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1. INTRODUCTION

The act of comparison often seems to be an immediate, direct operation. Dogs
and wolves appear similar simply because of the large perceptual overlap
between their visual forms-—they both have a head with a snout and ears, four
legs, and a tail. In general, things seem similar if they share many properties.
Abstract properties may also influence similarity; puppies and children seem
similar because of their innocence, youth, and dependence on others. Once we
find the appropriate set of property descriptions, so the argument goes,
similarity assessment is a direct function of the objects’ overlap/proximity on
these descriptions. As such, the first step is to create representations of the to-be-
compared objects in terms of their properties. Once the two property lists have
been created, the similarity computation proceeds by comparing the two
property lists for matching and mismatching features.

However, there is more to similarity than property listing and matching.
Comparing scenes and objects with parts requires a more structured representa-
tion than a feature list, and requires a more sophisticated process than counting
up matches and mismatches. Features are organized into objects; objects are
organized into relations; and relations are organized into scenes. The parts of a
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scene are mapped onto the parts of the scene with which it is compared, and this
process of finding corresponding parts has an important influence on the
perceived similarity. The purposes of this chapter are to (a) demonstrate the
process of mapping in human scene comparison, (b) present new experimental
findings implicating mapping in similarity assessment, and (c) organize and
interpret these results with an interactive activation model of mapping and
similarity.

The organization of this chapter is as follows. First, we review the role of
mapping and global consistency in both low-level visual perception and abstract
analogy and then suggest that mapping and consistency also apply to similarity
assessment. Next, we review current models of similarity and note that they have
little to say about processes by which corresponding properties are aligned. We
then describe some experiments on alignment processes associated with com-
parisons. We account for these results with an interactive activation model of
alignment and contrast this model with a number of alternatives. Finally, we
assess the role of mapping or alignment in comparisons more generally and offer
some conclusions.

2. MAPPING AND STRUCTURE IN PERCEPTUAL
AND CONCEPTUAL COMPARISONS

Similarity inhabits the broad middle ground between low-level visual perception
and abstract analogy. The perception of similarity depends both on physical,
concrete properties, and on knowledge-based, abstract properties. In both
perceptual and conceptual comparisons, the act of mapping elements, of finding
the correspondences between scene parts, plays a fundamental role.

2.1. Perceptual Mapping Processes in Comparison

In perceiving objects in depth, people combine information obtained from their
two eyes. The image locations from the left eye must be placed in correspon-
dence with the image locations from the right eye. Marr and his colleagues
(Marr, 1982; Marr & Poggio, 1979) have investigated algorithms that compute
the depth of an object by: (a) selecting locations from the image in one eye, (b)
identifying the same location in the other eye’s image, and (c) measuring the
disparity between the corresponding image points. The task of identifying
corresponding locations is difficult because of the “false target problem” —the
problem of finding the correct location-to-location correspondences given the
large number of potential mappings between the dots in the two images. Thus, in
Figure 6.1A, the image that falls on the left eye is integrated with the image that
falls on the right eye by creating correspondences between the images’ dots.
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Figure 6.1.

The importance of aligning scene parts in visual perception. In A, the dots
that fall on the left eye must be fused with the dots that fall on the right eye in
order to form an integrated and coherent perception. In B, the white dots
belonging to the first frame of an apparent motion display must be placed
into correspondence with the black dots belonging to the second frame. In
the top dispiay, Dot 2 is seen as moving to become Dot 3; in the bottom
display, Dot 2 maps onto Dot 1.

Right Eye o Os

These mappings are formed in random-dot stereograms by constraining corre-
spondences such that (a) black dots can only match black dots (the similarity
constraint), (b) one black dot matches no more than one black dot (the
uniqueness constraint), and (c) the distance between matching dots usually
varies gradually (the continuity constraint). While any dot in a scene can
potentially match any number of dots in the other scene, one dot’s correspon-
dences are strongly constrained by the other correspondences that are estab-
lished by other scene parts. This dependence of location mappings on other
location mappings is a hallmark of “cooperative” algorithms.

Cooperative algorithms also are important in apparent motion phenomena.
Single frame visual displays that are presented in fairly rapid succession can
yield strong subjective impressions of motion (a fact the movie industry relies
on). Reviews of this phenomena are found in Kolers (1972), Ramachandran and
Antis (1986), and Ullman (1979). For subjective motion to occur, people must
create correspondences between the separate image frames. In Figure 6.1B, two
alternating displays of two frames each are depicted. The white circles are all
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displayed in one frame. The black circles appear in the second frame. (They are
shaded black in the figure to show that they appear in the second frame.) The
two frames are then alternated with each other on a computer screen once every
quarter second. Subjectively, for the top apparent motion display, five dots are
seen as rocking on a sideways horseshoe, with Dot 3 of the first frame
corresponding to Dot 2 of the second frame. In the bottom display, the five dots
subjectively move such that Dot 1 becomes Dot 2.

This small example suggests one method the mind uses to constrain motion
perception——global optimization of correspondences. There is only one dif-
ference between the top and bottom display; in the top display the leftmost black
dot is on the upper portion of the horseshoe, while in the bottom display the
leftmost black dot is on the lower portion of the horseshoe. Although far removed
from Dots 1, 2, and 3, the location of the leftmost black dot constrains the
mappings of these dots. Mappings are created such that each white dot has a
strong tendency to map onto one and only one black dot. Ullman (1979) and
Marr (1982) argue that the subjectively perceived motion will be that motion
which “maximizes the overall similarity between the frames” (Marr, 1982, p.
186). Interestingly, maximizing the overall similarity can proceed solely on the
basis of local interactions between mappings.

In both the perception of depth and motion there is evidence that mappings
between scenes are constructed—mappings between the left and right visual
images or mappings between frames that are separated in time. In both
instances, the mappings that develop are partially constrained by local affinities
and by global consistency. Mappings are sought out that: (a) place similar parts
in correspondence (black dots tend to map onto other black dots), and (b) place
parts in correspondence that are consistent with the other correspondences that
have been established.

2.2. Analogical Mapping Processes in Comparison

Establishing mappings also plays a critical role in more conceptual processes.
Analogies (Gentner & Clement, 1988) are understood by creating correspon-
dences between elements from two domains. The comprehension of the
atom/solar system analogy requires setting up correspondences between the
atom’s nucleus and the sun, between electrons and planets, etc.

Reminiscent of Marr’s and Ullman’s proposals, in Holyoak and Thagard’s
ACME system and Gentner’s Structure Mapping Theory (SMT), comparison
processes serve to: (a) place similar relations in correspondence, and (b) place
relations in correspondence that are consistent with other relational correspon-
dences. According to Gentner’s systematicity principle (Gentner, 1983) and
Holyoak and Thagard’s “uniqueness” and ‘“relational consistency” constraints
(Holyoak & Thagard, 1989), elements are mapped onto each other so as to tend
to yield coherent relational correspondences as opposed to isolated or inconsi-
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stent correspondences. An isolated correspondence arises if there is a relational
match between two domains, but the relation is not involved in other higher order
relations, where a higher order relation is a relations between relations.
Correspondences are inconsistent if they create many-to-one mappings or cross-
mappings. Consider the three families and their telephone conversations:

John Jones = Father Saul Smith = Son Andy Anderson = Father
Jesse Jones =Son Sam Smith = 2nd Son Alan Anderson = Son
John = Not talkative Saul = Talkative Andy = Talkative

Jesse = Talkative Sam = Talkative Alan = Not Talkative

There is a two-to-one mapping between the Jones and the Smith family. The
natural mapping would place Jesse in correspondence with both Saul and Sam
since all three are sons and talkative. There is a cross-mapping between the
Joneses and the Andersons. The term “cross-mapping” was first used by
Gentner and Toupin (1986) to describe competing correspondences due to
superficial and relational properties. The “fatherhood” aspect would place John
in correspondence with Andy, and Jesse in correspondence with Alan, whereas
the “talkativeness” aspect would set up precisely the opposite correspondences.
.Zu:foé:o mappings and cross-mappings will never be created as analogical
ESGES:QE in Falkenhainer, Forbus, and Gentner’s (1990) computational
instantiation of SMT, and are subject to strong inhibitory pressures in ACME.

There is psychological evidence that people judge the goodness of an analogy
by the coherence of its relational structure. Clement and Gentner (1988) show
that systematic facts, facts that participate in higher order relations, are more
likely to be judged as important for an analogy than are nonsystematic facts.
Gentner and Toupin (1986) find that older but not younger children resolve cross-
mappings by ignoring superficial/attributional information and concentrating on
highlighted relations. Gick and Holyoak (1983) present evidence that previously
solved problems aid in solving analogous problems if the relational commu-
nalities between the problems are highlighted (by presenting several problems
with the same relational structure). In general, the current evidence suggests that
analogies are created and evaluated by placing the elements (relations, and
perhaps objects) of one domain into correspondence with the other domain.
Furthermore, what correspondences are made depend on the other correspon-
dences that have been established. In analogical reasoning, as in perceptual
mapping, global consistency contrains the mappings that are created.

3. MODELS OF SIMILARITY AND MAPPING

Given that a global-consistency constraint on scene-to-scene mapping is found in
both perceptual (apparent motion and stereoscopic vision) and conceptual
(analogy) comparisons, it might well be expected that this constraint would also
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be found in people’s judgments of similarity. One reason for thinking this is that
the similarity of two objects or scenes depends on both perceptual and
conceptual factors. Dogs and cats are similar both because they have roughly the
same body shape (four legs, body, head) and because they are domesticated pets.

Given the above framework, it is surprising that the two predominant models
of similarity in cognitive psychology, multidimensional scaling (MDS), and
Tversky’s (1977) Contrast model, provide no allowance for mappings that are
constrained by other mappings (the global-consistency constraint). In fact, there
is very little in either model to suggest that the process of mapping or aligning
parts of scenes/objects is part of the process of computing similarity.

3.1 Multidimensional Scaling

The purpose of multidimensional scaling (MDS) is to discover the underlying
dimensions that account for a given set of proximity data, and to provide an
account for how the dimensional information is combined to yield a measure of
similarity. The input to MDS routines may be similarity judgments, dis-
similarity judgments, confusion probabilities, correlations, joint probabilities of
occurrence, or any other measure of pairwise proximity. The output from an
MDS routine will be a geometrical model of the data, with each object of the
data set represented as a point in an N-dimensional space. The distance between
two objects’ points in the space is taken to be inversely related to the objects’
similarity.

The MDS modeler observes the geometric space or a rotated version of the
space, and subjectively determines labels for the dimensional axes. Richardson’s
(1938) fundamental insight, which is the basis of contemporary use of MDS, was
to begin with subjects’ judgments of pair-wise object (dis)similarity, and work
backward to determine the dimensions and dimension values that subjects used
in making their judgments.

A study by Smith, Shoben, and Rips (1974) illustrates a classic use of MDS.
They obtained similarity ratings from subjects on many pairs of birds.
Submitting these pair-wise similarity ratings to MDS analysis, they hypoth-
esized underlying features that were used for representing the birds. Assigning
subjective interpretations to the geometric model’s axes, the experimenters
postulated that birds were represented by such features as “ferocity” and “size.”

In short, MDS models function both to derive possible feature dimensions
and to represent similarity/proximity in terms of these feature dimensions. Even
when MDS dimensions are difficult to interpret psychologically, the models can
still serve a valuable function by ordering the proximity data geometrically.

3.2. Tversky’s Contrast Model

A very influential model of similarity, the Contrast model, has been proposed by
Amos Tversky and his associates (Gati & Tversky, 1984; Sattath & Tversky, 1987:

o)
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Tversky, 1977). In the model, the similarity of two entities is taken to be a linear
contrast of the features that the entities share, minus the features possessed by
one entity that are not possessed by the other. The mathematical formulation

SIM(A,B) = aF(ANB)-B*f(A-B)-x*f(B-A)

is interpreted as: The similarity of A to B is a function of the features that A and
B share, minus the features that A has that B does not have, minus again the
features that B has that A does not have. The greek letters are simply weighting
terms that depend on the subjects’ task and the stimuli. Although not inherent to
the Contrast model, the further assumption is often made that the function “f”
satisfies feature additivity such that f{x) for any set x is expressible as the sum of
the measures of all the features that belong to x.

In addition to the mathematical formulation of similarity, the Contrast model
has processing principles associated with it. These principles provide rules for
changing feature weights. For example, according to the diagnosticity principle
(Tversky, 1977), the weight of a feature depends on its classificatory significance,
the “importance or prevalence of the classifications that are based on” the
feature (p. 342). According to the extension principle, the similarity of a pair of
objects in an extended context will tend to be larger than the pair’s similarity in a
more limited context. For example, “carrot” and ‘“‘cucumber” are more similar
in a context that includes “jeep” than in a context that only includes vegetables.

3.3. Assumptions Common to Both Models

There are many differences between the MDS model and the Contrast model. In
fact, the Contrast model was in part formulated as an alternative to the metric
MDS model’s strong geometric assumptions regarding symmetry (Dis-
tance(A,B) = Distance(B,A)), the triangle inequality (Dis-
tance(A,B) + Distance(B,C)=Distance(A,C)), and minimality
(Distance(A,B)=Distance(A,A) = @). However, the models share three assump-
tions with which we will take issue:

1. Entities are represented as a set of features (Contrast model) or dimension
values (MDS). In the Contrast model, entities are represented by their set of
features. Sets of features are compared for match and mismatch to
determine the similarity of two entities. In the MDS models, entities are
represented by their N-dimensional location; entities are defined by their
values on each of the N dimensions.

2. Entity representations and features weightings do not depend on the actual

pair-wise comparison. This is very clear in MDS: once an MDS solution
space has been derived, an entity’s values are set. In some MDS schemes,
the weights of the dimensions can vary (Carroll & Wish, 1974; Nosofsky,
1986) and in some schemes the context can change the MDS solution (Roth
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& Shoben, 1983). However, in all cases, once a context has been set up and
all of the pairs have been presented, an entity’s representation is fixed and
the entity’s features and feature weightings are defined. In the Contrast
model, a feature’s weighting can change in accordance with the diag-
nosticity or extension principles. Neither of these principles should influ-
ence feature weights after a pair-wise comparison has begun. The extension
principle may weight a particular feature highly, but this change of
weighting affects the representation of the entity independently of its
comparison to a second item. A diagnosticity effect is either not present for
pair-wise comparisons (because there is only one grouping of two items), or
its effect is also prior to the actual comparison. Primarily, both the Contrast
model and MDS models work by setting up feature/dimension representa-
tions of all of the entities, and then comparing the entities (measuring
distances or set overlap). The actual pair-wise comparison operation uses
the previously established representations; it does not establish these
representations.

3. The alignment process is straightforward and simple. If an object is simply
represented by a list of features, then alignment is a trivial issue and global
consistency provides no constraint on creating object-to-object correspon-
dences. Features are placed in correspondence if they are identical (one
scene’s “red” feature is placed in correspondence with the “red” of the
scene it is compared with). In the case of MDS, the dimensions provide the
alignment and values on these dimensions determine the degree or extent of
matching. Although these assumptions may work for certain sets of stimuli,
we shall soon see that often things are much more complicated.

The relatively unstructured representation of objects/scenes in MDS and the
Contrast model stand in stark contrast to the richer first-order predicate logic
and propositional representations invoked to explain analogical reasoning. The
assumption that entities are represented by sets of features/dimension values
makes no provision for hierarchical organization (features do not contain
features as parts; features are nondecomposable primitives) or propositional
organization (features do not take features as arguments).

We believe that issues of alignment are critical in visual similarity com-
parisons and that a major component of the comparison process involves setting
up the correspondences between the objects/parts of the compared scenes.
Furthermore, as with the perceptual and conceptual domains surveyed, we find
that the alignment of objects is not independent of the other established
correspondences—visual similarity is influenced by global consistency also. In
opposition to the second assumption of comparison-independent representations,
the weight that a particular feature has in a similarity calculation and the way it
aligns cannot be determined before the actual similarity comparison process
takes place. The process of placing scenes in correspondence changes the
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weights of matching and mismatching features. Finally, the model for alignment
we present argues against the idea that determining correspondences is simple or
can be ignored.

As a preview of the psychological experiments to come, consider Figure 6.2,
which is based on a figure from Gati and Tversky (1984). Figure 6.2 is virtually
identical to Gati and Tversky’s stimuli except that a third mountain has been
deleted and a cloud has been added. Previous research may have ignored issues
of alignment by designing stimuli that lack many-to-one mappings or cross-
mappings. Gati and Tversky compare scenes like Figure 6.2A to other scenes
that have features such as clouds, houses, and mountains added or deleted. By
collecting similarity ratings for several variations of the same scene, they can
ascertain the importance of shared and distinctive features for similarity
Jjudgments.

However, it is not always easy to say what counts as a matching feature. For
example, does the fact that both the right cloud of Figure 6.2A and the left cloud
of Figure 6.2B are spotted count as a matching feature between these scenes?

A B: Spot match out of place
E2 S0t »F =2 ==
1] . 71

C: Spot match in place D: No spot match

. Figure 6.2. _
The influence of matches in place (MIPs) and matches out of place :soa.u.
on similarity. If MIPs increase similarity more than MOPs, then Scene A will
be more similar to Scene C than Scene B. If MOPs increase similarity at all,
then A will be more similar to B than D.
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Does the feature “spots” increase the similarity of these scenes? It would seem
that how much a feature match increases similarity depends on whether it
belongs to objects that correspond to each other or not. If the right clouds of each
scene were spotted, as they are in Figure 6.2A and 6.2C, then the shared spots
would clearly increase similarity, but the spots would not increase similarity
much if they belonged to the clouds of one scene and the sailboat of the other
scene.

We will refer to feature matches between objects that are aligned with one
another as Matches in Place, or MIPs. Feature matches between objects that are
not aligned will be called Matches out of Place, or MOPs. We might presume
that MIPs increase scene similarity more than MOPs—the fact that two scenes
contain the feature “spotted” increases similarity more if the spots belongs to
two clouds that correspond to each other than if the spots belong to non-
corresponding objects. Thus, the similarity of Figures 6.2A and 6.2C is
presumed to be higher than the similarity of Figures 6.2A and 6.2B. We might
also presume that MOPs increase similarity more than no feature match at all—
the fact that two noncorresponding objects are spotted results in a higher
similarity than if the objects were not both spotted, all else being equal.
Hypothetically, the similarity of Figures 6.2A and 6.2B is higher than the
similarity of Figures 6.2A and 6.2D.

It is conceivable that a simple “feature list” representation of scenes could
explain why feature matches only count if they belong to aligned objects. Instead
of representing objects as containing “spotted” or “white” features, features
could represent conjunctions of properties, such as “spotted cloud” or “right
spotted cloud.” If the clouds’ features of Figure 6.2A are “left-white-cloud” and
“right-spotted-cloud” while Figure 6.2B’s features are “left-spotted-cloud” and
“right-white-cloud” then the “feature list” representation could account for the
inability of the scenes’ matching spots to increase similarity. If these conjunc-
tions were the encoded features, then Figure 6.2A and 6.2B have no cloud
features in common at all.

Of course, it is reasonable to expect (and empirically supported, as we will
see) that the matching spots increase the similarity of Figures 6.2A and 6.2B
somewhat; the increase is just smaller than would be expected if the matching
spots belonged to objects that were aligned. Keeping with the simple “feature
list” representation of scenes, we could account for this pattern also, but only by
positing both simple features such as “spotted”” and conjunctive features such as
“left white cloud.” We need the simple features to account for the tendency of
matching spots to increase similarity even when the spotted objects do not
correspond to each other. We need the conjunctive features to account for the
tendency for matching spots to increase similarity more if the spots belong to
aligned objects than if they belong to nonaligned objects.

Problems with saving “feature list” representations by positing both simple
and conjunctive features are that: (a) no account is given of how objects and
object parts are aligned, (b) the number of features required grows exponentially
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with the n.oav_nxnw of the scenes, yielding a computationally intractable
8@..8.0:8:0: system, and (c) the account may not be able to handle, in detail
nxvo:_:ojg_ evidence concerning how MOPs and MIPs influence ,mmazwnz,
:.:amn various task manipulations. The first problem is that an ::mzcoeaw
similarity model, replete with simple and conjunctive features, still does not
account mc.a the intuition that objects and object parts are placed ?8 correspon-
a.o:nm during similarity comparisons. Scenes are still decomposed into a “flat”
list of m.omEnom with no hierarchical structure or account of how some features
oo:m:w_:. others. The second problem is that, in order to account for all
Evogrm:nm_ similarity comparisons, 2'-1 features are required for every object
in a scene, where k is the number of object components. For example, if a mo.”wzo
—Em.m: nEoQ with four parts/features (a, b, c, and d), then 15 m,va_o and
85::36 features (a, b, ¢, d, ab, ac, ad, be, bd, cd, abc, abd, acd, bed abcd)
are required just for this object to account for the scene’s m:::mama\ :w other
related scenes. Fleshing out the third problem will be the central objective of the
.8& om. this chapter. In the next section, we will review several experiments that
investigate the influence of MIPs and MOPs on similarity ratings, indirect
measures of similarity, and alignment judgments. Several of these oxmoiBmEm
=m<.n been conducted in collaboration with Dedre Gentner. Throughout the
review, the moEE_ point will be that the process of comparing scenes places
scene parts in correspondence, and that this alignment process accounts for the
influence of time, context, and feature distribution on scene comparison.

4. EXPERIMENTAL SUPPORT FOR ALIGNMENT IN
COMPARISON

4.1. Initial Investigation of Mapping and Similarity

H—.o first experiment was designed to corroborate our intuitions about the
Emco:ow of matches in and out of place on similarity. Briefly, two scenes were
shown mao by side on a computer screen. Each scene was composed of two
cczmnn_om. Each butterfly varied on four dimensions: head type, tail type body
m_.sﬂ.__zm., and wing shading. For each pair of scenes, subjects S&ww_m& a
&SwFZQ rating (1-9, where 9 means “HIGHLY SIMILAR”) and then
indicated which butterflies corresponded to each other between the scenes. For
each butterfly of one scene, subjects indicated the butterfly of the other m.on:n
””2 oo”nomw%_%oa best to it, where subjects were left to define “correspond”
emselves. The two scenes wert i
and out of place were v ere constructed so that the number of matches in
m_wE.o 6.3 shows two of the possible comparisons that were shown to
subjects. In the top comparison, the only difference between the scene on the left
and the scene on the right is related to the butterflies’ body shadings. Butterfly



332 GOLDSTONE & MEDIN

Figure 6.3.
Two possible displays from the initial experiment. In the top display,
concentrating on the body shadings of the butterflies, there are 2 MOPs
between the left scene and the right scene. In the bottom display, there is a
single MOP along the body shading dimension.

D

striped wavy —» wavy striped

2 Matches Out of Place

striped  wavy -+ spotted striped
1 Match Out of Place

C, while most likely corresponding to Butterfly A because they share three out
of four features in common, possesses the body shading (wavy lines) of
Butterfly B. Likewise, Butterfly D, though corresponding to B, has A’s body
shading. This is similar to the cross-mapping situation in analogy described
earlier. Concentrating only on the body-shading dimension, there are two MOPs
between the scenes—one between A and D, and the other between B and C.

The lower comparison of Figure 6.3 has one MOP along the body-shading
dimension. Again, A corresponds to C, but has the same body shading as D.
Butterflies B and C have different body shadings.

In all, there were six methods for changing a dimension from one butterfly
scene to another. These methods resulted in the following numbers of MIPs and
MOPs along a dimension: 2 MOPs, 1 MOP, 2 MIPs, 1 MIP, 1 MOP, and 1 MIP,
and no matches at all.

On half of the trials, in going from the left scene to the right scene, we change
the features of one dimension, in one of six ways. On the other half of the trials,
we change two dimensions, each in one of six ways.
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On one-third of the trials, the butterflies that correspond to each other are
placed in the same relative positions in the two scenes. On one-third of the trials,
the butterflies are given new unrelated positions. The particular features that
were switched, the positions of the butterflies, and the particular values that the
dimensions had were all randomized.

The results, as shown in the first column of Figure 6.4, reveal an influence of
both matches in and out of place on similarity. First of all, similarity ratings for
0,1, and 2 MIPs averaged 5.5, 6.4, and 6.1, respectively. MOPs have a much
smaller effect; the ratings for 0, 1, and 2 MOPs averaged 5.5, 5.5, and 5.9,
respectively. The fact that MIPs increase similarity more than MOPs can also be
seen by looking at scene comparisons that have the same number of total
matches. For example, the similarity rating in the first column for two MIPs is
7.1. This decreases to 5.9 in scenes where there are two MOPs. (In the first
column, rating differences of 0.2 are significant at p<.05.) Further, the
similarity rating for scenes with 1 MIP (6.4) is greater than the rating for scenes
with 1 MOP(5.5).

Description Similarity Mapping Accuracy
One Two
True False Dimension Dimensions
Mappings | Mappings | Changed Changed
Two matches in place
21 66 91% —
One match in place, one 65
! . 55 o, o,
match out of place 90% 83%
. 6.4 6.0
One match in place 90% 85%
No match 55 4.9 89% 83%
One match out of place 55 4.8 86% 76%
Two matches out of place | >* 5.3 86% 62%
Figure 6.4.

Results from initial experiment investigating the influence of MIPs and
MOPs on similarity.
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We also find that if scenes share MOPs, feature matches that belong to
butterflies that do not correspond to each other, then similarity is higher than if
the scenes share no match along a dimension. In Figure 6.4, scenes with 2 MOPs
are more similar than scenes with 1 MOP or no matches in common. However,
there is no difference between scenes with 1 MOP and no matches at all.
Interestingly, the phenomenon that (2 MOPs—1 MOP) > (1 MOP-0 MOPs)
cannot be explained by an exponential relation between featural overlap and
similarity (e.g., Nososky, 1986) because the finding holds even when the 0 and 1
MOPs displays are more similar overall than the 1 and 2 MOPs displays that are
compared. Overall similarity is manipulated by varying the number of MIPs. In
addition, positing a nonlinear relation between featural overlap and judged
similarity does not explain why the phenomenon occurs when 2 MOPs are
created by swapping dimension values but not otherwise. This inconstant
influence of a MOP will be explained by our model in terms of cooperation and
competition between developing correspondences.

A question might arise: How does the experimenter know that a feature match
is really in or out of place? A MOP would be a MIP if subjects gave the opposite
mapping of butterflies than was expected. In Figure 6.3, the expected mapping
was to place A and C in correspondence, and B and D. Perhaps the hypothesized
influence of MOPs is due to trials in which the subject gives the unexpected
mapping (A is aligned with D, B with C).

To address this objection, in the first column, we only include similarity
ratings for trials where the subject and experimenter are in agreement as to
which butterflies correspond to one another. These trials are called “true
mapping” trials because the mappings that the subject gives are optimal in the
sense of maximizing the number of matches that are MIPs as opposed to MOPs.
In the top half of Figure 6.3, the mapping “A goes to C, B goes to D" results in
six MIPs and two MOPs. The alternative mapping of “A goes to D, B goes to C”
results in six MOPs and two MIPs. Thus, the first mapping is the “true
mapping” and the second mapping is the “false mapping.” According to the
first column in Figure 6.4, MOPs increase similarity even when they are MOPs
Jor the subject.

Additional support for the hypothesis that scene alignment influences
similarity can be obtained by comparing the true mapping and the false
mapping trials. If the subject makes the mapping that maximizes the number of
matches in place (the true mapping), then similarity is greater than if subjects
make a nonoptimal mapping. Both the true and false mappings result in the
same number of total (MIPs + MOPs) scene matches; the true mapping results
in a greater number of MIPs relative to MOPs. Thus, the difference between true
and false mapping trials provides further evidence that MIPs increase similarity
more than MOPs.

The relation between similarity and mapping can also be clarified by
examining the percentages of true mapping trials for the different scene types.
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While the two rightmost columns of Figure 6.4 have the true mapping
percentages, the rightmost column provides the most sensitive data; if only one
dimension is changed, subjects do not make very many false mappings (and
most of these are due to the different spatial locations of the butterflies in the
scenes). If two dimensions are changed, we find that MOPs decrease mapping
accuracy significantly (62% accuracy with 2 MOPs compared with 83% for 0
MOPs). There is also a much smaller, but significant influence of MIPs; the
more MIPs there are, the greater the proportion of true mappings. The
probability of finding the best correspondences between butterflies decreases as
the number of MOPs increases and increases slightly as the number of MIPs
increases.

A summary of the results from the first experiment reveals: (a) MIPs and
MOPs both increase similarity, but MIPs increase similarity more, (b) if
subject’s give nonoptimal mappings, similarity is lower than if they give the
optimal mapping, (c) MIPs simultaneously increase similarity ratings and
mapping accuracy but MOPs increase similarity while decreasing mapping
accuracy, and (d) the influence of a MOP depends on the other feature matches.
The fourth conclusion is based on the significant difference in similarity
between scenes with 2 MOPs and scenes with 1 MOP, but the lack of a difference
between 1 MOP and no matches. The first two conclusions speak to our most
central claim: the act of assessing similarity involves placing the parts of scenes
in alignment with one another.

4.2. Replications of Basic Findings

We have conducted a number of experiments to replicate and extend the above
results. The materials and procedures for the closest replication were identical to
the first experiment, with one exception. In the first experiment, subjects were
required to rate similarity and report the butterfly-to-butterfly correspondences.
In the replication, subjects were only required to rate similarity. One criticism of
the first experiment is that, by requiring subjects to perform mappings, we are in
effect biasing them toward placing butterflies in correspondence. Perhaps there
is no natural tendency for people to place parts of scenes into correspondence;
they only do so in our experiment because they are forced to as a secondary task.
In our replication, we eliminate this secondary task but we find exactly the same
pattern of significant results. For example, we still find that MIPs increase
similarity more than MOPs. By not requiring mapping judgments to be made,
we reduce the task biases substantially, but we also lose the ability to tell for
certain whether the match assumed to be “in place” for the experimenter is
indeed a MIP for the subject.

Similarity ratings provide one measure of similarity with a good deal of face
validity, but our research strategy has been to develop many converging
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ieasures of similarity. If our results are general, then we would expect mapping
y show an influence on similarity where similarity is operationalized in many
ays. Previous research has shown that different operationalizations of sim-
arity do not necessarily converge. Empirically, the similarity of A to B as
reasured by the percentage of times A is confused with B is not necessarily
quivalent to the similarity rating of A to B (Gati & Tversky, 1984; Keren &
agen, 1981). Similarity as measured by the time required to search for A ina
eld of Bs also differs from the similarity rating measure (Beck, 1966).
Jowever, if several different measures of similarity all show an influence of
napping on similarity then we will have stronger grounds for positing a general
elationship between mapping and various conceptions of similarity.

In one replication, we display scenes similar to the scenes shown in Figure
3. Instead of asking subjects to say how similar the scenes are, we require
ubjects to respond as quickly and accurately as possible as to whether the scenes
wave exactly the same butterflies in them. If the same butterflies are in both
cenes, subjects press a key meaning “same”; otherwise, they press the
‘different” key (the correct response to both displays of Figure 6.3 would be
‘different”). Similarity is operationalized in two ways. First, similarity is
yperationalized as the average time required to correctly respond that two scenes
re “different.” If two scenes are highly similar, then it will take a relatively
ong time to respond that the scenes are different. Second, similarity can be
yperationalized as the percentage of times that a subject incorrectly responds
hat two scenes are the same when the scenes are actually different. If two scenes
are highly similar, people who are under pressure to respond quickly will often
mistakenly respond that the scenes are the same.

The results from this *“‘same/different” response time experiment closely
follow the earlier results we obtained. The lowest correlation between any of the
four measures was r=0.72. The results for all four measures of similarity are
shown in Figure 6.5. All measures show the same pattern of influence of MIPs
and MOPs. MIPs and MOPs increase similarity, and MIPs increase similarity
more. There are some differences between the measures of similarity. Most
notably, the same/different response time measure of similarity is more
influenced by MOPs than are the other operationalizations of similarity. Still,
for all operationalizations of similarity, almost the identical ordering of the six
combinations of MOPs and MIPs with respect to similarity is found.

One objection to the experiments mentioned is that they all involve compar-
ing scenes that are likely to be not very well integrated. The scenes that were
compared all were comprised of two butterflies. The butterflies were coherent
and structured objects on their own, but the scenes as a whole do not seem very
cohesive. Perhaps MOPs only increase similarity for scenes with little structure.

To address this criticism, we conducted an experiment with materials
exemplified by Figure 6.6. Each scene is comprised of a single bird; each bird
has four internal parts (head, lower wing, upper wing, body). The bird on the

Figure 6.5.
The results from four converging measures of similarity yield similar
patterns of results. All measures of similarity increase more with increasing
MIPs than MOPs, but show some influence due to MOPs.
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left is compared to the bird on the right. Here, a MOP is %m:&. as a symbol ME:
is present in both birds, but occurs in different parts of the Eam. A ?:W is ”
matching symbol that is in the same part Om. the .ooamuq.na .c:%.. In differen
experiments with these materials, we operationalize similarity as: (a) anBmo
similarity rating, and (b) response time to correctly respond that two birds mnm
“different.” In different scenes, we orthogonally vary the E._BUQ A.vm MIPs an
MOPs from zero to two. With both ovnnwzozm:Nm:oi we find an .:_:Ew:oo of
MIPs and MOPs. MOPs increase similarity over having no Ewﬁod:_m features,
and MIPs increase similarity more than MOPs. Hrnqﬂoﬂo. even with scenes that
seem to form single, coherent entities with role-defined parts, there is still an
i MOPs on similarity.
EQMM_MM MM::E materials, we Nmé also measured a:.:_w.:Q in terms n.vm effects
of MIPs and MOPs on categorization. In a categorization :._mw. subjects are
presented the top-left object of Figure 6.7 asa Category 1 object, and :Po top-
right object as belonging to Category 2. Subjects are a.mvowgo&w shown _~ e two
objects with their labels until they are i.n: BnBo:Noﬁ._. m:wmwbcna Y :ocm
“transfer”” objects are presented for the subject to categorize. Subjects assigne:

Category 1 Category 2

&P &

Category 1 |Category 2 | % times placed
“ 9@ matches matches in category 1
e 3 MIPs 2 MIPs 78%
Transter A
ea& 2MiPs, 1 MOP | 2MIPs 74%
Transfer B
Qﬁmg 2MIPs, 2MOPs | 3MIPs 56%
Transfer C

Figure 6.7.
A replication using a categorization m
defined by: X is more similar to Y than
category instead of Z’s.

easure of similarity. Here, m::zm_,mQ is
Z to the extent that X is placed in Y's
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the transfer items to the category to which they seemed to belong. Subjects are
not told whether they placed the novel objects in the correct category. The object
labeled *“Transfer A” has 3 MIPs in common with the Category 1 example, and
2 MIPs in common with the Category 2 example. The consistency with which
“Transfer A” is placed in Category 1 is an indication of how much a single MIP
increases the similarity of the transfer item to category members. Likewise,
“Transfer B” has one more MOP in common with Category 1 than Category 2,
so the subjects’ tendency to categorize “Transfer B” as belonging to Category 1
reflects the importance of a MOP on similarity. “Transfer C” allows us to tell
whether 1 MIP or 2 MOPs increase similarity more. If 2 MOPs increase
similarity more, then this item should be placed in Category 1.

The results again show that MIPs increase similarity more than MOPs. The
tendency for “Transfer A” to be placed in Category 1 is significantly greater
than the tendency to place “Transfer B” in Category 1. However, MOPs still
increase similarity. “Transfer B” is placed in Category 1 at a rate greater than
the chance level of 50%, indicating that the MOP is influencing categorization.
With this categorization paradigm, we find that 2 MOPs increase similarity
slightly more than 1 MIP. Overall, we find converging results to our earlier
operationalizations of similarity, using the operationalization that “the more
similar a novel object is to a previously categorized object, the more likely the
novel object will be placed in the categorized object’s category.” This result
shows both the influence of aligning scene parts on categorization and a link
between similarity and other basic cognitive processes.

4.3. Other Experimental Findings

Although the following findings may seem rather loosely connected, the
observations will later be integrated into a single account of mapping and
similarity. The empirical results will be presented first, followed later by the
model’s explanations of the results.

4.3.1. MIPs and Feature Distribution. A robust effect found in our experi-
ments is that the importance of a MIP on similarity depends on how other MIPs
are distributed. First, similarity increases more if feature matches are concen-
trated in one pair of objects. Consider the two displays in Figure 6.8. In both
cases, there are four MIPs between the scenes (only true mapping trials are
included). In “concentrated” displays, such as the top display, the four MIPs are
concentrated in one pair of butterflies. One pair of butterflies has four matching
features, and the other pair of butterflies has no matching features. The average
similarity rating for “concentrated” displays is significantly greater than the
rating for “distributed” displays. In the lower “distributed” scene, two but-
terflies have three feature matches in common, and the other two butterflies
have a single matching feature. Similarity decreases still further, to 4.6, when
the MIPs are evenly split between the two pairs of butterflies. In short, a MIP
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Figure 6.8.
AlPs that are concentrated in a single pair of objects (top) increase
imilarity more than MIPs that are distributed over multiple pairs of objects

bottom).
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ncreases similarity more it is placed between objects that already share a large

umber of MIPs.

We get an analogous finding with dimensions. Namely, similarity is higher if
eature matches are concentrated in a few dimensions rather than distributed
cross many dimensions. If four feature matches are concentrated in two
imensions (for example, wing shading and head), then similarity is higher than
[ the four feature matches are distributed across all four dimensions.

4.3.2. Nondiagnostic Features and Mapping Accuracy. Feature matches
hat cannot serve, by themselves, as cues for placing scene parts into correspon-
ence still can increase mapping accuracy. Mapping accuracy can be measured
s the percentage of time that subjects place butterflies in correspondence with
ach other in a manner that maximizes the number of MIPs. In the left scenes of
‘igure 6.9, three dimensions are nondiagnostic: wings, body, and tail. These
imensions are nondiagnostic because both butterflies have the same values on
hese three dimensions. In the top display, the butterflies in the right scene do not
ave any nondiagnostic features in common with the left butterflies. The ability
f subjects to determine the optimal, or true mapping is poor; errors of mapping
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Figure 6.9.
Nondiagnostic features, if shared by two scenes, can still increase mapping
accuracy. In the top display, the nondiagnostic features of the left scene are
not shared by the right scene’s butterflies. In the bottom display, the left
scene’s nondiagnostic features are shared by the right scene’s butterflies,
thereby decreasing the number of mapping errors made.

AAAB XXXB

FALSE MAPPINGS = 33%

AAAB AAAB

FALSE MAPPINGS = 17%

are made on 33% of trials.' A mapping error occurs if subjects respond that the
top-left butterfly of the left scene corresponds to the bottom-right butterfly of
the right scene.

Mapping performance greatly improves in the lower display, where the three
nondiagnostic features of the left butterflies are also present in the right
butterflies. Even though the nondiagnostic features provide no direct cue that the
top-left butterflies correspond to each other (as do the bottom-right butterflies),
the shared nondiagnostic features do increase responses on the basis of the
HEAD dimension which is diagnostic for mapping. Subjects make their
mappings on the basis of the butterfly heads more when other features between
the scenes match than when they mismatch.

! One reason for such poor performance is that the butterflies that correspond to each other are
not always placed in the same relative spatial locations as they are in Figure 6.9. If corresponding
butterflies are given the same spatial locations, errors are made on only 18% of trials; this increases
to 37% if the corresponding butterflies are given unrelated spatial locations, and to 41% if the spatial
positions of butterflies are switched.
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4.3.3. The Time Course of MIPs and MOPs. According to the feature
integration theory developed by Anne Treisman and her associates (Treisman &
Gelade, 1980), focused selective attention is required to bind object features to
their objects/locations. If an object is displayed quickly, before attention can be
directed to it, then the object’s features will not be bound to the object. One
result of unbound features is “illusory conjunctions”; features from different
objects are combined together. The red color from one object, for example, may
be perceptually conjoined with the circular shape of another object.

One might consider applying this logic to our paradigm. We might expect that
MOPs would show most of their influence on similarity fairly early in
processing, just as illusory conjunctions occur only before attention can bind
features to objects. With time, as object-to-object correspondences become
clear, only MIPs would show a large influence on similarity. The feature
matches become bound to their correct correspondence with time. Until these
correspondences are created, there would be little difference between a MIP and
a MOP.

One of our ‘“same/different” experiments supports this notion. Subjects saw
two scenes and were required to report whether the scenes contained exactly the
same butterflies. The error rate on “different” trials was used as a measure of
similarity. Hypothetically, the more similar the two scenes are, the more likely a
subject will be to incorrectly report that the scenes are the same. The butterflies
in one of the scenes, the target scene, can be abstractly represented as AAAA
and BBBB, signifying that the butterflies are composed of four features, and the
features of one butterfly are completely different from the other butterfly’s
features. In the first panel of Figure 6.10 we compare the target scene to a base
scene. If we require subjects to respond within 2.5 seconds, a slow deadline,
subjects mistakenly think the scenes have the same butterflies 6% of the time.
This error percentage increases to 27% if subjects are forced to respond within 1
second.

The important aspect of the target and base scenes is that both of the target
butterflies have the most matching features with the top butterfly of the base
scene. The top butterfly of the base scene, BABA, has two matches in common
with both of the target scene’s butterflies. Thus, if we ignore the fact that one
object mapping can constrain another object mapping and just consider the
locally preferred mappings, we would want to map both target butterflies onto
the top butterfly of the base scene. However, if we maintain the global
consistency of our mappings, then we would not permit this many-to-one
mapping. The best globally consistent mapping is to map the top butterflies to
each other, and the bottom butterflies to each other. MIPs are defined as feature
matches between parts that are placed in “true” correspondence, and parts truly
correspond if they belong to the set of consistent correspondences that results in
the largest number of MIPs. As such, MIPs are matches between objects that are
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Figure 6.10.
The temporal course of MIP and MOP influence. If subjects must respond
within a very short time, then locally consistent matches increase similarity
(as measured by % confusions) more than globally consistent matches. If
subjects are given a longer deadline, then globally consistent matches
increase similarity more than locally consistent matches.

Globally consistent | Locally preferred

Target Base match kept match kept
% confusions
with Target, 6% 6% 3%

Slow Deadline

% confusions

with Target, 279, o, o
Fast Deadiine 18% 21%

mapped in a globally consistent fashion; MOPs are matches between objects
whose correspondence is not globally consistent.

In the next two scenes, we either take away one of the locally consistent
matches leaving the global matches intact, or take away one of the globally
consistent matches leaving the local matches intact. If we preserve the local
match, then there are more confusion errors with the target display than if the
global match is kept, but only at the fast deadline. At the slow deadline, keeping
the global match increases similarity/errors more than keeping the local match.
Locally consistent matches are more important than globally consistent matches
for similarity early in processing (fast deadline). Later in processing, globally
consistent matches are more important than locally consistent matches. It seems
that it takes time to set up the influence that one object-to-object mapping has on
another object-to-object mapping, and until this happens, error data show the
influence of many-to-one mappings. At first, both butterflies of the target are
mapped onto one butterfly of the other scene, but with time the influence of one
mapping redirects the other mapping.
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4.3.4. Sensitivity to Features of Aligned and Unaligned Objects. In addition
to obtaining estimates of similarity and mapping judgments, a third source of
data is the sensitivity with which subjects are able to report feature matches and
mismatches. We have found that subjects are more sensitive in reporting feature
matches and mismatches that occur between objects that are aligned than objects
that are unaligned.

Subjects are presented scenes composed of two butterflies that are displayed
on the screen for only five seconds. After the screen is erased, subjects first give
a similarity rating for the two scenes. Then, two pointers appear on the screen,
pointing to the previous locations of two butterflies. Subjects are told to respond
as to whether the butterflies referred to by the pointers had matching values on a
particular dimension (head, tail, body, or wings). Using the top display of Figure
6.3 as an illustration, the following four types of questions are asked, with the
following results:

Aligned Matches: Do A and C have the same WING SHADING? The
correct answer (Yes) was given on 85% of trials.

Aligned Mismatches: Do A and C have the same BODY SHADING? The
correct answer (No) was given on 71% of trials.

Unaligned Matches: Do A and D have the same BODY SHADING? The
correct answer (Yes) was given on 52% of trials.

Unaligned Mismatches: Do A and D have the same WING SHADING?
The correct answer (No) was given on 80% of trials.

These data are based on displays where one scene is identical to another scene
except along one dimension. The single changed dimension is changed by
introducing one or two completely new butterfly features, or by swapping one orf
two butterfly features.

These data suggest both a response bias and a sensitivity change (for a
discussion of these and other notions in signal detection theory, see Swets,
Tanner, & Birdsall, 1961) due to the alignment of butterflies. The response bias
is that if the butterflies correspond to one another, then subjects are more likely
to respond “Yes, the features match” than if the butterflies are not aligned. The
sensitivity change is reflected by the overall increase in accuracy in judgments
for aligned butterflies over unaligned butterflies. A signal detection analysis
indicates significantly greater sensitivity (d') for feature matches and mis-
matches that occur between butterflies that correspond to one another. Thus, it is
not simply that people assume that all features that belong to corresponding
objects match. Subjects are highly accurate at identifying mismatching features
between corresponding objects, much more accurate than they are at reporting
matching features for objects that do not correspond to one another. The act of
placing objects into correspondence increases sensitivity to all of their feature
correspondences, matching or mismatching. In order to know how likely a
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person will be to detect a matching or mismatching feature between two scenes’
parts, it is necessary to know whether the parts correspond.

5. AN INTERACTIVE ACTIVATION MODEL OF MAPPING
AND SIMILARITY

5.1. A Brief Overview of SIAM

In attempting to provide a framework to organize the seemingly disconnected
fragments of data reported, we have developed a model SIAM (Similarity as
Interactive Activation and Mapping).” Originally inspired by McClelland and
Rumelhart’s (1981) interactive activation model of word perception, SIAM also
bears many conceptual resemblances to Falkenhainer, Genter, and Forbus’s
(1990) SME, and many architectural and conceptual resemblances to Holyoak
and Thagard’s (1989) ACME system.

The primary unit of operation is the node. Nodes do only two things: (a) send
activation to other nodes, and (b) receive activation from other nodes. As in
wﬁngm, nodes represent hypotheses that two entities correspond to one another
in two scenes. In SIAM, there are two types of nodes: feature-to-feature nodes
and object-to-object nodes.

Feature-to-feature nodes each represent a hypothesis that two features
correspond to each other. There will be one node for every pair of features that
belong to the same dimension; if each scene has O objects with F features each,
there would be O°F feature-to-feature nodes.’ As the activation of a feature-to-
feature node increases, the two features referenced by the node will be placed in
stronger correspondence. All node activations range from 0 to 1. In addition to
activation, feature-to-feature nodes also have a “match value,” a number
between 0 and 1 that indicates how similar the two features’ values on a
dimension are. If two butterflies have the same type of head, then the node
hypothesizing that these two heads correspond to each other would receive a
match value of one. The match value decreases monotonically as the similarity

? A simplified version of SIAM is presented. A slightly different activation function and network
architecture is presented in Goldstone (1991).

? Although substantially less costly than the simple feature + conjunction feature encoding of
figures (requiring 2*—1 features per object if there are k simple features per object), SIAM and
ACME both require the postulation of a large number of nodes for complex objects. Both SIAM and
ACME create nodes for every possible feature-to-feature mapping. This proliferation of nodes is both
computationally costly and psychologically implausible. Mitchell and Hofstadter’s (this volume)
Copycat architecture permits creation of mappings “on the basis of need,” mappings are created
only if code is executed to create them. it remains to be seen whether the Copycat architecture can
successfully mimic the complex inhibitions and excitations of mappings in SIAM and ACME
without generating all potential mappings.
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of the butterflies’ heads decreases. Match values in SIAM play a similar role to
the semantic unit in ACME. Both structures serve to place parts that are
primitively similar in correspondence. In addition, match values influence
similarity directly; similarity is a function of the match values, weighted by the
attention paid to them.

Each object-to-object nodes represents an hypothesis that two objects
correspond to one another. There will be O’ object-to-object nodes if there are O
objects in each of two scenes. As the activation of an object-to-object node
increases, the two objects are said to be placed in tighter correspondence with
each other.

At a broad level, STAM works by first creating correspondences between the
features of scenes. At first, SIAM has “no idea” what objects belong together.
Once features begin to be placed into correspondence, SIAM begins to place
objects into correspondence that are consistent with the feature correspondences.
Once objects begin to be placed in correspondence, activation is fed back down
to the feature (mis)matches that are consistent with the object alignments. In this
way, object matches influence activation of feature matches at the same time that
feature matches influence the activation of object matches.

As in ACME and McClelland and Rumelhart’s original work, activation
spreads in SIAM by two principles: (a) nodes that are consistent send excitatory
activation to each other, and (b) nodes that are inconsistent inhibit one another.
Figure 6.11 illustrates the basic varieties of excitatory and inhibitory connec-
tions in Siam. There are four ways in which the activation from one node
influences the activation of another node:

1. Feature-to-feature nodes inhibit and excite other feature-to-feature nodes.
Feature correspondences that result in two-to-one mappings are inconsi-
stent; all other correspondences are consistent. The node that places Feature
2 of Object A in correspondence with Feature 2 of C (the A2 <> C2 node) is
inconsistent with the node that places Feature 2 of C in correspondence with
Feature 2 of B (the B2 <> C2 node). These nodes are inconsistent because
they would place two features from one scene into correspondence with a
single feature of the other scene. These nodes inhibit one another. The A2
« (2 node is consistent with the B2 <> D2 node; consequently, these nodes
will excite one another.

2. Object-to-object nodes inhibit and excite other object-to-object nodes. This
is analogous to the previous type of connection. Object correspondences that
are inconsistent inhibit one another. The node that places A and C in
correspondence inhibits the node that places B and C in correspondence (A
and B cannot both map onto C) and excites the node that places B and D in
correspondence.
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3. Feature-to-feature nodes excite, and are excited by, object-to-object nodes.
Object-to-object nodes that are consistent with feature-to-feature nodes will
be excited. The node that places A into correspondence with C is excited by
the node that places Feature 2 of A into correspondence of Feature 2 of C.
The excitation is bidirectional; a node placing two features in correspon-
dence will be excited by the node that places the objects composed of the
features into correspondence. In other words, the A <> C node sends
activation back down to the A2 <> C2 node.

4, Match values excite feature-to-feature nodes. Features are placed in
correspondence to the extent that their features match. If a match value is
greater than .5 (a value of 1.0 signifies two identical features), then the
activation of the node that places the features in correspondence will
increase. Otherwise the feature-to-feature node activation decreases.

These four activation-passing methods incorporate both weak and strong
consistency. Correspondences are weakly consistent if they do not yield an
inconsistent, many-to-one mapping. Lateral excitatory activation is based on

Obiject A ~GoC) - Object C
”
feature 1 0@ feature 1
” Excitatory
feature 2 —.feature 2 link
”
\\
> Inhibitory
) »” P ) link
Object B ===w== @\ e Object D
feature 1 . \\\ feature 1
'
feature 2 “————=F> 02 feature 2
Left Scene Right Scene

Figure 6.11.
Sample connections present in SIAM. Correspondences that are consistent
excite each other. Inconsistent correspondences inhibit each other. Nodes
are represented by ovals. Excitatory and inhibitory links are represented by
mM_E lines. Dashed lines represent the object or feature mapping indicated by
the node.
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weak consistency. The A2 « C2 feature-to-feature node is weakly consistent
with the B2 < D2 node, and the A & C object-to-object node is weakly
consistent with the B <> D node. Correspondences are strongly consistent if they
are structural consequences of one another. Vertical, or hierarchical, excitatory
activation is based on strong consistency. The A2 «> C2 feature-to-feature node
sends excitatory activation to the A « C object-to-object node because if two
objects’ features correspond to each other, then the objects should correspond as

well.
The net input to a node i is given by:

n
MA}-Eé:VlZmz
_i=r
=§..§>x-z_zv

Where n is the number of afferent links to node i (including excitatory links
from match values to nodes), A,, is the activation of node j at time ¢, and W, is the
weight of the link going from unit j to unit i. In the current modeling, all weights
are set equal to 1.0 (for excitatory connections) or -1.0 (for inhibitory connec-
tions).* Net,,is the activation of node i normalized by the difference between the
maximum (MAX) and minimum (MIN) activation values that i can possibly
attain, given the number of inhibitory and excitatory afferents to i. Net,, is
constrained to lie between 0 and 1. If i has 2 inhibitory and 1 excitatory afferents,
then MIN =-2 (if both inhibitory inputs were completely activated, and the
excitatory input was zero) and MAX =1. The new activation of a node at time
t+1 is a synchronously updated function of the old activation at time ¢ and the
normalized input activation, net,,, received by the node:

if net,,>0.5 then

A(t+1) = A@t) + (1 -A(1)) * (net,, - 0.5) * B, otherwise
Alt+1)=A() - A(t) * (0.5 - net,) *B

where B is a parameter for the rate of activation adjustment.
Once a cycle of activation adjustment has passed, similarity is computed via:

+ Goldstone (1991) allows for different sources of information to have different weights. Separate
weights are given for the influence of match values, features, and objects on feature-to-feature nodes,
and for the influence of features and objects on object-to-object nodes. When the weight associated
with the influence of objects on features is a free parameter, data fits are somewhat better than in the
currently presented model. Individual weight terms are not required for each feature value/dimension
because the experiments randomized these variables, and the modeled data collapse over different

feature value/dimension configurations.
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As such, similarity is computed as a function of the match values for each
mommca;o-mn&:a node, weighted by the activation of the node. Thus, the more
active a feature-to-feature node is, the more the particular matching or
mismatching value shared by the features will influence similarity. If the
features have the same feature value, then similarity will increase more if the
feature-to-feature node’s activation is high. Likewise, similarity will decrease
more if the features do not have the same value if they are also placed in strong
correspondence. The activation of a feature-to-feature node can be interpreted as
the attention paid to a matching/mismatching feature. The greater the activation
wm a feature-to-feature node, the more the feature match of mismatch will
E.z_wnzoo similarity. Similarity is normalized (by dividing by 2 A)) such that the
minimum similarity is 0.0 and the maximum similarity is 1.0. By normalizing
similarity, the similarity of two-scene displays with different numbers of objects
and features can be compared®. It should not be assumed that similarity is
algebraically computed by SIAM at the end of each cycle. Rather, this formula
for similarity should be viewed as a shorthand way of characterizing the state of
the network as a whole.

In our modeling, we set the following parameters to default values: B=1,
value for matching features = 1, and value for mismatching features = 0. The
following other options of SIAM were not used for the present modeling: decay
of activation, different W, terms for different types of connections, different W,
terms for matching and mismatching values, different W, terms for Ews—::m
and mismatching values, different feature saliences, and asymmetrical weight-
ing of features from the two scenes. In the most general version of SIAM, these
would all be free parameters.

5 Tversky’s Contrast model does not normalize for number of features. Two arguments are given
for not normalizing: (a) objects with many features are judged to be both more similar and more
&2082 than objects with fewer features (e.g., Russia and United States are judged to be both more
m:-..:m_. to and different from each other than are Ceylon and Nepal), and (b) many-featured identical
wc_ona are more similar than few-featured identical objects (e.g., an elephant is more similar to
itself than a simple line is to itself). The first result is accommodated by SIAM if matching features
are relatively influential in similarity judgments and mismatching features are relatively influential
in dissimilarity judgments (the Contrast model also requires this assumption), and if missing
features are given match values intermediate to those given for matching and mismatching features.
The second claim is incompatible with SIAM’s normalization, but its empirical status is uncertain
and intuitions are not completely clear that the claim is correct. ‘
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For the present modeling, the only parameter that is allowed to vary is the
number of times SIAM cycles through the four methods of adjusting activations.
Roughly speaking, the more cycles SIAM is allowed to complete, the more
individual node activations will be influenced by global consistency. If SIAM
runs for only a single cycle of activation adjustment, then MOPs and MIPs are
almost equally weighted. If SIAM is allowed many cycles of activation
adjustment, MIPs will become much influential than MOPs. Objects will begin
to be placed into correspondence, and once objects are placed in correspon-
dence, they will send activation down to the features that are compatible with
their alignment. MIPs will generally be compatible with the most activated
object-to-object correspondences, and thus will receive the most activation. The
isolated body shading MOPs of Figure 6.3 will not receive much weight in the
similarity calculation because they will not receive much activation from the
node that hypothesizes that A corresponds to D. The A <> D node will not be
highly activated because there are three inhibitory feature-to-feature nodes
(head, tail, wings) and only one excitatory feature-to-feature node (body
shading) activating it. In short, the influence of consistent feature-to-feature and
object-to-object mappings becomes more pronounced as the number of iterations
of activation adjustment increases. Aspects of the temporal course of human
similarity assessments are modeled by varying the number of cycles SIAM
executes.

SIAM is given two scene descriptions as an input. Each scene is organized
into objects, and the objects are organized into features with feature values. A
scene might be expressed as ((object 1 (head square) (tail zig-zag) (body-shading
white) (wing-shading checkered)) (object 2 (head triangle) (tail zig-zag) (body-
shading striped) (wing-shading spotted))). On the basis of the initial scene
descriptions, SIAM constructs a network of feature-to-feature nodes and object-
to-object nodes, and assigns initial match values (0 or 1) to feature-to-feature
nodes. All node activations are initially set to 0.5. SIAM gives as output the
similarity of the two scenes at every cycle of activation, the feature-to-feature
correspondences (derived from the feature-to-feature node activations), the
object-to-object correspondences, and the likelihood of performing a particular
mapping (derived from the object-to-object activations).

5.2. Evaluation of SIAM

The results of fitting SIAM’s output to subjects’ data are shown in Figure 6.12.
Data from three experiments are used: the original similarity rating study, the
replication in which no mapping judgments are required, and the same/different
response time experiment. Similarity, as measured by ratings and response
time, is compared to predicted values from SIAM and three other models.
SIAM is allowed to run from 1 to 20 cycles of activation adjustment. SIAM is fit
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Figure 6.12.

Data/Model correlations for SIAM (where SIAM is allowed to execute a
variable number of cycles) and three other models (Far ieft: MIPs and MOPs
are not distinguished; right: Only MIPs increase similarity, far right: MIPs
and MOPs both influence similarity and are differentially weighted). SIAM at
cycle 2 (for the rating data) and cycle 1 (for the response time data) correlates
significantly better with the human data from three experiments than the
other three models.
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to the subjects’ data with only “number of cycles” fit as a free parameter. All
other parameters are set to their default values. SIAM is fit to the average
similarity assessments for each functionally different display, averaging over
subjects and over the particular featural instantiation of the display type. For
example, in the first experiment, similarity ratings are modeled for 21 different
display types, each with a different combination of MIPs and MOPs. For the
similarity rating data, SIAM at two cycles correlates best with subject data
(Pearson’s r = .983 if no mappings are required, r = .968 if subjects are
required to place butterflies in correspondence with each other).® For the

¢ More cycles of activation adjustment would be required if B were set to a value less than one. In
the version of SIAM discussed by Goldstone (1991), more cycles of activation adjustment are required
for the best fitting model because node activations do not asymptote to zero (for MOPs) or one (for
MIPs). Even after activations have asymptoted, there is still an influence of MOPs on similarity.
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SIAM fits the data best when it is only allowed one cycle of
78). The different settings of the “number of cycles”
ause the “same/different” judgments are made
arity ratings are, and speed is modeled in

sponse time data,
ctivation adjustment (r=
arameter are reasonable bec
nuch more quickly than the simil

IAM by reducing the number of cycles.
The three models SIAM is compared against include models where MOPs

.nd MIPs are treated the same and both influence similarity, where only MIPs
nfluence similarity, and where MOPs and MIPs are differentially weighted and
yoth influence similarity. All three models yield significantly inferior fits to the
subject generated data for all three experimental tasks. The worst fit is provided
by the model that claims that similarity is a function of the total number of
matching features, irrespective of whether the match is a MIP or a MOP. This
model can be considered the “no alignment is necessary” model because
alignment is necessary to decide whether a match is in place or out of place. This
model is not capable of explaining our basic experimental result that the
importance of a match depends on whether it belongs to objects that correspond
to one another. According to this model, all matches are treated equivalently.
This model is tested by running a linear regression of “total number of MIPs and
MOPs” on similarity assessments. The demise of this model supports our claim
that object alignment is a necessary consideration when evaluating a feature’s
impact on similarity.

The second “straw-person” mo
of MIPs; MOPs do not influence simila

the rating data is quite good, reaching correlat
two sets of rating data. Its fit of the response time data is much worse, as might

be expected given the more substantial influence of MOPs in this data set.
SIAM’s superior fit’ supports the previous claim that pure *conjunctive feature”
(combinations of simple features, such as *‘Red square”) accounts of similarity
are unable to explain the influence of MOPs on similarity. At the very least, we

need both simple and conjunctive features.’

del characterizes similarity as only a function
rity at all. The ability of this model to fit
ions of r = .95 and r = .94 for the

-
7 Although the differences in correlation are small,
small differences are needed for statistical significance.

mple and conjunctive features is tested in Goldstone (1991) and
M. A fatal downfall of the model is that it bases the importance
of objects involved, and not on whether the objects are aligned.
bject BBBB and base object BABA have two simple features
B-B-) in common. If either B from BABA were replaced,

both a simple and a conjunctive feature match would be lost. BBBB and XX XB only have one feature
in common. As such, according to the “simple and conjunctive features” model, replacing a Bin
BABA will always decrease target-base similarity more than changing the B in XX XB. Conversely,
SIAM predicts that, in the long run, the importance of a feature match depends on object alignment.
BBBB is aligned with XXXB on the basis of global consistency. The empirical results support
feature weighting based on object alignment rather than object similarity when these two factors are

dissociated.

they are significant. When data/model

correlations are near 1.00, very

* A model that includes both si
found to fit the data worse than SIA
of a feature match on the similarity
For example, in Figure 6.10, target o
(B---and--B-) and one conjunctive feature (
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1. SIAM provides an account for how we match objects. The best alternatives
to SIAM are the model that has similarity as only a function of the number of
MIPs, and the model that differentially weights MIPs and MOPs to arrive at a
similarity assessment. Both of these models presume that there is a method for
determining whether a match is a match in place or a match out of place. One
model only includes MIPs, and the other model differentially weights MIPs.
SIAM gives a process model for determining how objects and features are
aligned and consequently gives a method for determining whether a given
feature match is in or out of place. SIAM, in addition to computing similarity,
also computes feature-to-feature and object-to-object alignments.

2. SIAM correctly makes time course predictions. SIAM predicts our results
that a globally consistent feature match increases similarity more than a local
match late in processing, whereas the locally consistent feature match increases
similarity more than the global match early in processing. The more cycles
SIAM executes, the more similarity is influenced by the requirement that object
mappings be consistent. While two objects may strongly map onto one object at
first, the nodes representing these incompatible mappings will strongly inhibit
each other. If there is even a weak advantage to one of the mappings, then the
other mapping will become increasingly weakened with time. SIAM also
correctly predicts that MOPs increase early assessments of similarity more than
late assessments, for the same reason. With time, object-to-object correspon-
dences will begin to influence feature-to-feature correspondences, and with this
influence, similarity will become selectively influenced by MIPs. The more
cycles SIAM completes, the more any given node is activated so as to be
consistent with all of the other nodes.

The analogical reasoning simulations that inspired SIAM, SME
(Falkenhainer et al., 1990) and ACME (Holyoak & Thagard, 1989), also
incorporate a local-to-global process of correspondence resolution. In SME,
locally consistent entity correspondences are first computed. These correspon-
dences are later combined into more globally consistent mappings. In SIAM,
like ACME, node activations become more influenced by other network
activations as more cycles of activation passing transpire.

3. SIAM predicts that nondiagnostic features, if present in two scenes,
increase subjects’ accuracy in making the correct butterfly-to-butterfly map-
pings. Mapping accuracy in SIAM is modeled by comparing the magnitudes of
object-to-object node activations. If the A-to-C node activation is 0.8 and the
A-to-D activation is 0.4, then the probability of a subject mapping A to C is
0.8/(0.8+0.4) = 67%. The more features (diagnostic and nondiagnostic) that
two objects share, the more strongly the objects will be placed in correspon-
dence, and consequently, the more strongly all feature matches shared by the
objects will be activated, including the diagnostic feature match. If the two
scenes do not agree on the nondiagnostic features, no objects will be placed in
strong correspondence, and no substantial level of activation will be fed back to
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the diagnostic feature. In this way, SIAM correctly predicts that even features
that provide no cue about what objects correspond to each other still can increase
mapping accuracy.

4. SIAM predicts that sensitivity (in the signal detection sense of the word) is
higher for feature matches and mismatches that occur in aligned objects than
unaligned objects. If two objects are placed in strong correspondence, then all of
the matching and mismatching features of those objects are made more
important for similarity assessments. If we assume that sensitivity to
(mis)matching features is a monotonically increasing function of the feature-to-
feature node activation, then subjects will be more sensitive to aligned feature
(mis)matches. Feature-to-feature node activations are used as indications of how
much attention a particular correspondence receives; the more a feature-to-
feature node is activated, the more the feature-to-feature value influences
similarity. The more attention a feature-to-feature (mis)match receives, the
greater the sensitivity will be for match/mismatch questions. McClelland and
Elman’s (1986) interactive activation model of speech perception has received
criticism for making a similar claim. Massaro (1989) argues that McClelland
and Elman’s TRACE model predicts non-constant phoneme sensitivities for
different speech contexts (for a more recent version of TRACE that does not
make this prediction see McClelland, 1991). No such sensitivity changes are
empirically obtained in the spoken word stimuli that have been used. However,
in the case of our butterfly scenes, we in fact do find sensitivity differences for
feature matches depending on the alignments of objects. For our domain, the fact
that an interactive activation model predicts context-dependent sensitivity
changes is a point in favor of the model.

5.3. Comparisons and Future Directions

The empirical results presented here are problematic for traditional models of
similarity that create independent representations of entities and compare these
representations for matching and mismatching features (Contrast model), or for
proximity on feature values (MDS). Even if entities are represented in terms of
simple (“white”) and conjunctive (“white spotted triangle”) features, many of
the more detailed results we obtained would not be predicted. In particular, no
account would be given of: the nonlinear effect of MOPs (2 MOPs > 1 MOP =
MOPs), the difference between true and false mapping trials on similarity
ratings, the relatively large impact of MOPs on similarity early in processing,
the influence of nondiagnostic features on mapping accuracy, the increased
similarity due to MIPs that are concentrated in few dimensions as opposed to
distributed across many dimensions, and the influence of alignment on feature
sensitivity.

In many ways, the closest neighbors to SIAM are models of analogy such as
SME and ACME. Our empirical results were not compared with these models’



356 GOLDSTONE & MEDIN

predictions in a rigorous manner. SME and ACME were not principally designed
to handle similarity data, and there are several issues that arise when they are
applied to our results. In particular, if SME’s assessment of a pair of scenes is
limited to a single best GMAP (a single set of consistent correspondences
between two structured representations) then SME does not predict that MOPs
increase similarity. For a MOP to increase similarity, mutually exclusive
correspondences must be integrated into a single estimate of similarity. SME
would have to allow for multiple conflicting GMAPs to simultaneously increase
similarity (Janice Skorstad and Dedre Gentner are currently working on
possibilities along these lines).

Likewise, MOPs do not increase similarity in ACME if similarity is
measured as the numbers of “cycles to success, the number of cycles required for
all of the correct individual mapping hypotheses to reach an activation level
exceeding that of their nearest competitor.” Instead, MOPs would decrease this
measure of similarity because MOPs tend to activate globally inconsistent
object-to-object alignments, and thus slow down convergence to the correct
object-to-object mappings. ACME also incorporates a measure G, “a rough
index of the overall fit of the emerging mapping to the constraints” imposed by
the network. In some senses, G captures some notion of similarity: if the system
is relatively “happy” in the correspondences it is setting up between scenes, G
will tend to be high. G increases monotonically with the number of cycles of
activation adjustment; as ACME settles into a solution, G necessarily increases.
While G captures the notion that activations tend to strive for global consistency,
it does not necessarily capture the notion of overall similarity. Human assess-
ments of similarity do not always increase with time; in fact, with similarity
measured as the number of errors on “different” trials, similarity virtually
always decreases with longer display exposure or longer response deadlines. In
SIAM, similarity is a function of activations and the feature match values.
While a feature-to-feature activation may become increasingly influenced by
object correspondences, if the features do not in fact have the same feature value
then similarity will still be lowered by this mismatch. Massaro (1989) has
argued that interactive activation models are nonoptimal because they distort
environmental input more than is reasonable; the integrity of the information
sources is compromised by other activations. In SIAM, the feature match values
are not subject to modification by activations, and thus the information they
provide is never lost by other activations. What changes is the weight given to the
match values.

ACME and SME both support a large range of relational/propositional
expressions. With SIAM, we have opted for a much simpler, comparatively
impoverished model in order to account for the empirical details of a few
particular data sets. We have also begun to extend SIAM in the direction of
increasing relational complexity. In a more recent version of SIAM (Goldstone,
1991), in addition to feature-to-feature and object-to-object connections, there
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Figure 6.13.
The comparison of these sport scenes involves alignment on the basis of
functional role. The bowling ball has more physical features in common with
the bull’s-eye, and the arrows have more physical features in common with
the bowling pins. However, the intuitive mapping most likely places the
bowling ball in correspondence with the arrow, and the pins in correspon-
dence with the target.

~O 888

B

are role-to-role nodes that place the abstract roles of one scene into correspon-
dence with the abstract roles of the other scene. With these nodes, objects can be
placed in correspondence because of their featural overlap or because they play
the same role in two scenes. For example, the question can be raised: What does
the bowling ball of Figure 6.13A correspond to in Figure 6.13B? Although the
roundness of the ball may prompt aligning it with the bull’s-eye of Figure 6.13B,
the role of the ball in the abstract description “actor propelling projectile toward
target” would dictate mapping the bowling ball of Figure 6.13A onto the arrow
of Figure 6.13B. The role-to-role correspondence between the projectiles of the
scenes would activate the object-to-object node that places the ball and arrow
into correspondence (see Markman & Gentner, 1990, for experimental con-
firmation of the importance of roles in similarity comparisons).
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One of our central claims has been that scene representations are not
-ompletely determined prior to the comparison process. We have argued that the
veight that a feature match or mismatch has depends on how the two scenes
lign with one another. However, there is a more fundamental way in which
epresentations may not be precomputable. We have recently obtained results
suggesting that the actual features that describe scenes may not be developed
ndependently of the comparison. In Figure 6.14, when A is compared to B,
mnore often than not, a subject will list as a shared feature the fact that both A and
8 have three prongs/fingers. However, a second group of subjects, asked to
~ompare B and C, more than half of the time list as a shared feature the fact that
»oth B and C have four prongs/fingers. Assuming these groups of subjects have
he same initial tendency to see B as three vs. four pronged, we conclude that the
featural description of B depends on what it is compared with. Given the

A and B share:
Three prongs
A and B differ:
A and B point in
different directions B

B and C share:
Four prongs
B and C differ:
B has one small/
warped prong c

Figure 6.14.
Subjects are asked to compare B with A and C, listing mm::_nzzom m.:a
differences. When B is compared to A, B is most often given the description
“three prongs.” When B is compared to C, B is most often given the
description ““four prongs.”
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implausibility of B having static, precomparison descriptions of both “three
prongs” and ‘“four prongs,” we conclude that the prong description for B is at
least partially created only once it has been paired with A or C. Not only are
feature saliences influenced by the process of aligning scene parts, but the
features themselves are determined by the comparison process as well. SIAM as
currently conceived cannot handle this finding, but the finding is consistent with
the general theory that entity representations are dynamically constructed on the
basis of the actual comparison being made, and are not static or completely
prewired.

It might be argued that SIAM’s representations are no less prewired than
those used by the Contrast model or MDS. SIAM takes as input scene
descriptions that are expressed as objects with feature slots and values, and these
descriptions do not change with processing. However, what does change with
processing is the degree to which two feature values correspond to each other.
The salience of a feature (mis)match depends on the alignment of the objects
involved, and the objects’ alignment cannot be determined until other features
and objects are compared. It is for this reason that we claim that the weight or
salience of a feature in a similarity assessment is not completely determined
before it enters into the comparison.

6. CONCLUSIONS
The experiments and model presented here have pointed to three conclusions:

1. The act of comparing things naturally involves aligning the parts of the
things to be compared.

2. Similarity assessments are well captured by an interactive activation process
between feature and object correspondences.

3. What counts as a feature match, and how much it will count, depends on the
particular things being compared.

Comparison naturally involves alignment. Even when subjects are not
instructed to do so, even when indirect measures of similarity are used, subjects
in our experiments set up correspondences between the parts of things they
compared. These correspondences influence the particular features that are
attended, and the other correspondences that are created. Relative to feature
matches between noncorresponding objects (MOPs), feature matches between
corresponding objects (MIPs) increase similarity ratings, slow down subjects’
responses to say scenes are different, increase the proportion of trials in which
subjects call two different scenes the same, and influence categorization
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decisions. The actual correspondences set up by a subject influence the
perceived similarity of two scenes.

Similarity assessments are well captured by an interactive activation process
between feature and object correspondences. SIAM is able to capture empirical
details not captured even by the model of similarity that makes a conceptual
distinction between MIPs and MOPs and differentially weights the two types of
matching features. SIAM gives good fits to data collected by subjects, and
makes correct predictions with regard to the distribution of feature matches
(concentrated MIPs increases similarity more than distributed MIPs), the time
course of similarity (MOPs increase similarity more early in processing than
later), and sensitivity to features (sensitivity is greater for feature (mis)matches
belonging to aligned objects than unaligned objects). The most important
insight of SIAM is that there is a relation of mutual dependency between
hierarchical levels of a scene. Object correspondences depend on feature-to-
feature similarities. The more features two objects have in common, the more
strongly the objects will be placed in correspondence. Reciprocally, feature
correspondences depend on object-to-object similarities. The greater the sim-
ilarity between two objects, the more strongly the features of the objects will be
placed in correspondence. How much a feature match counts toward similarity
depends on whether it matches aligned objects. Feature and object alignments
mutually influence each other, and together they determine the similarity of
whole scenes. This picture of mutual dependency is in contrast to traditional
models of similarity which have little to say concerning how feature matches and
mismatches are determined.

What counts as a feature match, and how much it will count, depends on the
particular things being compared. We have argued against models of com-
parison that develop independent representations of the things to be compared,
and then evaluate these representations for overlap and proximity of values.
Representations are not created independently—the weight that a feature has in a
comparison cannot be determined until the feature is brought into alignment
with its counterpart in the other scene. We cannot know a priori how much a
given feature such as “triangle,” if it matches, will influence similarity. The
feature match may increase similarity a great deal, or not very much at all,
depending on how the scene’s parts are aligned more globally.

If we begin our analysis of the comparison process by assuming “A has these
features, B has these features, and the features have saliences X, Y, and Z” then
we may unwisely ignore the most interesting cognitive phenomena involved in
comparing things. It may turn out that the cognitive processes most in need of
explanation are not those processes responsible for integrating matching and
mismatching features into a single estimate of similarity, but are those processes
responsible for figuring out exactly what will count as matching and mismatch-
ing features and how much weight to give these features.

SIMILARITY, INTERACTIVE ACTIVATION, AND MAPPING 361

REFERENCES

Beck, J. (1966). Effect of orientations and of shape similarity on perceptual grouping.
Perception and Psychophysics, 1, 300-302.

Carroll, J D., & Wish, M. (1974). Models and methods for three-way multidimensional
scaling. In D.H. Krantz, R.C. Atkinson, R.D. Luce, & P. Suppes (Eds.),
Contemporary developments in mathematical psychology (Vol. 2, pp. 57-105). San
Francisco: Freeman.

Clement, C., & Gentner, D. (188). Systematicity as a selection constraint in analogical
mapping. Proceedings of the Tenth Annual Conference of the Cognitive Science
Society (pp. 421-419). Hillsdale, NJ: Erlbaum.

Falkenhainer, B., Forbus, K.D., & Gentner, D. (1990). The structure-mapping engine:
Algorithm and examples. Artificial Intelligence, 41, 1-63.

Gati, 1., & Tversky, A. (1984). Weighting common and distinctive features in perceptual
and conceptual judgments. Cognitive Psychology, 16, 341-370.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive
Science, 7, 155-170.

Gentner, D., & Clement, C. (1988). Evidence for relational selectivity in the interpreta-
tion of analogy and metaphor. In G. H. Bower (Ed.), The psychology of learning
and motivation (Vol. 22, pp. 307-358). New York: Academic Press.

Gentner, D., & Toupin, C. (1986). Systematicity and surface similarity in the develop-
ment of analogy. Cognitive Science, 10(3), 277-300.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer.
Cognitive Psychology, 15, 1-39.

Goldstone, R. L. (1991). Similarity, interactive, activation, and mapping. Unpublished
doctoral dissertation, University of Michigan, Ann Arbor.

Hall, R. P. (1989). Computational approaches to analogical reasoning: A comparative
analysis. Artificial Intelligence, 39, 39-120.

Holyoak, K. J., & Thagard, P. (1989). Analogical mapping by constrain satisfaction.
Cognitive Science, 13, 295-355.

Keren, G., & Baggen, S. (1981). Recognition model of alphanumeric characters.
Perception and Psychophysics, 29, 289-294.

Kolers, P. A. (1972). Aspects of motion perception. New York: Pergamon Press.

Markman, A. B., & Gentner, D. G. (1990). Analogical mapping during similarity
judgments. Proceedings of the Twelfth Annual Conference of the Cognitive Science
Society (pp. 38—44).

Marr, D. (1982). Vision. San Francisco: Freeman.

Marr, D., & Poggio, T. (1979). A computational theory of human stereo vision.
Proceedings of the Royal Society of London, 204, 301-328.

Massaro, D.W. (1989). Testing between the TR ACE model and the fuzzy logical model of
speech perception. Cognitive Psychology, 21, 398-421.

McClelland, J. L. (1991). Stochastic interactive processes and the effect of context on
perception. Cognitive Psychology, 23, 1-144.

McClelland, J.L., & Elman, J.L. (1986). The TRACE model of speech perception.
Cognitive Psychology, 18, 1-86.



362 GOLDSTONE & MEDIN

McClelland, J. L., & Rumelhart, D.E. (1981). An interactive activation modei of context
effects in letter perception: Part 1. An account of basic findings. Psychological
Review, 88, 375-407. . o

Nosofsky, R. M (1986). Attention, similarity, and the identification-categorization
relationship. Journal of Experimental Psychology: General, 115, 39-57.

Ramachandran, V. S., & Antis, S. M. (1986). Perception of apparent motion. Scientific
American, 254, 102-109. .

Richardson. M. W. (1938). Multidimensional psychophysics. Psychological Bulletin, 35,
659-660. .

Roth, E. M., & Shoben, E. J. (1983). The effect of context on the structure of categories.
Cognitive Psychology, 15, 346-378. o

Sattath, S., & Tversky, A. (1987). On the relation between common and distictive feature
models. Psychological Review, 94, 16-22. . .

Smith, E. E., Shoben, E. J., & Rips, L. I. (1974). Structure and process in semantic
memory: A featural model for semantic decisions. Psychological Review, 81,
214-241. . .

Swets, J. A., Tanner, W. P, & Birdsall, T. G. (1961). Decision processes in perception.
Psychological Review, 68, 301-340. N

Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive
Psychology, 12, 97-136.

Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.

Ullman. S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.

7

Connectionist Implications for
Processing Capacity Limitations
in Analogies

Graeme S. Halford

William H. Wilson

Jian Guo, Ross W. Gayler, Janet Wiles,
and J.E.M. Stewart

1. CONNECTIONIST IMPLICATIONS FOR PROCESSING
CAPACITY LIMITATIONS IN ANALOGIES

There is now a reasonable amount of consensus that an analogy entails a
mapping from one structure, the base or source, to another structure, the target
(Gentner, 1983, 1989; Holyoak & Thagard, 1989). Theories of human analogical
reasoning have been reviewed by Gentner (1989), who concludes that there is
basic agreement on the one-to-one mapping of elements and the carry over of
predicates. Furthermore, as Palmer (1989) points out, some of the theoretical
differences represent different levels of description rather than competing
models. Despite this consensus about the central role of structure mapping, it
really only treats the syntax of analogies, and there are also important pragmatic
factors, as has been pointed out by Holland, Holyoak, Nisbett, and Thagard
(1986) and Holyoak and Thagard (1989). However in this chapter we are
primarily concerned with the problem of how to model the structure mapping or
syntactic component of analogical reasoning in terms of parallel distributed
processing (PDP) architectures.

According to Gentner (1983), attributes are not normally mapped in analo-
gies, and only certain relations are mapped, the selection being based on
systematicity, or the degree to which relations enter into a coherent structure.

* We are grateful to Murray Maybery for very stimulating discussion of some of the issues
addressed in this chapter.
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