to lose their specialization, due to the
local relations of mutual support.

Our solution to local minima is to incorporate simulated
annealing, by which randomness is injected into the system,
and the amount of randomness decreases as a function of
time.  Unlike standard annealing techniques, we reduce the
amount of randomness in the system over time, but do so by
basing the amount of randomness on the current structural
goodness of a solution (Hofstadter & Mitchell, 1994).

The segmentation network works by fully connecting a 15 X
15 input array of pixel values to a set of N detectors.
Although ideally the value of N would be dynamically
determined by the input pattern itself, in the current modeling,
we assume that each object is to be segmented into two parts
(as did Palmer, 1978).  When an input pattern is presented, the
pixels within it are presented in a random sequence to the
detectors, and the activation of Detector i which results from
presenting Pixel p is

where Ih is the activation of Pixel h, Wi,h is the weight from
Pixel h to Detector i, and S is the similarity between pixels h
and p.  As such, detectors are not only activated directly by
presented pixels, but are also activated indirectly by pixels that
are similar to the presented pixels.  Thus, a detector will be
likely to be strongly activated by a certain pixel if it is already
activated by other pixels similar to this pixel.

The similarity between two pixels h and p is determined by

Where T and U are weighting factors, Gih is the response of
orientation filter i to Pixel h, Li,h,p is the degree to which Pixels
h and p fall on a single line with an orientation specified by
filter i, Dh,p is the Euclidean distance between Pixels h and p,
and C is a constant that determines the steepness of the
distance function.  Four orientation filters were applied, at 0,
45, 90, and 135 degrees.  The response of each filter was

Figure 4.  Segmentations of the original figure with
incremental improvements from A-D.
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found by finding the inner product of the image centered
around a pixel and a 5 X 5 window with the image of one of
the four lines.  Thus, the greater the overlap between the line
and the image, the greater will be the output of the filter for
the line.  The alignment of two pixels along a certain direction
was found by measuring the displacement, in pixels, between
the infinite length lines established by the two
pixel/orientation pairs.
Pixel-to-Detector weights are learned via competitive
learning:

∆Wi, p =
M(Ip − Wi, p ) + Random(−N,+N) if ∀x(Ai, p ≥ Ax , p )

Random(−N,+N) otherwise




Where M is a learning rate, and Random(-N,+N) generates
Gaussian random noise between + and – N.  The amount of
noise, N, in adjusting weights is a function of the harmony
across all detectors relative to R, the maximal harmony in the
system:

As such, if similar pixels in similar states have similar
weights to detectors, then the harmony in the system will be
high, and the amount of noise will be low.  Thus, the amount
of randomness in the weight learning process will be inversely
proportional to the coherency of the current segmentation.
These learning equations allow the network to regularly create
the segmentation shown in Panel C of Figure 4.

In the simulations of the segmentation network to be
reported, no attempt was made to find optimally fitting values
of the constants.  T and U were set at 0.5, M was set at 0.1,
and C was set to 1.

Combining the Networks
Considered separately, the categorization and segmentation
networks each can be considered to be models of their
respective tasks.  However, they were also designed to
interact, with the aim of accounting for the results from
Pevtzow and Goldstone’s (1994) experiments with human
subjects. The segmentation network, because it shares the
same input-to-detector weights that were used for the
categorization network, can be influenced by previous
category learning.  Detectors that were diagnostic for
categorization will be more likely used to segment a pattern
because they have already been primed.  Thus, if a
particular shape is diagnostic and reasonably natural, the
network will segment the whole into this shape most of the
time, as shown in Panel D Figure 4.  In short, category
learning can alter the perceived organization of an object.
By establishing multi-segment features along a bank of
detectors, the segmentation network is biased to parse
objects in terms of these features.  Thus, two separate
cognitive tasks can be viewed as mutually constraining self-
organization processes.  Categorization can be understood in
terms of the specialization of perceptual detectors for
particular input patterns, where the specialization is
influenced by the diagnosticity of a segment for

categorization.  Object segmentation can be viewed as the
specialization of detectors for particular parts within a single
input pattern.  Object segmentation can isolate single parts
of an input pattern that are potentially useful for
categorization, and categorization can suggest possible ways
of parsing an object that would not otherwise have been
considered.

In order to model the results from the earlier human
experiments, the network was first trained on distortions of
the patterns A, B, C, and D shown in Figure 1, with either a
horizontal or vertical categorization rule.  As with the
human experiment, the distortions were obtained by adding
one random line segment to each pattern in a manner that
resulted in a fully contiguous form.  Following 30 randomly
ordered presentations of distortions of the four patterns, the
segmentation network was then presented with the original
object shown in Figure 5.  Segmentations were determined
by examining the stable input-to-detector weight matrix for
each of the two detector units.

Figure 5.  The segmentation of an ambiguous object is
influenced by prior category learning.

One hundred subjects were simulated in each of the two
pre-segmentation categorization conditions.  As the results
from Figure 5 indicate, the segmentation of the ambiguous
original object is influenced by category learning.  In
particular, the original object tends to be segmented into
parts that were previously relevant during category learning
(column percentages do not add up to 100% because of
rarely occurring alternative segmentations).  As such, the
results from Pevtzow and Goldstone (1994) are predicted
under the additional assumption that response times in a
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part/whole task are related to the likelihood of generating a
segmentation that includes the probed part.

In a subsequent test of the networks, the actual wholes
used by Pevtzow and Goldstone (1994) in their part/whole
task were presented to the segmentation network.  Each
whole was presented 200 times, 100 times preceded by each
of the two possible categorization rules.  Out of the 24
whole objects tested, segmentations involving
categorization-relevant parts were produced more often than
segmentations involving irrelevant parts  for 19 of the
objects.  This comparison controls for any intrinsic
differences in naturalness between segmentations of a whole
object because the parts that are categorization-relevant for
half of the simulated subjects are irrelevant for the other
half.  As such, the results from Figure 5 generalize to the
actual materials used in the experiment.  Human subjects
and the simulation were exposed to same image-based
materials, rather than presenting a digested and abstracted
stimulus representation to the simulation.

Conclusions
A pair of neural networks were presented that learned to
group multiple objects into categories, and learned to group
parts from a single object into segments.  More importantly,
the computational modeling provides a mechanism by
which one type of grouping influences the other.  Category
learning causes detectors to develop, and once these
detectors have developed, there is a tendency to use the
detectors when segmenting an object into parts.

Future work will be necessary compare the model to other
existing models that allow for experience-dependent visual
object segmentation (e.g. Behrmann et al., 1998; Mozer,
Zemel, Behrmann, & Williams, 1992).  Two extensions of
the model would clearly be desirable: 1) allowing the model
to determine for itself how many segments a pattern should
be decomposed into, and 2) allowing the computed
segmentation of a single pattern to influence its
categorization.  The latter extension is required to fit human
experimental evidence suggesting that not only does
category learning influence segmentation, but the perceived
segmentation of an object influences its categorization
(Schyns et al, 1998; Wisniewski & Medin, 1994).

The computational model, and associated experimental
results, support theories that propose that categorization
does not simply employ fixed descriptions such as geons,
textons, holons, oriented lines segments, or spatial filters,
but also creates new object descriptions.  The primary
advantage of such a state of affairs is that the perceptual
system can become tuned and specialized to environmental
demands. Cognitive science researchers who have proposed
particular fixed sets of primitives have been clever, and
have designed primitives that are useful for representing
words, objects, and events.  However, everyday people may
be almost as clever as these researchers have been, and may
be able to come up with their own sets of elements tailored
to important categorizations (Schyns et al, 1998).  Once
created, these elements are then used for interpreting

subsequently encountered objects.  To the person who has a
hammer, the world looks like a nail, and to the person who
has learned that a particular configuration is relevant for
categorization, the world looks like it is composed out of
that configuration.
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