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Perception and Simulation During Concept Learning

Erik Weitnauer1, 2, Robert L. Goldstone1, and Helge Ritter2
1 Department of Psychological and Brain Sciences, Program in Cognitive Science, Indiana University

2 Center for Cognitive Interaction Technology, Bielefeld University

A key component of humans’ striking creativity in solving problems is our ability to construct novel
descriptions to help us characterize novel concepts. Bongard problems (BPs), which challenge the problem
solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant
test of this ability. BPs are challenging for both human and machine category learners because only a
handful of example scenes are presented for each category, and they often require the open-ended creation of
new descriptions. A new type of BP called physical Bongard problems (PBPs) is introduced, which requires
solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The perceiving
and testing hypotheses on structures (PATHS) computational model, which can solve many PBPs, is
presented and compared to human performance on the same problems. PATHS and humans are similarly
affected by the ordering of scenes within a PBP. Spatially or temporally juxtaposing similar (relative to
dissimilar) scenes promotes category learning when the scenes belong to different categories but hinders
learning when the similar scenes belong to the same category. The core theoretical commitments of PATHS,
which we believe to also exemplify open-ended human category learning, are (a) the continual perception of
new scene descriptions over the course of category learning; (b) the context-dependent nature of that
perceptual process, in which the perceived scenes establish the context for the perception of subsequent
scenes; (c) hypothesis construction by combining descriptions into explicit rules; and (d) bidirectional
interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that
distinguishes categories.
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Humans use concepts to organize our world, make inferences,
predict future outcomes, and compose complex ideas. They act as
the building blocks for thought and are involved when we generalize
from our previous experiences to new situations (Goldstone et al.,
2018; Goodman et al., 2008; Tenenbaum et al., 2011). Although
there is no shortage of models for how people acquire and use
concepts (Anderson, 1991; Kruschke, 1992; Love et al., 2004;
Nosofsky, 1986), there is a conspicuous gap between their restricted
capacity to generalize beyond the trained examples and the highly
flexible nature of people’s ability to construct concepts in an open-
ended manner from very few examples (Lake et al., 2015, 2017;
Murphy&Medin, 1985). Furthermore, most existing models bypass
the problem of grounding concepts in perceptual processes that take
as input rich descriptions of objects that can be interpreted in
multiple ways. They instead represent objects as fixed points in a
multidimensional physical (Aha & Goldstone, 1992; Medin &
Schaffer, 1978) or psychological (Nosofsky, 1984; Palmeri, 1997)
space without modeling the perceptual and conceptual processes
through which the stimuli are assigned their coordinates.

The goal of our perceiving and testing hypotheses on structured
(PATHS) data model is to flexibly form new concepts from
examples, by combining perceptual processes over rich inputs with
a mechanism for building new, structured descriptions out of
previously built descriptions. To achieve this, we follow four core
theoretical commitments, which we believe also exemplify open-
ended human category learning: (a) the continual perception of
new scene descriptions over the course of category learning, (b) the
context-dependent nature of that perceptual process, in which the
perception of scenes establishes the context for the perception of
subsequent scenes, (c) hypothesis construction by combining
descriptions into explicit rules, and (d) bidirectional interactions
between perceiving new aspects of scenes and constructing hypotheses
for the rule that distinguishes categories.

We explore the range of these principles in PATHS for a class of
learning tasks that require to infer concepts from a small set of 2D
drawings of physical scenes that are challenging for humans and
that have been studied in a nonphysical variant introduced under
the name of “Bongard problems” (BPs; Bongard, 1970).
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Existing Models of Concept Induction

Given the central role that concepts play in cognition, it is hardly
surprising that developing computational models of concept
learning has been a major and productive research enterprise in
both psychology and computer science. Much of the activity in
both fields has centered on building models of concept induction.
The inputs for models of concept induction are examples tagged
with their correct concept labels. The output is a rule, characterization,
or method for reliable identification of the presented inputs. Versions
of this task are pervasive for children, experts, and machine learning
systems. Children develop concepts of dog, sticker, and eight by
experiencing multiple examples of each concept with a parent or
teacher providing the concept label in word form (Roy et al., 2015).
Much of expertise involves creating advanced concepts for the objects
in one’s chosen domain of expertise (Gauthier et al., 2010), such as
malignant tumor for radiologists, mixolydian mode for musicians,
field for physicists, or car models for automobile enthusiasts (Ross
et al., 2018). Classic applications of concept induction in machine
learning and artificial intelligence (AI) include diagnosing soy bean
diseases (Michalski & Chilausky, 1980), classifying soil types
(McBratney et al., 2003), and recommending medical treatments
(Esfandiari et al., 2014).
Learning concepts from examples has been a cornerstone of AI

from its beginnings in the 1960s. Inductive learning techniques
come up with rule-based hypotheses based on a set of positive and
negative examples, such as learning the concept of an arch from
carefully crafted positive and negative examples (Winston, 1970).
Inductive learning necessarily involves generalization beyond
the presented examples, and T. M. Mitchell (1982) formalized
generalization as a search in a typically immense space of possible
hypotheses. To choose one generalization over another given that
both match the training data equally well requires constraints in the
learner (T. M. Mitchell, 1980). In AI, heuristics affect the order in
which the space of generalizations is searched. Two high-level
heuristics with several offshoots for how to search the hypothesis
space are divide-and-conquer and separate-and-conquer techni-
ques. Divide-and-conquer algorithms recursively split a data set
into disjunctive sets, which are then tackled independently. Work
on learning structured concepts (Hunt et al., 1966), discrimination
nets (Simon & Feigenbaum, 1964), and decision trees such as ID3
(Quinlan, 1986) uses the divide-and-conquer approach. All separate-
and-conquer algorithms use a similar top-level loop that searches for a
rule that explains some of the positive examples, then separates these,
and recursively continues the search on the remaining examples
(Fürnkranz, 1999). The AI algorithms can be compared in terms of
the inductive biases they impose on the language used to describe
examples, the order in which hypotheses are searched, and simplicity
of expressions to avoid overfitting. Another source of bias,
background knowledge, is integrated with training examples into
a combined deductive and inductive logical inference system as a
core part of the learning process (Muggleton, 1992; Muggleton &
De Raedt, 1994). Efforts have also been made to combine
inductive logic programming with probabilistic and statistical
inference (Dietterich et al., 2008; Getoor & Taskar, 2007).
However, even with this broadening of structured representations

to include uncertainty, these systems typically ignore, or at least
underemphasize, the important cognitive work needed to create new
perceptual descriptions to be entered into structured descriptions of

concepts. For example, when John Snow was trying to figure out
the basis for categorizing 1854 Londoners as either suffering from
cholera or not, he had to create a hitherto unimagined new
description based on Londoners’ use of water obtained from a
particular, contaminated pump (Johnson, 2006). Around the same
time, James Maxwell developed a conceptualization of pressure
that was grounded in invisible gas molecules colliding against a
container wall. Major conceptual innovations in science, mathe-
matics, music, and art often involve constructing fundamentally
new descriptions of entities in a world. Creating new concepts
by coming up with fundamentally new descriptions may reach
elevated peaks in scientists, artists, and mathematicians, but it is a
cognitive activity engaged in by every expert and every child as
well. Realizing that verbs need to be classified and used differently
according to whether they refer to an imagined or real event
(subjunctive: “If I were a rich man” vs. simple past: “When I was a
rich man”) requires learners to be able to flexibly come up with
new descriptions from rich perceptual and conceptual inputs. The
same is true for recognizing that frogs can be distinguished from toads
based on dryness of skin. Such abilities are still conspicuously absent
in AI systems (Lara-Dammer et al., 2019; M. Mitchell, 2019).

A branch of AI, constructive induction, might at first sight seem to
have solved this problem, given its described objective of inventing
new descriptions to be used to support concept learning (Arciszewski
et al., 1995; Medin et al., 1987; Wnek &Michalski, 1994). However,
a closer inspection indicates that constructive induction systems have
a rather limited capacity to construct new descriptions. Given a
symbolic vocabulary including square and red, these systems can
construct new descriptions that are Boolean logical combinations of
these elements, such as square AND red or Square IF AND ONLY IF
red. There have also been proposals for automatically creating range
descriptions, such that if numerosities of 12, 14, 15, 18, and 20 have
all been associated with a concept, a new description of the form
12–20 may be generated (Diettrich & Michalski, 1985). Another
proposal, ascending concept hierarchies, allows a system to
generalize beyond dog, dolphin, and bat to generate the description
mammal, if it has been provided the information that all three
animals are, in fact, mammalian. However, a basic problem with
these systems is that the highly simplified and idealized symbolic
representations allow for very limited opportunities for flexible
redescription.

A different approach for learning new descriptions comes from
the burgeoning field of deep learning within machine learning.
Deep learning systems are neural networks with many layers of
intermediary units that transform inputs into outputs, and learning
involves changing the connection strengths between layers (LeCun
et al., 2015). A subfield within deep learning, representation
learning, has the explicit goal of automatically creating repre-
sentations from rich inputs that promote classification and
prediction (Bengio et al., 2013). The representations typically
take the form of internal units connecting, sometimes in long
chains, inputs (e.g., 2D pixel-based encodings of many photo-
graphs) to outputs (e.g., category labels such as “German Shepard”
and “airplane”) that respond selectively to specific dimensions,
features, or parts of the inputs. Deep learning systems have
successfully acquired internal representations sufficiently sophis-
ticated to play a better game of Go than any human (Silver et al.,
2017) and classify skin lesions into medical categories at human
levels of accuracy (Esteva et al., 2017). Impressively, some of these
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systems can disentangle inputs into component dimensions that are
readily interpretable by humans. For example, hand-drawn digits can
be decomposed into dimensions corresponding to the identity of the
digit, its rotation, andwidth (Chen et al., 2016). Likewise, faces can be
decomposed into their identity, displayed emotion, and orientation
(Guo et al., 2016). Such representations often arise when encoding the
images in a low-dimensional space such that images can be faithfully
reconstructed from their encodings (Higgins et al., 2017). This
approach is quite interpretable due to the constraint that the low-
dimensional encodings are to follow a standard normal distribu-
tion: It is easy to see in which way a particular input might be
exceptional.
Two shortcomings with initial efforts to learn new representa-

tions with deep learning systems are the large amount of training
needed to acquire effective internal representations, and the lack of
explicit, structural descriptions that can be entered into generative,
compositional expressions (Lake et al., 2017). Recent efforts have
tackled both of these challenges. One- and few-shot learning
algorithms are able to learn classifications from very small training
sets by augmenting standard back-propagation deep learning with
memory for stored instances (Webb et al., 2021) and attentional
highlighting of particularly diagnostic features or spatially compact
parts (Zhang et al., 2018). Another augmentation of standard deep
learning systems has been proposed to enable these networks to learn
relational descriptions. Such descriptions are required to answer
questions like “Are there any blue things that are the same size as the
yellow tall cylinder?” when presented with an accompanying image
of a complex scene containing colored geometric objects (Vinyals
et al., 2016). Relational learning networks can learn to classify images

of everyday objects or novel characters from just a few examples
(Sung et al., 2018).

BPs

BPs offer an elegant domain for concretely exploring issues
related to concept induction. Mikhail Bongard (Bongard, 1970)
proposed that a challenging task for future AI systems would be to
determine the rule that distinguishes between two categories, with
the input being six examples belonging to each category. Each
example is a scene made up of visual elements, typically abstract
shapes, lines, and forms. Six scenes are positioned on the left side
and are members of one category; the other six scenes are positioned
on the right side and belong to a second category. Figure 1 shows
four examples of BPs, with the reader invited to try to determine a
rule for distinguishing the left versus right scenes (solutions are in
Appendix A). Bongard provided 100 such problems of increasing
difficulty. Hofstadter (1979) introduced BPs to a wide audience and
created many new BPs, and the Phaeaco model was subsequently
built to solve some of them (Foundalis, 2006). Impressively,
Phaeaco’s architecture incorporates both low-level perceptual
processes working at the pixel- and high-level symbolic analogical
reasoning processes. Since then, additional systems have been
proposed to solve BPs, including both deep learning neural
network (Yun et al., 2020) and more symbolic (Depeweg et al.,
2018) approaches.

BPs have a number of useful properties for comparing human and
machine problem solving. First, because they generally involve
abstract visual forms, they require few culturally specific sources of
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Figure 1
Four Bongard Problems

Note. The task is to find a rule that distinguishes the six panels on the left from the six panels on the right.
Solutions are provided in Appendix A. See the online article for the color version of this figure.
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knowledge that a general problem solver would need to have
learned. While sensitivity to some geometric properties may depend
upon education and immersion in a particular culture, the kinds that
feature prominently in BPs are frequently noticed by individuals
coming from very disparate cultures (Dehaene et al., 2006). Second,
BPs crucially involve the creation of new descriptions that are
unlikely to be part of the initial representation that an observer
forms when seeing a scene. For example, to solve the lower right
problem in Figure 1, the observer needs to create a description that
explicitly relates the lengths of two lines (one actual and one that must
be projected by the solver) within a scene—something like equal
(length(Line1), length(Line2)). Given the large number of potential
relations that could be read off of a scene, it is unlikely that all of these
are part of the observer’s initial description (Hummel & Holyoak,
1997). As such, these problems allow us to explore the key process of
computing new descriptions in order to characterize a category. Third,
unlike the massive amount of training examples required by many
deep learning systems, solving BPs requires learning category
descriptions from only a few examples per category. Machine
learning approaches that can learn from only a few examples, “few-
shot learning systems,” usually succeed by having strong constraints
on the kinds of hypotheses that they form. For example, in the
Omniglot project (Lake et al., 2015), previously unknown handwrit-
ten characters can be learned and generalized to new instances
because characters are assumed to be generated by motions
constrained to be easily produced by hands. This combination of
open-ended description creation and very limited number of training
instances makes BPs a paradigmatic case of inductive learning.
People have a remarkable ability to create new descriptions from
very few examples if the examples are chosen for their
diagnosticity and capacity to eliminate ambiguity with respect
to satisfactory rules.
More broadly, BPs provide a fertile testing ground for theories

of creativity. Most of the component processes involved in creative
problem solving, such as information gathering, conceptual
combination, idea generation, and idea evaluation (Mumford &
McIntosh, 2017), are core to solving BPs. The open-ended nature
of BPs also fits a growing interest in infant (Twomey &
Westermann, 2018) and machine learning (Stanley & Lehman,
2015) that is governed by curiosity-driven exploration rather than
maximization of an objective function. Solving BPs often
involves simply trying to notice new things in a scene without
directly engaging in hypothesis testing.
We introduce a new kind of BPs that we call physical Bongard

problems (PBPs). In these problems, constraints on the content of
the scenes are introduced in order to shift the focus from low-level
visual processing toward dynamics, simulation, and interaction. To
solve a PBP, the solver must perceive and predict the spatial
dynamics in the depicted physical scenes. This predictive aspect of
perception is essential for embodied agents that interact with a
dynamic world in general and is strongly present in human cognition
(Clark, 2013; Hubbard, 2005). To solve PBPs, assumptions are made
about a mass associated with each object and the presence of a
downward-directed gravitational force. Recent research indicates that
people often dynamically simulate scenes using an internal model
that is roughly comparable with a virtual physics engine to draw
inferences (Allen et al., 2020; Battaglia et al., 2013; T. D. Ullman
et al., 2018). Consistent with this work, PBPs require physical
interactions to be simulated to see common properties shared by

scenes belonging to the same category. For example, the scenes
may contain arbitrary nonoverlapping rigid objects that could
stand stably on the ground, be positioned in midair, or be placed on
the side of a steep hill. The objects are understood to be at rest at the
time of the initial scene and no hidden joints or self-propelled
objects are allowed. We have created 36 PBPs, which explore
different feature and relation types as well as different solution
structures. They are based on static or dynamic object properties
such as “shape” and “stability,” on spatial and physical relations
between objects such as “left of,” “close to,” and “supports,” as
well as properties of groups of objects or whole scenes such as
numerosity and predictability. Some problems focus on events that
happen at a particular time during the imagined unfolding of events
like collisions between objects, whereas others are based on the
reaction of objects to a simple kind of imagined interaction, like
pushing or lifting an object.

Four examples of PBPs are shown in Figure 2. Our reasons for
introducing PBPs as a special, hitherto unconsidered case of BPs are
threefold. First, because the would-be solver needs to simulate the
events within a scene to find the discriminating rule, PBPs make it
particularly clear that the features that enter into these rules are not
immediately available when a scene is presented to the solver. For
example, for the upper right BP in Figure 1 it might be tempting to
assume that features such as black and circle are immediately
registered and part of the initial, default representation for the scene.
In contrast, it is clear that the solution-relevant description landing
location between two identical objects cannot be immediately read
off of the scenes in the upper right BP of Figure 2. Generating this
description requires an internal simulation to be run that obeys
gravity and physical laws of interaction between objects.

Second, because the solutions to PBPs require internal simulations
that are computationally costly, they emphasize the need to prioritize
the computation of descriptions. While circlemay be instantaneously
available to a concept induction system if it is part of the encoding of a
scene, the description landing location between two identical objects
can only be ascribed to a scene after a costly computation, thereby
highlighting the need to prioritize the derivation of descriptions.
For the PATHS model that we describe next, every scene in a PBP
establishes a context for every other scene. As a result, descriptions as
they are created for one scene affect the prioritization of descriptions
in other scenes.

Third, PBPs require flexible interpretive processes that are a
hallmark of adaptive intelligence and are still challenging for modern
machine learning systems. There have recently been striking
advances in systems that can generate richly and compositionally
structured images from text descriptions (Ramesh et al., 2022), learn
how to improve their own learning across tasks (Flennerhag et al.,
2022), and appropriately respond to a broad range of natural language
queries (Bubeck et al., 2023). Despite these remarkable successes,
PBPs provide a challenging testbed for cognition because (a) scenes
that belong to one category look superficially similar to scenes that
belong to the other category; (b) highly specific interpretations and
simulations are needed to solve a categorization problem; (c) novel
PBP problems can be created, even automatically, that are not in
any preexisting training set; and (d) because of the difficulty in
precomputing all of the possible interpretations of a scene that
might be involved in a categorization rule, it is practically
necessary for a successful system to flexibly generate new
interpretations of a scene during problem solving. Technological
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breakthroughs in AI have underscored the need to develop
assessments that measure adaptive, humanlike intelligence. PBPs
offer a promising addition to these assessments because it is hard to
imagine a system that can solve the wide variety of PBPs that
humans can solve without also possessing concepts (M.Mitchell &
Krakauer, 2023).
PATHS shares with previous works the goal of computational

modeling of concept formation based on small sets of examples of
2D scenes. At the same time, PATHS makes a strong shift toward
dynamics, simulation, and interaction. This leads to major
distinctions from previous approaches that develop a fixed pipeline
of feature generation steps applied to a static scene input. We will
sketch these differences only briefly here (postponing a fuller
discussion until Section “Comparison of PATHS with other
Bongard Solvers” on p. 46). In the seminal Phaeaco work, this
pipeline builds a relational scene graph from which a discriminative
rule is derived. In Depeweg et al. (2018), the Phaeaco scene parser is
replaced by a set of visual routines that compute a set of
predetermined basic geometric features (such as position, size, or
elongation). A hand-crafted grammar is used to derive from them
higher level features that are used to generate a decision tree for the
final discrimination.
While this framework improves on the previous Phaeaco

approach in terms of solved BPs, its lack of dynamics and the
absence of any processes that use physical simulation to predict
scene changes prevent it from successfully handling most
PBPs. The same applies to a more recent approach (Yun et al.,
2020), which employs a pretrained convolutional neural network
(CNN) for feature generation and substitutes the symbolic
grammar by either a one-level classification tree or a regression
layer. In addition, the use of features generated by deep artificial
neural networks also prevents the autonomous construction of

human-readable rules. Rules are only derived post hoc by human
inspection of averaged network activation maps.

The PATHS Model for Solving PBPs

PBPs abstract from the complexity of real-world scenes, yet they
are sufficiently complex to require attentional processes to
prioritize the ongoing process of producing scene descriptions.
They also require perceiving the future of a scene, including
predicting the paths of moving objects and predicting how a
specific configuration of objects might behave over time or react to
external forces. Two necessary component processes for open-
ended induction in PBPs are visual attentional processes for
identifying features and relations in scenes and the construction of
goals and hypotheses, which, when formed, will guide subsequent
visual attentional processes.

To solve open-ended induction problems such as PBPs, PATHS
is built around four core theoretical commitments. First, creating
new perceptual descriptions proceeds concurrently with rule
construction and testing. While it may be tempting to first perceive
scene features and then use these features to form rules, there are
too many candidates descriptions that are possible to make this
feasible. Second, what perceptual descriptions are constructed for
a scene depends upon the other descriptions created for other
scenes. Third, descriptions are composed of structured representa-
tions to produce rules that distinguish between sides of a PBP.
Fourth, there are bidirectional influences between perceiving
descriptions and constructing rules. These four principles are
further elaborated in the following section. We then describe the
basic constituents that PATH uses for their implementation and
conclude this section.
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Figure 2
Four Example Physical Bongard Problems

Note. In these examples, each problem has four scenes in the left category and four scenes in the right category. The two
categories are distinguished by a rule that assumes that the objects in the scenes follow a natural two-dimensional physics.
Solutions are provided in Appendix A. See the online article for the color version of this figure.
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Underlying Principles

This section describes how the perceptual capabilities of the
PATHS model are integrated with a hypothesis generation and
testing mechanism. The PATHS model perceives features on
objects, object pairs, and groups of objects in PBPs and uses these
perceptions to construct structured, rule-based representations of the
scenes. The design of the PATHS model was guided by a number of
principles meant to capture aspects of human cognition while
solving PBPs. These principles are the following.

The Continual Perception of New Scene Descriptions

Over the course of solving a PBP, PATHS continues to generate
new scene descriptions. This stands in contrast to the typical use
of exhaustive initial encodings made in categorization models.
The reason why exhaustive initial descriptions are insufficient for
PATHS is that the perception of attributes and relations, which often
involves mental simulations of physics, requires time and effort. In
order to learn efficiently, PATHS uses feature and object saliencies,
as well as information from hypothesis-to-scene matches, to decide
what to next perceive. After perceiving a couple of scenes in a PBP,
PATHS will have noticed some reoccurring patterns and will have
created some solution hypotheses. These influence the choice of
what to perceive next.

The Context-Dependent Nature of That
Perceptual Process

The membership of an instance to a concept is often graded and
context dependent. For example, when perceiving how “close” two
objects are to each other, they can be very close, close, or not so
close. At the time, the model formulates a rule based on feature
membership values, these values are discretized into an all or
nothing membership (close or not close). However, the thresholds
that distinguish between these membership states can be adjusted
depending on the context. The same object might be called “small”
in one context and “big” in another.

Hypothesis Testing

The PATHS model learns rules that sort structured instances into
categories through an active process of constructing and testing
hypotheses. The model’s rule space is restricted to conjunctions of
object attributes, group attributes, and object relations. The rules can
be all-, exists-, and unique-quantified over objects. PATHS works
iteratively on the scenes and is, like humans, influenced by the order
in which the examples are presented.

Bidirectional Interactions Between Perceiving New
Aspects of Scenes and Constructing Hypotheses for the
Rule That Distinguishes Categories

The processes of perceiving PBP scenes and constructing rule-
based interpretations of them happen at the same time and influence
each other. Themodel starts working on PBPs without knowledge of
any object attributes or spatial relations. Instead, by detecting
features and positions of the objects, the model perceives features
step by step in order to build scene descriptions and hypotheses.

Overview of How the PATHS Model Solves PBPs

Solving PBPs in PATHS is a dynamical process arising from
suitable interactions between the following key entities in PATHS:

Objects

Unlike Phaeaco (Foundalis, 2006), PATHS does not take as input
a pixel-based bitmap representation of scenes. Rather, its input
corresponds to a scalable vector graphics (SVGs) image in which a
scene is composed of prearticulated objects with known feature
values. Each of these prearticulated objects is considered a discrete
entity by PATHS. Our main interest regarding the perceptual
processes involved in solving PBPs is not in the detection of objects,
which is largely solved by current image recognition algorithms.
Instead, we focus on the perception of dynamic and relational
aspects of each scene. To this end, SVGs provide a useful level of
abstraction that makes the positions and outlines of objects and
ground readily available to PATHS.

Groups

PATHS can consider groups of objects. These groups are united
by proximity or a common feature selector.

Features

PATHS can perceive certain features of objects and relations
between objects. These include (a) geometric features, (b) spatial
relations, and (c) physical features and relations. Features are not
necessarily binary. For example, two objects might be very close,
somewhat close, or not close at all. Such “degree-like” features are
expressed as fuzzy membership values in the interval [0, 1]. The
types of features and their perception will be discussed at length in
the section on how PATHS perceives physical scenes.

Selectors

A selector is a binary test on an object or group of objects that
assesses the extent to which it exhibits a feature or some combination
of features. The simplest selectors consist of a single feature and a
threshold, but selectors can be combined and refined. The transition
from perceptions to selectors will be discussed in the section on how
PATH builds physical concepts.

Hypotheses

A hypothesis consists of a selector, a quantifier, and a side. An
example hypothesis is “all objects on the right side are not moving.”
The aim of PATHS is to construct a hypothesis that is consistent
with all of the exemplars on one side of the PBP and none on the
other. The construction and application of hypotheses are discussed
in the section outlining the core loop of PATHS.

Actions

At each step, PATHS takes an action in order to develop more
perfect hypotheses. The voluntary actions are (a) perceive, (b) check
hypothesis, and (c) combine hypothesis. Combine hypothesis has
subactions: (a) combine selector and (b) refine relative selector.
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There is also the involuntary action create hypothesis, which is
triggered following a perception. The different actions will be
discussed deeply in the section outlining the core loop of PATHS.
The source code of the computational model is openly available

on Github at https://github.com/eweitnauer/Dissertation-PATHS-
Model. Readers can explore an interactive version of the model in
Chrome (other browsers may not work) at https://graspablemath.co
m/portfolio/paths/sites/public-0.7.1/index.html. This implementa-
tion is preloaded with several PBPs and also allows users to create
their own PBPs by dragging SVG files into the boxes that comprise a
PBP. The objects and the ground in each scene are represented as
polygons that describe their outline, and, through their shading,
whether they are static or dynamic. We now turn to describe how the
above key entities interact in PATH to generate solutions for given
PBPs and will end with a walk-through of an actual PBP solution
attempt.

High-Level Description of PATHS’s PBP Solving Process

When the model starts working on a PBP, the first step is to load
all the scenes that are provided as SVG images into memory.
Throughout the PBP solving process, PATHS only sees two of the
scenes at a time, which is not necessarily from different sides of the
PBP. PATHS only works on the currently visible scene pair and
proceeds through a predefined sequence of scene pairs, to align with
human experimental conditions. Initially, the model knows nothing
about the objects other than their existence and starts gathering
information about the objects in the first visible scene pair. It
selects features, such as “large” or “stable,” and objects on which
to perceive the features. After a new perception is made, a
corresponding selector, such as “large > 0.5,” is created. This
selector is then applied to both scenes in the currently visible scene
pair, potentially resulting in a number of objects in both scenes that
match. The match results and the selector are both captured in a
hypothesis, which represents a potential solution or part of a
solution.
After some perception steps, the model switches to the next scene

pair. It can now continue to perceive features on the new objects or

check existing hypotheses on the new scenes to gather additional
evidence about their likelihood. A third type of action is to combine
existing hypotheses to build more complex hypotheses. For
example, “large objects” and “small objects on top of any object”
can be combined into “small objects on top of large objects.” The
model stops as soon as a hypothesis has been checked on all scenes
and is determined to be a solution, whichmeans it matches all scenes
from one side and no scene from the other side. This provides an
implicit bias toward parsimonious hypotheses.

PATHS determines the next action by randomly drawing from a
fixed multinomial distribution. The elements that the chosen action
is acting on are determined stochastically based on information from
all hypotheses thus far formed. More promising hypotheses will be
more likely to be checked first. Objects and features that play a role
in promising hypotheses will be picked with a higher probability of
perceiving further features.

Example of a PATHS Run

We now consider a run of PATHS solving PBP02 (see Appendix B).
The solution to PBP02 is that the left scenes have one object,
whereas the right scenes have two objects, making it one of the
most basic PBPs.

Scene Pair 1

On one particular run, PATHS started in the situation depicted in
Figure 3a, with the first scene pair visible. In the sequence used for
this run, each scene pair always contains scenes from different sides
of the PBP. When referring to scenes, X–Y refers to the Xth row and
Yth column, where scenes in Columns 1 and 2 belong to the left
category and Columns 3 and 4 belong to the right category. The first
few actions the model took were to perceive how “large” the object
in Scene 1–1 was. The model then perceived how “close” the two
objects in Scenes 2–3 were, determined that they were fairly close,
and subsequently created a respective pattern description (“close to
any object”). This was turned into a first Hypothesis 1 that was tested
on both visible scenes and stored as “only in the right scenes does
there exist an object that is close to another object.” Influenced by
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Figure 3
The First Three Scene Pairs PATHS Looked at During a Run on PBP02

Note. The model probabilistically decides whether to progress to the next pair of scenes through a fixed
sequence of scene pairs that matches sequences given to human participants. PATHS = perceiving and testing
hypotheses on structures; PBP = physical Bongard problem. See the online article for the color version of this
figure.
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the fact that this is a potential solution, the model then switched to
the next scene pair.

Scene Pair 2

PATHS continued to work on the second scene pair as shown in
Figure 3b. It decided to check Hypothesis 1 on the new scenes and
found that it matched. PATHS then noticed that Object 2 (the small
circle) in Scenes 2–4 “moves” and created and checked Hypothesis 2
“only in the right scenes does there exist a moving object.”

Scene Pair 3

After switching to the next scene pair, as shown in Figure 3c,
PATHS checked Hypothesis 1 on the new scenes and found a
mismatch. Since Hypothesis 1 matched neither the left nor the right
scene, it was excluded from the hypothesis list. Then, the model
perceived that the right rectangle from Scene 3–3 is rectangular,
which leads to a corresponding Hypothesis 3 “only in the right
scenes does there exist a rectangular object.” Although PATHS has
already seen scenes that disconfirm this hypothesis, this hypothesis
will not be eliminated until it is seen to be violated in subsequently
presented scenes.

Scene Pairs 4–8

PATHS proceeded to look at the scene pairs four to eight,
perceiving features, creating and checking hypotheses, and on some
occasions unsuccessfully trying to combine existing hypotheses.
During this time, it perceived the features “stable,” “triangle,” “rect,”
and “unstable” on various objects, leading to a new Hypothesis 4
postulating unstable objects on the right side. Notably, it also
perceived the number of objects in a scene at one point, leading to
Hypothesis 5 “only in the right scenes, the number of objects is 2.”
This is a correct solution, although PATHS had noway to know this at

that time. Hypotheses 3 and 4 were checked on the new scenes and
found to match on some but failed to match on later scene pairs.

Scene Pairs 1–8

During the last part of the run, PATHS iterated through scene
pairs one to eight for a second time. It perceived features such
as “circle,” “triangle,” “gets-hit,” “count = 1,” “position-top,”
“touching,” “collides,” “far,” and “beside,”which led to a number of
new hypotheses. An example of a more elaborate one is based on the
selector “objects that are beside a circle object at the end.” Most
importantly though, the algorithm continued to check Hypothesis 5,
“only in the right scenes, the number of objects is 2,” on each of the
scene pairs so that after checking it on scene pair eight, it had been
verified on all the scenes of the PBP. At this point, the algorithm
stopped the search and reported the solution. Figure 4 shows all
hypotheses that were created during the run.

How Path Perceives Physical Scenes

Perceiving the world around us is an active exploration process.
People do not attend to every aspect of a scene equally, but instead,
pick out specific aspects through constant shifts of attention. In the
case of PBPs, once a potential full or partial hypothesis is generated
for a rule that distinguishes the left- and right-side scenes, the
subsequent descriptions of the scenes will be heavily shaped by
that hypothesis. These descriptions involve both the computing of
features of the scenes and relations among these extracted features.
These two aspects are described in the next sections.

Feature Descriptions

PATHS takes SVG images as its input, which means that each
scene is composed of prearticulated objects and a static background
with known positions and outlines.
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Figure 4
All Hypotheses That PATHS Generated During a Particular Run on PBP02

Note. The left-most column states whether a hypothesis matched scenes on the left (L), on the
right (R), or on both sides (LR) of the PBP. The next column states that all hypotheses are
“exists,” rather than “for all” or “for exactly one” quantified. The last two columns show the
number of scenes for which each hypothesis has been confirmed and the estimated utility of each
hypothesis. The first hypothesis was checked on all 16 scenes and was thus seen to be the
solution, so its utility is 1. PATHS = perceiving and testing hypotheses on structures; L = left
scene hypothesis; R = right scene hypothesis; E = existential quantifier; PBP = physical
Bongard problem. See the online article for the color version of this figure.
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The model currently has 34 built-in feature detectors, including
detectors for static object properties, such as “size” and “shape,”
physical properties, such as “stable” and “moves,” spatial relations,
such as “left-of” or “close,” and group attributes, such as “object
count.” Each feature detector can perceive its respective feature on
any object or group, and the resulting percept contains the perceived
value of the feature as a fuzzy membership degree (cf. below)
between 0 and 1. The default threshold (0.5) to decide whether a
feature is considered active or not can be adjusted in each feature.
While perceiving the scenes and searching for a fitting interpreta-

tion, more complex features are constructed based on this basic set
of features. When the PATHS model works on a PBP, it starts
off without any knowledge about the objects in the scenes. Only by
actively selecting a feature and a target object and perceiving the
feature on the target does the model gradually build internal
representations of the scenes. Each feature is associated with a
procedure to perceive it using the input description for each of the
PBP scenes.

Simulation to Support Perception

In addition to its built-in static and geometric features, PATHS
also computes features of scenes assuming that the objects are
physical entities. While a major approach to model thinking about
physical situations has been to represent them symbolically and
use logical inferences to reason about them (Forbus, 1994), other
researchers have explored the idea of physical reasoning as
running mental simulations. The mental simulations do not require
abstract knowledge of physical laws, instead relying on a practical
understanding of how one situation turns into the next. They are
cognitively plausible (Barsalou, 1999) and fit experimental results
with humans better than several rule-based models, for example,
when making predictions about the stability and falling patterns of
Jenga towers (Battaglia et al., 2013).
PATHS uses a 2D physics engine to model mental physics

simulations. A physics engine is a computer program that numerically
simulates physical scenes to predict a scene’s future states.While very
roughly psychologically plausible (T. D. Ullman et al., 2017), we are
not intending to make a strong commitment to people’s internal
simulations being either precise or unbiased. In fact, future iterations
of PATHS should incorporate known discrepancies between people’s
naive physicalmodels and natural physics (Ludwin-Peery et al., 2020;
McCloskey & Kohl, 1983).
When provided with the positions and outlines of all objects in a

scene, the physics engine in PATHS can simulate the unfolding of
events to provide the following object properties for each object at a
given time in the future: position and velocity, distance to other
objects, and collisions between objects that have occurred. All
features that are derived from the simulation data are represented as
values of fuzzy membership functions for percepts, expressing the
perceived value of the feature as a membership degree or satisfaction
value from the range 0 to 1. The distance between objects is captured
by the concepts touch, close, and far. Other physical concepts, such
as moves, stability, supports, and movability require additional
derivation.
The moves attribute captures whether an object moves or is about

to move at a particular point in time. In order to find out whether an
object is about to move, the model triggers a short simulation of the

situation assuming that all objects start at rest and checks whether
the object in question moves in the immediate future.

In the context of dynamic rigid objects, a natural operationalization
of object stability is its ability to withstand external forces without
moving. If an object can tolerate strong perturbations relative to its
mass without toppling over or rolling away, then it is relatively stable.
To assess stability, the physics engine is first used to predict the near
future of the scene without any external perturbations. If the target
object significantly moves, it is considered unstable. Otherwise, the
algorithms reset the scene and conduct a series of three short
simulations, with increasingly strong horizontal impulses applied to
the target object’s center of mass at the start of the simulation. If the
target object topples over, falls down, or rolls away—all significant
changes of position and orientation—the object is considered
unstable. The perceived stability has a membership value between
0 and 1 that reflects how strong an impulse was needed to push the
object out of balance.

The concept of support is closely related to stability in that it
describes whether the presence of an object helps to stabilize another
object. One aspect of support with separate, rigid, and nonbreakable
objects reflects whether the two objects touch. We will call the
support relation direct if they do and indirectly if they do not. A
second aspect reflects the redundancy of the support an object
provides. An object might be the only supporter of another object or
it might be part of a group of supporters. Relatedly, a third aspect of
support is whether the supported object would actually fall or topple
over without the supporter or remain stationary but become less
stable. In order to determine whether an object supports another
object, PATHS uses the same counterfactual reasoning as with
perceiving stability. The model “imagines” what would happen
when the supporter is removed by running the respective physical
simulation. If the potentially supported object starts to move or
becomes unstable after the removal of the supporter, but not if the
supporter remains, then a supporting relation between the objects is
inferred. The model perceives four different types of support: direct,
indirect, stabilizing, and no support and currently maps them to
gradual memberships to a single “supports” concept.

An object’s movability reflects whether it can be moved by
a moderate force in different directions. We implemented the
perception of movability by letting the model run simulations in
which it continuously pulls on a virtual string that is attached to the
center of the object in question. The change, or lack thereof, in the
object’s position when pulling moderately on the string is used to
judge its movability. The main reason for a lack of movability of
objects in PBPs is that the path of the object might be blocked by
other objects or the ground.

Spatial Relations

The solution to many BPs involves not just simple attributes of
objects such as small or square but relations between objects.
Many cognitive psychologists have pointed out the importance of
representations that go beyond attributes or even conjunctions of
attributes, by explicitly representing relations between objects
(Gentner, 1983; Loewenstein & Gentner, 2005; Markman &
Gentner, 1993; Medin et al., 1993). In PATHS, the relative
position of a target object A in relation to a reference object R can
be described in terms of distance and direction and will depend on
the objects’ shapes, especially if they are close to each other.
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PATHS can perceive differences in the degree of closeness of two
objects, such as very close versus close. This makes it possible
either to use the degree of closeness in a categorization rule directly
or to adjust a threshold value used to make a binary decision about
closeness dependent on a PBP’s context—the other scenes in a
PBP. To this end, we adapt Isabelle Bloch and colleagues’ framework
for representing fuzzy spatial relations (Bloch, 1999; Hudelot et al.,
2008). PATHS attaches an activation value between 0 and 1 to each
perceived spatial relation, reflecting how well the spatial relation fits
the situation. The computed spatial concepts can be used to answer
two different questions:

1. To what degree does a given spatial relation hold for two
specific related objects, for example, is A left of R?

2. At which locations is a given spatial relation fulfilled for
a specific reference object, for example, which places in
space are left of R, and to what extent?

The answer to the second question is provided by calculating a
fuzzy set, referred to as fuzzy landscape, around the reference object
in the same image space that the target object is in. The fuzzy set is a
function μ: S→ [0, 1], which maps each point in the image plane S
onto a membership value between 0 and 1. This membership value
corresponds to the satisfaction of the spatial relation in question.
Figure 5 shows the fuzzy landscapes of the six basic spatial relations
using a rectangle as the reference object.
To answer the first question, the fuzzy landscape around R is

compared to the object A. The degree of relationship membership
between A and R is measured by the relationship satisfaction values

at the positions in the landscape that are covered by A. Bloch (1999)
uses three values to represent the fuzzy relation between A and R: the
minimum satisfaction value Π, the mean satisfaction value M, and
the maximum satisfaction value N over all points of A in R.

ΠR
α = min

x∈A
μR, αðxÞ, (1)

MR
α =

1
jAj

X
x∈A

μR, αðxÞ, (2)

NR
α = max

x∈A
μR, αðxÞ: (3)

In the fuzzy set framework, the minimum and maximum satisfaction
measures can be interpreted as the necessity and possibility of A and
R being separated along relative direction α, respectively. Two
advantages of this approach are its mathematical grounding in fuzzy
sets theory and fuzzy morphological operators and its flexibility. The
relative separation of two objects along a direction at a chosen angle
can be calculated efficiently in 2D and 3D to measure concepts such
as “left” and “above,” whereas morphological structuring elements
can be designed for other relations such as the distances “close” and
“far.” By using the fuzzy t-norm and t-conorm, conjunctions and
disjunctions of spatial maps can be easily calculated in order to
construct combinations of spatial concepts such as “far above” and
“beside.”

A fast algorithm for calculating fuzzy landscapes works in two
stages: finding reference points and computing acceptability values.
The goal of the first stage is to find the pointQ in the reference object
R that is best aligned with the target direction seen from each point
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Figure 5
The Fuzzy Landscapes of Six Basic Spatial Relations for a Rectangle

Note. The brightness reflects the degree to which a position in the image space satisfies the respective relation to
the rectangle. See the online article for the color version of this figure.
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P in the image space S. First, each pixel in the image space that
overlaps with the reference object is assigned its own position as
initial reference point. Next, the algorithm propagates reference
points from neighboring pixels, first in a forward direction (left to
right, top to bottom) and then in a backward direction (right to left,
bottom to top). During each propagation pass, each pixel is set to the
best reference point of its eight neighboring pixels (or its own
reference point, in case it is already the best). The goodness of
reference points for the different spatial relations β is calculated
using two different functions βα, βdist: ℝ2→ℝ that map the relative
position of a reference point Q ϵ R and a point P in S onto a real
value. The value expresses how strongly the relative position of both
points matches the tested spatial relation β. For direction relations,
β = βα is used,

βαðP,QÞ = arccos
QP
�! ⋅ ~uα���QP�!��� , (4)

where ~uα is the unit vector in the respective direction. For the
relations “close” and “far,” the second function βdist that evaluates
Euclidean distance is used:

βdistðP,QÞ =
���QP�!���. (5)

After iterating over the image two times, each point P ϵ S has an
(approximately) optimal reference point Q ϵ R attached and the
respective value x of β(P, Q). In the second stage of the algorithm,
this value is mapped onto an acceptability value between 0 and 1
by using the appropriate mapping for the relative directions and
distances: fα for direction, fclose for nearness, and ffar for farness

f αðxÞ = max

�
0;

�
1 −

2kxk
π

�
3
�
, (6)

f closeðxÞ = 1 −
1

1 + eaðb− xÞ , (7)

f farðxÞ =
1

1 + eaðc− xÞ : (8)

Bloch (2010) describes how to extend the fuzzy spatial framework
to include bipolar information. The notion of having a fuzzy set μ:
S → [0, 1] is extended to a bipolar fuzzy set, which is a pair of
membership functions (μ, v). The first membership function μ
denotes the positive information of where a spatial relation is known
to be satisfied. The second membership function v denotes the
negative information of where a spatial relation is known to be
unsatisfied. In the context of PBPs, people often consider spatial
relations to be in opposition, such as left and right, above and below,
as well as near and far. To come up with a psychologically intuitive
acceptability value for a relation between two objects, the negative
and positive information of the respective bipolar fuzzy landscapes
have to be combined. This is done by subtracting the negative
landscape from the positive landscape at each corresponding point in
the fuzzy set and clipping all values below zero (see Figure 6, for two
examples). Notice that without taking the negative information into
account, both examples would lead to a high acceptability of both “A
left of B” and “A right of B,” which would be counterintuitive.

This bipolar nature of many spatial relations is captured well
by the bipolar fuzzy set theory. Taking the conjunctive fusion of
two bipolar fuzzy sets (μ1, v1) and (μ2, v2) is done by taking the
conjunction of the positive parts μ1 and μ2 and the disjunction of
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Figure 6
Two Example Situations of an Object a Placed Relative to an Object R

Note. If only the fuzzy landscape of the relation right of were considered, object A would be described as right of R
in both cases, which is counterintuitive and too permissive. In a bipolar interpretation of the relation right of, the
opposing relation left of is taken into account as negative information. This yields a more intuitive representation.
See the online article for the color version of this figure.
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the negative parts v1 and v2 as negative evidence. The disjunctive
fusion of two bipolar fuzzy sets is defined as the disjunction of the
positive information and the conjunction of the negative information.

ðμand, νandÞ = ðμ1 ∩ μ2, ν1 ∪ ν2Þ, (9)

ðμor; νorÞ = ðμ1 ∪ μ2; ν1 ∩ ν2Þ. (10)

The conjunction μ∩ and disjunction μ∪ of two fuzzy sets μ1 and μ2
(which could represent either positive or negative information) are
defined as:

μ∩ði, jÞ = Tðμ1ði, jÞ, μ2ði, jÞÞ, (11)

μ∪ði, jÞ = ⊥ðμ1ði, jÞ, μ2ði, jÞÞ: (12)

where T is the fuzzy t-norm and ⊥ is the fuzzy t-conorm. In the
literature on fuzzy mathematics, there are several well-established
fuzzy logic systems with their respective t-norms and t-conorms.
Three of the most common ones are the Łukasiewicz logic
(Łukasiewicz t-norm and bounded sum t-conorm), the Gödel logic
(minimum t-norm and maximum t-conorm), and the product logic
(product t-norm and probabilistic sum). PATHS uses the minimum
t-norm and maximum t-conorm.

Tminða, bÞ = minða, bÞ, (13)

⊥maxða, bÞ = maxða, bÞ: (14)

Positive and negative information of the bipolar fuzzy landscape
is calculated using the function

subða, bÞ = maxð0, a − bÞ: (15)

These formulas above also allow for the representations of
combined spatial concepts. The combined spatial concept left
and close can be formed as a bipolar fusion of the concepts left and
close:

ðμlc, νlcÞ = ðμl ∩ μc, νl ∪ νcÞ. (16)

were the indices lc, l, and c stand for left and close, left, and close,
respectively. The negative information for left, vl, and close, vc, is
identical to the right and far relations, respectively. Likewise, the
concept beside is introduced as a disjunctive fusion of the right and
left concepts.
We define the concept inside as conjunctive fusion of left and right.

The intuitive understanding of inside is closely related to the convex
hull of the reference object. The concept of A being on top of B is
modeled as A being above B and touching B. These fuzzy logic
descriptions do not fully capture the rich semanticmeanings of beside,
inside, or on top of (Regier, 1996; Regier & Carlson, 2001) but
do provide a concrete and efficiently computed foundation for
computing several of the many spatial relations needed to solve PBPs.

How PATHS Builds Scene Descriptions

Basic and Derived Descriptions

One of the interesting aspects of PBPs is that the concepts that are
immediately available to a person looking at the scenes are often just
the building blocks for more complex features that are needed to
formulate a solution. PATHS implements several ways of deriving

new features. First, PATHS simulates what will happen in a scene,
taking potential interactions among objects into account. An
exhaustive search over all possible interactions and temporal
relations is infeasible, so choices about what descriptions to form
must be made in a context-dependent manner. Second, basic
descriptions can be combined to arrive at higher level descriptions.
For example, by perceiving the basic spatial relations left and right, a
notion of “beside-ness” of two objects can be constructed as their
disjunction. Third, forming groups of objects that belong together
provides a convenient abstraction over a set of objects and reduces a
scene’s complexity. Grouping can be based on the similarity of a set
of objects along any feature dimensions or their spatial proximity.
Fourth, turning initially metric features like the distance between
two objects into a qualitative concept with a degree of membership
provides an intermediate level of abstraction that is often used by
humans and is well suited to construct solutions for PBPs.

The Core Loop of PATHS

In each iteration of PATHS’ core loop, the model performs the
following steps. First, it probabilistically selects the type of action
to perform next from a set of three types. Second, it performs the
action, which might involve the stochastic selection of action
parameters. Third, it performs potential follow-up actions. Fourth,
it probabilistically decides whether to shift attention to a new set
of scenes. Figure 7 shows an overview of this architecture, which
is decomposed below.

Switching Between Active Scenes

The influence of the order in which the scenes are perceived can
be studied for both PATHS and people. To that end, two scenes of a
PBP are presented at a time, to simulate comparison processes
known to be common for people (Forbus et al., 2017; Goldstone
et al., 2010; Rittle-Johnson et al., 2020). The sequence of scene pairs
is fixed during a particular trial, while the decision of when to
uncover the next scene pair is up to the human or cognitive model,
consistent with human experimental paradigm to be described later.

For PATHS, this decision is based on how promising the current
hypotheses are. If there is a promising solution candidate that has
already been checked on the current scenes, the model is more likely
to move on to the next scenes earlier so the solution candidate can be
further verified. If none of the hypotheses are particularly promising,
or if a promising one yet has to be checked on the current scenes, the
model is likely to continue looking at the current scenes.

Objects and Groups

PATHS keeps track of all descriptions performed on an object.
Groups are constructed by selectors that select a subset of objects
in a scene, such as “square objects” or “any object.” Each group of
objects can be a target for perceiving group features like “object
count” and will keep track of all selectors that are known to select
that subset of objects in the group.

Selectors

Selectors abstract from observations on a specific object or group
and represent a structured description. The abstraction is both from
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specific objects to descriptions of those objects and from graded to
discrete feature values. The percept of a feature like “small” is
represented with a membership value in [0, 1]. When turning that
percept into a feature matcher, the value is discretized into a binary
value “true” or “false,” so that the resulting selector can either match
objects that are “small” or “not small.” The default threshold of 0.5
can be adjusted per selector and feature type to account for the
observed distributions of feature values in the left and right PBP
scenes.
When a selector is applied to a scene, it selects a subset of the

scene’s objects. Selectors are conjunctions of three kinds of feature
matchers: object attribute matchers, object relation matchers, and
group attribute matchers. Each feature matcher maps a source set of
objects to a target set of objects that contains all those objects from
the source set that have the same feature–value combination as the
matcher. For example, a selector that contains a single object
attribute matcher “small = true” will select all objects in a scene
for which the feature “small” has a membership value above its
threshold.
An object relation matcher contains, in addition to the relation

type and value, a selector for the reference object of the relation. For
example, “hits (small)”would select all objects in the scene that hit a
small object. Reference selectors are not allowed to contain relation
matchers, which prevents complicated nested structures “a circle
that is left to a square that is left to a triangle” but allows for “a circle
that is left to a square and is left to a triangle.”
When PATHS applies a group attribute matcher to a set of

objects, it returns the original set if the group of objects in the set has
the same feature–value combination as the matcher. Otherwise, it
returns an empty set. For example, the matcher “count = 3” will

return all objects when applied to a scene with three objects or no
objects if the scene has a different number of objects in it.

All matcher types can be easily combined. For example, a selector
consisting of the two matchers “close-to(square) ∧ count = 3” will
check whether the number of objects in a scene that is close to a
square is three. If so, it selects those three objects; otherwise, it
selects none.

Hypotheses

A hypothesis represents a potential solution or partial solution to
the current PBP. It consists of a selector, the side of the PBP the
selector is describing (left, right, or both), and the quantifier that is
used with the selector (exists, all, or unique). For example, the
“small” selector could be applied as “in the left scenes, all objects are
small,” or as “in the right scenes, there is a small object,” or as “in all
scenes, there is exactly one small object.” Each hypothesis keeps
track of whether or not the scenes it has been tested on matched and
whether all, some, or exactly one of the objects in each scene
matched. This information is used to pick the best fitting side and
quantifier for describing the scenes seen so far.

Attention Mechanisms

The guiding of attention in PATHS toward regions and aspects
of the scenes that are most relevant to the learning process works
on several levels. Attention can be shifted to certain objects in
a scene, to certain features, or to the aspects necessary for checking
a solution hypothesis. In PATHS, attention is modeled as the
probability distributions used to select objects and features in PATHS
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Figure 7
PATHS’ Main Loop

Note. On each execution step, PATHS probabilistically selects one of three action types
“perceive,” “check hypothesis,” and “combine hypotheses” with the indicated Probabilities. The
“combine hypotheses” block in the diagram has two subtypes, of which one is selected according
to the specified probabilities. Some actions trigger the creation of a new hypothesis, which in turn
triggers a check hypothesis action on the created hypothesis. PATHS = perceiving and testing
hypotheses on structures.
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perception actions. These distributions are continuously adjusted
while PATHS works on a problem in several ways. During the initial
exploration of the PBP scenes, objects differ in their saliency based on
their features. Attention tends to be drawn to objects that are about to
move or are unstable, objects that are spatially separated, or objects
that are “oddballs” along a feature value. Generated hypotheses
influence the choice of what to perceive next in three ways. First,
during the exploration of the scenes, PATHS is more likely to attend
to the objects that play a role in promising solution hypotheses.
Second, PATHS directly checks existing hypotheses on new scenes,
and during this process, only perceiveswhat is necessary to confirm or
refute the hypotheses. Third, existing hypotheses can be combined,
and the resulting hypotheses influence perception as described in
the previous two points.

Actions

All work done by PATHS while solving a PBP is organized into
small, separate chunks, called actions. A practical way of measuring
the model’s performance that abstracts from specific computer
hardware is to count the number of actions that PATHS performs to
solve a PBP. There are three action types that the model can perform,
which are: (a) to perceive and potentially create a hypothesis from
a perception, (b) to check a hypothesis against the current scenes,
and (c) to combine two existing hypotheses to form a new one.
These actions are triggered top-down by sampling from the fixed
multinomial distribution, as shown in Figure 7.
The perception action uses one of two strategies with equal

probability. Either the action first selects a target from one of the
current scenes and then selects which new feature it should perceive
on it, or it first selects a feature and then selects a new target object
for perceiving the feature. The former strategy corresponds to a
person looking at an interesting target in a scene and perceiving new
properties of it, whereas the latter corresponds to a person looking
for targets that have a particularly interesting feature. In both cases,
the target can be an object or a group of objects, whereas the feature
can be a group attribute, object attribute, or a relation between two
objects. If an object relation is to be perceived, a reference object
for the relation is chosen in addition to the target object. For
features that can change over time, such as an object’s position in
the scene, the perception action stochastically picks whether the
feature is perceived in the initial or final situation based on a fixed
multinomial distribution (p = .67 and p = .33, respectively). When
perceiving a feature on a target, the model only selects feature–
target combinations that were not actively noticed before. If
something new is perceived during the perception action, the
creation of a hypothesis is triggered to turn the percept into a
corresponding hypothesis in the next step.
When creating a new hypothesis, PATHS turns the percept into

a pattern description—a “selector”—that can be applied to new
scenes. Each selector is associated with one hypothesis—a potential
solution to the PBP that keeps track of all matching results. To turn a
perceived relation into a selector that can be applied to new scenes,
the reference object, itself, needs to be represented via a selector.
Either the “any object” selector or some more specific selector
among the existing compatible hypotheses in the workspace might
be picked. If the percept contains a group attribute, a selector that
matches this group is picked and combined with the main selector,
which describes the perceived group attribute’s type and value.

After the new selector and its associated hypothesis are created, they
are added to the workspace unless an identical selector already
exists. In either case, a check-hypothesis action is triggered for
the hypothesis. For the purpose of counting the number of actions
PATHS uses, the creation of a hypothesis counts as a separate
action.

The check hypothesis action applies an existing hypothesis to the
scenes in the current scene pair and keeps track of the results.
Compatible match results will contribute positively to the estimated
potential of the hypothesis, whereas incompatible match results will
have the opposite effect. In addition to whether the hypothesis
matched the scenes or not, the model keeps track of whether exactly
one, or a few, or all of the objects in the scenes match the hypothesis’
selector. This information is used to decide on the best logic
quantifier (“unique,” “exists,” or “all”) to use in the hypothesis. Each
time, after checking a hypothesis on a new pair of scenes, the action
will pick the side and quantifier for the hypothesis that best fits all
previous matching results. For example, “in the left scenes, there is a
small object” could be changed to “in the right scenes, all objects are
small.” The goal of these adjustments is to find a hypothesis that
only matches scenes from one side and is therefore a potential
solution. If that is not the case anymore after checking a scene pair,
the check-hypothesis action attempts to “repair” the hypothesis by
readjusting the concept-membership thresholds of the selector’s
feature matchers. For example, the selector might be adjusted to
accept a larger range of object sizes as being “small.”

If the combine hypotheses action is selected by the model, the
model will further choose stochastically among two subtypes:
directly combining two hypotheses or using one hypothesis to
modify the relationship in another hypothesis. In the first case, the
action probabilistically selects an object from one of the active
scenes and picks two hypotheses that match the selected object and
have not been combined before. Only hypotheses that match scenes
from both sides are considered because combining hypotheses
always results in a more specific hypothesis, and hypotheses that
have so far matched scenes from only one side are still sufficiently
specific. A check-hypothesis action is triggered for the hypothesis
created by the conjunction of the two former hypotheses. The reason
to select two hypotheses through a common object they select is
to ensure that they are not incompatible with each other—their
conjunction selects at least one object in one of the scenes. This
roughly corresponds to a person noticing that the same object is both
small and stable, so in addition to the solutions “there is a small
object” and “there is a stable object,” the observer might now
consider the solution “there is a small and stable object.”

If the relationship subtype of the combine hypotheses action is
selected, PATHS will create a new hypothesis by replacing the
reference object selector of a relation feature in one hypothesis with
a different selector. For example, based on the hypothesis “there is a
square on top of an object,” a new hypothesis “there is a square on
top of a big object” can be created if there is an existing “big objects”
selector. Specifically, the combine-hypothesis action first stochasti-
cally selects a hypothesis that has a relation feature and one of the
objects in the current scene that matches the relation’s reference
object selector. Then, the action searches for a different selector
selecting this reference object and, if successful, creates a new
hypothesis that is a copy of the original one with the relation
reference selector replaced by the new selector. Finally, a check-
hypothesis action is triggered for the newly created hypothesis.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

14 WEITNAUER, GOLDSTONE, AND RITTER



In some cases, an action may not be successfully completed by
PATHS. For example, after combining two hypotheses to create
a new one, PATHS may find that an identical hypothesis already
exists. In those cases, the unsuccessful action is still counted toward
the number of actions that PATHS took to find a solution.

Comparison of PATHS to Humans

PATHS was designed to be a plausible cognitive model of open-
ended rule-based concept learning in humans applicable to
situations involving both ongoing perceptual encoding and
symbolic hypothesis testing. In comparing PATHS to human
solutions of PBPs, we consider overall performance on different
problems, the time required to generate solutions, and the influence
of different presentation conditions. The performance of PATHS is
evaluated by repeatedly running it on PBPs presented to people
across several experiments (Weitnauer, 2016; Weitnauer et al.,
2013, 2014). The proxy that we chose for response time in PATHS
is the number of actions that is required, on average, by PATHS
to solve a problem. Different actions in PATHS could involve
cognitive operations that vary in complexity and therefore require
different amounts of time. A more nuanced analysis would assign
empirically determined times to different actions, but this
refinement was omitted from the current analysis because efforts
were taken to create interpretive actions that might be expected to
correspond to single human actions (Anderson, 2009). Another
simplifying assumption is letting the PATHS model accurately
remember which hypotheses it has already checked and discarded
(visualized in four as grayed entries in the hypotheses list). On the
other hand, humans will often reconsider previously discarded
hypotheses (Bruner et al., 1977)
Across these previously reported experiments, participants were

shown a subset of the PBPs shown in Appendix B and were asked to
supply a solution (for a table of solutions of the PBPs in Appendix B
please see Appendix C). To avoid conflation of solution time with

time to formulate the solution in written form, participants were
asked to perform a mouse click at the moment they felt they had
found a solution, which was immediately typed in English into a text
box, and subsequently assessed by human judges to determine
whether it would perfectly distinguish the left and right scenes. In
the standard, simultaneous display version of this task, participants
saw all of the scenes that comprised a PBP at the same time, and
these scenes remained on the screen until either the participant
guessed the rule or gave up.

The average correct response times of human participants and
PATHS on each problem were compared. The human response time
data contained outliers. Also, the response times on unsuccessful trials
are difficult to interpret and result from very different mechanisms in
PATHS and the human participants. PATHS always searches for a
solution until a fixed maximum number of actions, whereas humans
may give up or submit a wrong answer at any time. To address these
issues, we excluded all trials on which the response time was longer
than 10 min. There are no fast response time outliers because the
correct answer cannot be guessed.

The left panel of Figure 8 compares the relative difficulty scores
of the problems for PATHS and people, whereas the right panel
shows a scatterplot of human versus model response times only
considering solved trials. The difficulty score combines accuracy
and reaction time information by setting the reaction time of all
unsolved trials to 10 min for humans. Any trials that took longer
than 10 min are also set to 10 min. The model data already have all
unsolved trials set to a value of 2,500 actions and remains
unchanged. More formally, the difficulty score for humans is
defined as:

difficulty =
�
minð10, RTÞ, if solved
10, if unsolved

(17)

Paralleling the human measure, the model difficulty score takes
into account both speed and accuracy by assigning a value of 2,500
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Figure 8
Comparisons of PATHS to Human Performance

Note. The left panel plots the difficulty score for humans (solution time in minutes, capped at 10 min) versus the model (solution time in actions, capped
at 2,500 actions), averaged per problem. For unsolved trials, the difficulty score is set to the cap values (10 min or 2,500 actions, respectively). The
brightness of the inner circles represents the model’s successful solution rate, and the outer circles represent the subjects’ successful solution rate. The red
line shows a linear fit to the data excluding Problem 31. The right panel plots the average response time for humans and the average number of actions by
PATHS, only considering solutions for both humans and PATHS that were correct. In both plots, the error bars represent standard errors. PATHS =
perceiving and testing hypotheses on structures. See the online article for the color version of this figure.
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actions for any problem not solved by PATHS. The Pearson
product–moment correlation coefficient for the response times
between humans and PATHS is 0.33, with t = 1.17, df = 11, and
p value = .264. There is a single problem, PBP 31, for which the
difficulty for humans and the model was very different. If we
remove problem 31 from the data, we get a correlation of r = 0.74,
with t = 3.4, df= 10, and p value = .006 for the human and PATHS
difficulty scores. The relative difficulty of PBP 31 for PATHS
compared to humans is likely because humans have richer
background knowledge that is relevant. All solutions found by the
model involve the “can-move-up” attribute, with the two most
common being “there are can-move-up circles in all left scenes”
and “there are small and can-move-up objects in all left scenes.”
Human participants came up with a wide variety of solutions, using
verbs that evoke rich situations. They described the circle as being
trapped, enclosed, covered, stuck, protected, imprisoned, con-
tained, boxed in, hidden, surrounded, confined, secured, shielded,
“having an escape,” “can be picked up,” “can get out,” and free to
move. While there is little to guide attention in PATHS toward
relevant concepts, humans quickly hone in on a familiar narrative
that is captured in the scenes.
Despite this particular difference between humans and PATHS,

the overall results show strong parallels between PATHS and
humans in terms of the order of difficulty of PBPs, and the time
required to solve them. Even more basically, the overall rate with
which PATHS solves the problems is comparable to humans, with
humans solving about 45% of the problems, whereas PATHS
regularly solves 40% of the same problems. Furthermore, these
rates of solution for these PBPs are far higher than other
computational models for solving BPs (Depeweg et al., 2018;
Foundalis, 2006; Yun et al., 2020). To be sure, these other
computational models were not designed to solve PBPs, and so the
problems that we tested are outside of the scope of these models.
Still, the ability to solve BPs involving physical simulations is a
competency that people readily demonstrate, and one that is also
present in PATHS but not in other computational models for
solving BPs.

Sequential Effects on Category Learning

An important way in which PATHS differs from other models
for solving BPs is that it processes the scenes sequentially rather
than in a batch, and it takes into account which scenes are being
considered at the same time. Accordingly, PATHS can potentially
accommodate experiments in which the order of scenes that make
up a PBP has been manipulated. Our previous studies (Weitnauer
et al., 2013, 2014) have varied which scenes participants are likely
to consider at the same time in two ways. When all scenes that
make up a PBP are presented simultaneously, then which pairs of
scenes are likely to be considered together is manipulated by
presenting them spatially close together, on the same row, of a
PBP. In other experiments with sequential presentations, we
present only one pair of scenes at the same time, either from the
same or different sides of the problem. Figure 9 shows how
similarities within and between a category/side can be indepen-
dently manipulated. When within-category similarity is high, then
the two scenes from the same category that are spatially (when
simultaneously) or temporally (when sequential) adjacent are
similar to each other in terms of their overall configuration of

elements. This is also true for between-category similarity, but in
this case, the scenes that are juxtaposed belong to opposite
categories. Between- and within-category similarity is indepen-
dently manipulated. For example, in the upper right quadrant of
Figure 9, the juxtaposed scenes across the categories (i.e., the
scenes that occupy the same positions within their categories) are
similar to one another, but the juxtaposed scenes (i.e., the scenes
that are beside each other) within a category are dissimilar.

As with participants in the sequential condition, each of the PBPs
is presented to PATHS as a sequence of scene pairs. PATHS proceeds
through a sequence of scene pairs to match the order in which human
participants saw the pairs in sequential presentations or the spatial
juxtapositions of scenes for the simultaneous presentations. After a
perception action has produced a selector for one scene in a pair, the
same selector is likely applied to the other paired scene. In this
manner, the pairing of scenes has a large influence on the descriptions
noticed by PATHS and the hypotheses formed.

Collapsing across whether juxtaposition is temporal or spatial and
whether scenes are paired within category or between category, the
empirical results are shown in Figure 10. For humans, our primary
measure of success is the adequacy of their stated rule for
distinguishing the left and right scenes. As a secondary measure, we
presented people with novel scenes and measured their percentage
of correct categorizations (Weitnauer et al., 2013, 2014). The
secondary measure has the advantage of not requiring any human
judgments to assess solution quality but is not directly comparable to
PATHS because the output for PATHS is a rule. In any case, these
two measures are highly correlated for humans. People tend to be
able to state the correct rule when and only when they can accurately
categorize new scenes.

For both humans and PATHS, the difficulty of a problem is
measured by both how often it is solved and how long it takes to
achieve the solution when it is solved. This difficulty score is a more
sensitive measure than simple accuracy because participants vary
widely in terms of how long they take on a problem before giving
up. The time required to solve PBPs is very heavy tailed for both
humans and PATHs, which is why difficulty is log transformed. The
similarity within a category has an opposite influence on problem
difficulty compared to similarity across categories for both people
and PATHS.

When scenes belonging to opposite categories are similar rather
than dissimilar to each other, then this makes the problem easier to
solve (the log difficulty decreases). This result follows naturally
from the notion of discriminative contrast (Carvalho & Goldstone,
2014, 2015; Kang & Pashler, 2012). It states that direct
comparison of instances from different categories highlights their
differences, together with the insight that comparing similar
instances is especially effective because there are fewer superficial
differences and the alignment of instances is easier. Also relevant
is Winston’s (1970) notion of “near misses,” which allows an arch
concept to be efficiently learned from closely paired positive and
negative examples. The same applies to the finding fromMarkman
and Gentner (1993) and Christie and Gentner (2010) that it is
easier to structurally align two similar scenes than two very
different scenes, and this alignment process promotes noticing
their crucial differences.

The opposite influence of similarity on within-category compar-
isons fits another literature on concept formation. Since comparing
instances of the same concept can serve to highlight commonalities
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between them, it may be beneficial to compare instances that share
as few features that are irrelevant for the characterization of the
concept as possible. A closely connected notion, called “conserva-
tive generalization” by Medin and Ross (1989), is that people will
generalize as minimally as possible, preserving shared details unless
there is compelling reason to discard them. As within-category
objects become more similar, their superficial similarities might be
mistaken as defining ones and might lead to too narrow a category
representation. This may occur, for example, when learning to
discriminate pairs of similar-sounding words (Rost & McMurray,
2009) or when learning about which methods to use in exploratory
data analysis (Chang et al., 2003). By varying the irrelevant features
possessed by examples within a single category, the relatively
stable, deep commonalities stand out and can make hard learning
tasks, like learning relational syntax rules from examples, feasible
(Gómez, 2002). Another example of the benefit of low within-
category similarity when learning from examples is the results of
Halpern et al. (1990), who asked students to read scientific passages
that included either “near” (superficially similar) or “far” (superfi-
cially dissimilar) analogies. The passages that included far analogies
led to superior retention, inference, and transfer compared to those

featuring superficially similar comparisons, which showed no benefit
at all.

PATHS shows both discriminative contrast and conservative
generalization effects by virtue of its tendency to apply the same
selector to both juxtaposed scenes. When the juxtaposed scenes
belong to different categories, then having high similarity between the
scenes helps PATHS quickly identify a selector that applies to only
one of the scenes, thus becoming a candidate for being part of the rule
that discriminates between the two sides of a PBP. Low between-
category similarity leads tomany “false alarm” selectors being created
that do not successfully apply to other scenes. Conversely, when the
juxtaposed scenes belong to the same category, then having low
similarity between the scenes helps PATHS quickly identify the
selector that they share that is also shared by the rest of the scenes
within the category. High similarity between juxtaposed scenes
belonging to the same category leads to “false alarm” selectors being
created that do not apply to other scenes in the same category. In
general, “false alarm” selectors that are created for one pair of scenes
but do not generalize to other scenes slow PATHS solutions because
the invalid selectors are tested, albeit unsuccessfully, on several
scenes once they are generated.
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Figure 9
Different Orderings of Scenes Within Problems From Weitnauer et al. (2013, 2014)

Note. (a) The scenes that are juxtaposed close to one another within a category/side, and also
across categories, are similar to one another. (b) The juxtaposed scenes within a category are
dissimilar but across categories are similar. (c) The juxtaposed scenes within a category are
similar but across categories are dissimilar. (d) The juxtaposed scenes are dissimilar both within
and between categories. See the online article for the color version of this figure.
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The empirical and modeling results bring together these two lines
of research on the advantages of between-category similarity and
disadvantages of within-category similarity for inducing new
categories by example. The PATHS model additionally provides a
unified mechanism for these converse influences of similarity. The
perceptual descriptions that are constructed for a scene are influenced
by all of the hypotheses generated while working on a PBP, with an
example shown in Figure 4. While the global context of a PBP acts as
top-down influence, guiding what is noticed next in a scene, the
immediate context of the paired scene has an even greater, more
immediate influence on what is noticed next. Newly formed
descriptions for a scene are immediately tested on its paired scene.
If the paired scene comes from a different category and the description
applies to it, then this will immediately lower the priority of the
description because it does not, by itself, distinguish between the two
categories. Conversely, if the paired scene comes from the same
category and the description applies to it, then this will immediately
increase the priority of the description because it has now been
confirmed for another instance of the same category. In this manner,
perceptual descriptions (once established) change the priority
of hypotheses, and these same emerging hypotheses guide the
prioritization of acquiring additional perceptual descriptions.

Wtihin- and Between-Category Similarity

While the four PBPs in Figure 9 vary in the similarity of spatially
juxtaposed scenes but maintain the same scenes across the
categorization problems, other studies have varied the overall
similarity of the items being categorized. Previous results have
shown that the efficiency of category learning is influenced by the
sequencing of items to be categorized. Researchers have often
contrasted interleaving categories—alternating presentation of
items from different categories—with blocking categories—
presenting many examples of one category followed by many
examples from another category. Some researchers have proposed
that interleaving is generally superior to blocking because it widely
distributes presentations of a category over time (Foster et al.,
2019; Kornell & Bjork, 2008) or because it emphasizes features

that serve to discriminate between the categories being learned
(Kang & Pashler, 2012). Other researchers have argued that
whether interleaving or blocking is superior depends on the nature
of the categories being learned (Carvalho & Goldstone, 2015;
Goldstone, 1996; Zulkiply & Burt, 2013). In particular, when all of
the objects across all of the categories are similar to one another,
then interleaving is beneficial because it highlights the few, hard-
to-find features that discriminate between the categories. Con-
versely, when all of the objects across all of the categories are
dissimilar to one another, then blocking is beneficial because it
highlights the few, hard-to-find features that are shared by the
members within each category (Brunmair & Richter, 2019;
Carvalho & Goldstone, 2014). Carvalho and Goldstone (2022)
developed a computational model, sequential attention theory
model, that accounts for this interaction between sequence (blocked
vs. interleaved) and category structure (high vs. low similarity) by
assuming that people place emphasis on features shared by successive
items belonging to the same category as well as features that differ
between successive items belonging to different categories.

Unlike sequential attention theory model, PATHS does not
explicitly apply differential encoding weights to different scene
descriptions, but its core processing serves to stochastically
interpret the same scene in different ways depending on the other
scene with which it is paired. PATHS tends to test descriptions that
it has just created for one scene of a pair to see if they apply to the
other. This leads to descriptions that are shared by scenes
belonging to the same category, and that discriminate between
scenes belong to different categories, being likely to be tested on
other pairs. Given PATHS’s core context dependency, we devised
the pair of PBPs shown in Figure 11 to test whether it would
demonstrate the same interaction between sequencing (blocked vs.
interleaved) and category structure (high vs. low similarity) that has
been observed with people. PATHS was run 1,000 times for each
version of the PBP with each sequence. When the scenes were
presented in a blocked sequence, then two randomly selected scenes
from the same category were presented together at one time. In the
interleaved sequence, the two paired scenes were selected from
opposite categories.
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Figure 10
Difficulties of Solving Problems for People and PATHS, as a Function of the Similarities of the Paired Scenes Within and Between Category

Note. Juxtaposing similar scenes promotes rule induction if the scenes come from different categories and hinders rule induction if the scenes come from the
same category. Error bars represent standard errors of the mean. PATHS= perceiving and testing hypotheses on structures. See the online article for the color
version of this figure.
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The results from the simulations are shown in Figure 12. Consistent
with the empirical results described above, there was a highly
significant interaction between sequencing and category structure.
When scenes were blocked by category, the PBP with dissimilar
scenes tended to require fewer steps to solve than the version with
similar scenes. Conversely, when scenes belonging to different
categories were paired (interleaved sequence), the PBP with similar
scenes tended to be solved faster than the version with dissimilar
scenes. For both humans and PATHS, interleaving categories is
particularly helpful when objects across categories are similar to each
other. In that case, there are not many descriptions that discriminate
between the objects, so candidate descriptions are likely to be the
rule-defining ones. In addition, the simulations show a main effect
such that interleaving tends to lead to faster category rule discovery
than blocking. This is generally consistent with the literature’s
frequent overall recommendation to interleave rather than block
categories, all else being equal (Doug Rohrer & Hartwig, 2020;
Yan & Sana, 2021).

Comparing Alternative Versions of PATHS

PATHS is a complex model with many interacting components.
One way to determine how important a particular component process
is for PATHS’s successful operation is to modify or lesion that
component and observe its impact. This model-lesioning approach
has been effectively used in previous models of inductive reasoning
(M. Mitchell, 1993). One core component of PATHS is its capability
to model physics simulations, which allows it to solve PBPs that rely
on dynamic attributes such as the stability or imagined movement of
objects. In the first lesioned version of PATHS, we disabled its
capacity to run physical simulations. Figure 13 shows a comparison of
the no-physics version of PATHS with the original PATHS model.
Two observations stand out. First, without the capacity to conduct
physical simulations, PATHS can no longer solve any PBPs that rely
on dynamic properties, such as problems 8, 12, 18, 20, 22, 26, 30, and
31. Second, the lesioned version of PATHS was able to solve
problems that do not rely on dynamic properties faster because it had

fewer properties that it was able to perceive and therefore a smaller
search space.

Another core component of PATHS is its mechanism to
stochastically select among existing solution hypotheses for checking
against new scenes and to combine the hypotheses to form more
complex hypotheses. Figure 14 compares the original PATHS model
with an “exploitation-biased” version of PATHS that strongly focuses
on hypotheses with the most matching scenes at the cost of exploring
new hypotheses. For easily solved problems, there is no significant
difference in the performance of the exploitation-biased variant
compared to the original model. For the more complex problems 13,
20, 26, and 31, the exploitation-biased variant performs worse than
the original model due to its tendency to extensively check and
combine initial hypotheses before considering new, potentially
simpler ones. This lesion points to an explore–exploit trade-off
(Cohen et al., 2007) in PATHS. Continuing to check hypotheses
that have proven to be relevant to a problem is an important way for
PATHS to strategically pursue promising trails, but it comes with
the cost of limiting broader exploration.

In a final variation, we removed the attention mechanism from
PATHS that allows it to adjust how it selects objects for perceiving
further attributes. In the original model, PATHS is biased toward
perceiving attributes of objects that are featured in promising
hypotheses. For example, if a hypothesis with many successfully
matched scenes selects rectangles, PATHS is more likely to perceive
further attributes on such rectangles and could, for example, notice that
a particular rectangle is also small. The lesioned version that does not
bias perception toward objects featured in hypotheses has performance
similar to the base model, except that it does significantly worse for
PBP 26. This makes perfect sense given that PBP 26 has a lot of
objects in some of the scenes, and its solution is based on the
movement direction of a small circle that is present in each scene. The
attention mechanism in the original version of PATHS makes the
model more likely to focus on perceiving additional properties of that
circle once a hypothesis matches it across all scenes.

The data that we recorded in simulation runs of the model using
the different variations is, together with the source code of the
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Figure 11
Two Versions of the Same PBP, Varying in the Similarity of the Scenes

Note. Both versions have the same solution: Left scenes end with objects touching and right scenes
end with objects apart. PBP = physical Bongard problem. See the online article for the color version of
this figure.
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model, available in the analysis-new folder at https://github.com/
eweitnauer/Dissertation-PATHS-Model.

Comparison of PATHS to Other Bongard Solvers

The challenges connected with BPs are reflected in the still
relatively limited number of implemented computational ap-
proaches to solve them. This would seem to make comparisons
between them an easy matter. However, authors test their systems
on different subsets of BPs. They also assume different input
representations, which by itself can have a very significant impact
on a solver’s task. The first computer-based approach (Saito &
Nakano, 1995) that was applied to BP problems described the
scenes in a BP in terms of logical relations between objects and
their attributes and used a search algorithm to identify a formula
that could correctly distinguish descriptions for the left and the
right sides of a BP. This approach required a manual translation of
images into the fixed categories and attributes of their symbolic
description. The chosen description space limited such translation
to a subset of the original BPs, and the authors found their method
able to solve 41 problems in this subset, which is better than any of
the subsequent approaches that worked directly on images so as to
avoid the manual translation step.

The work by Foundalis (2006) was the first such approach. It
worked directly on 100 × 100 pixel images for the scenes, and the
development of a visual front end that could handle such images
was a significant feat at the time. As a result, this approach offered
a more general and autonomous solution to the challenge of
concept formation from line drawings. However, Phaeaco’s design
prevented it from being able to ignore parts of a scene as irrelevant,
from representing relational situations like an object being left of
another object, and from directly applying an interpretation that it
discovered for one scene to another scene. These limitations
resulted in a starkly reduced number1 of solved problems. The code
for the Phaeaco system is not readily available for testing on
new BPs.

The work of Depeweg et al. (2018) revisited the earlier approach
of Saito and Nakano (1995), refining their logical relations into a
proposal for a “visual language.” The foundation for their visual
language is a grammar allowing them to manually express the
correct rule for a subset of 39 BPs (from the original 100). The
required features could be computed from off-the-shelf computer
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Figure 12
Results From PATHS When Shown the PBPs in Figure 11 in Interleaved
Versus Blocked Sequences

Note. Error bars represent standard errors of the mean. Note the relatively large
standard error despite a high number of model runs. This is due to the model
deciding stochastically what to focus on first, which in turn influences what it
perceives and tests subsequently in a solution attempt. Consistent with empirical
results using simple visual stimuli (Carvalho & Goldstone, 2014), pairing blocked
presentations with dissimilar problems, and interleaved presentations with similar
problems, results in relatively faster concept learning than the other two pairings.
PATHS = perceiving and testing hypotheses on structures; PBPs = physical
Bongard problems. See the online article for the color version of this figure.

1 The webpage https://www.foundalis.com/res/solvprog.htm reports 15
problems solved as of 2006.
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vision algorithms that were more sophisticated than those available
to Foundalis more than 10 years earlier. Generating many random
instances from the solvable 39 BPs, they were then able to replace
the manual construction of the solution rule by an automatic, tree-
based classifier that takes the vision-computed features as input.
This solver could automatically solve 35 of the 39 problems.
However, by the nature of their approach, the remaining 61 were
unsolvable a priori as a result of limitations in the expressivity of
the constructed visual language.
The recent work by Yun et al. (2020) tries to minimize such

limitations of the expressivity of a prechosen symbolic language.
To this end, they replace the grammar by a CNN (4 + 1 layers) that
transforms each BP scene into a lower dimensional feature vector.
This is achieved through a pretraining task requiring the network to
learn to classify typical shape constituents (such as line segments,
arcs, or n-gons) of a Bongard scene into their shape category (25
classes). By applying the resulting pretrained network to the 12
scenes of a BP it transforms the task of solving the BP into finding a
rule for splitting the 12 points (e.g., scenes) in a 25d feature space
correctly into the subsets that correspond to the left and right
scenes. For finding the rules, they compare two different
algorithms: a depth-1 classification tree (equivalent to seeking
a single feature that can split each BP’s 12 feature points

by thresholding) and a linear regression seeking a separating
hyperplane in the pretrained feature space—which makes the
classifier much more flexible but less interpretable. However, the
reported classification rates are rather disappointing (close to 1%).
As a remedy, the authors augment the feature space by additional
features taken from the hidden layers of the CNN. In this way, they
can raise the performance of the regression-based algorithm to close
to 100% when they include all features of the last two hidden layers.
The first algorithm can improve to about 30% when the hidden
features of all layers are included. They also discuss how this impacts
the human interpretability of the rules. When they visualize the finally
adopted feature as a 2D activity map over the input image, the activity
distribution often highlights locations where humans can find
interpretable features for building a human-interpretable rule for
the inspected BP. Thus, while being very different from a symbolic
rule, the created representation can aid a human trying to find such a
rule, in the spirit of machines supporting human-in-the-loop problem
solving (Zanzotto, 2019).

The authors also consider the generalization (they call it
“robustness”) of their classifiers by providing for each of the training
BPs an additional left and right scenes (hand crafted according to the
BP’s human-interpretable rule). While both algorithms can improve
on the expected 50% generalization ability of a random classifier, they
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Figure 13
A Comparison of the Baseline PATHS Model to an Alternative That Cannot Do
Physics Simulations

Note. Axes show the average number of steps required to solve a PBP for the baseline (X-axis)
and no-physics (Y-axis) versions of PATHS, with a cutoff at 2,500. The error bars show standard
errors of the means for the simulations. The numbers refer to the specific PBP (see Appendix B,
for all problems). The brightness of the inner circle shows the successful solution rate for the
baseline model, and the outer circle’s brightness shows the accuracy for the no-physics model.
PATHS = perceiving and testing hypotheses on structures; PBP = physical Bongard problem.
See the online article for the color version of this figure.
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do so only slightly (63% and 55% for the first and second algorithms,
respectively), indicating a significant overfitting problem for both
approaches.
Solving BPs is challenging due to the very small number of

examples that exemplify a concept. It is also challenging because of
the relative paucity of BPs, compared to, for example, the number of
labeled images or large text corpora. At present, the existing domain
of BPs consists of only a few hundred readily available for
researchers. This, too, poses a problem for AI systems that operate in
a primarily data-driven way (Depeweg et al., 2018; Yun et al., 2020)
and not generally for humans who reason well from small sets of
examples. To relieve this constraint at the domain level and, thereby,
make a wider range of machine learning methods applicable, Nie et
al. (2020) propose a new visual data set (“BONGARD-LOGO”) that
is inspired from the original BPs but can be generated in a scalable
way from a set of hand-coded programs. Parametric variation within
a program allows an unlimited number of instances of each concept.
By juxtaposing positive and negative examples of sampled concepts,
this data set offers BP-like benchmark problems, but with an arbitrary
number of samples from its domain. This allows the authors to
evaluate a wider number of machine learning algorithms against
human performance. They find that even after relieving the data
sparsity at the domain level with their BONGARD-LOGO data set,

a large performance gap remains between current machine learning
algorithms and human performance.

Compared to the above models, PATHS starts with input images
encoded in SVG format, which essentially amounts to assuming a
vision system that can perform perfect line and area detection and
deliver its results in terms of correspondingly parameterized
primitives; a task that can be solved with modern computer vision
software for clean images (Depeweg et al., 2018). PATHS is able to
work with very few scenes, six or fewer per side, provided that the
constructor of a problem is careful to provide a set of scenes that is
relatively unambiguous in its classification rule (Shafto et al., 2014).
With our focus on dynamics and physics, our tested problems are
no longer a subset of Bongard’s 100 classical problems. Our newly
designed PBPs are mostly out of the scope of other AI systems
because their solutions typically require internal simulation,
combined with the computation of dynamical features, for example,
the behavior of an object under “imagined” and then simulated
physical perturbation.

Although PATHS shares with some of these systems (Depeweg et
al., 2018; Saito & Nakano, 1995) the internal use of explicit rules to
organize a search through a suitable rule space, most of the PBPs are
beyond the expressivity of the above-discussed earlier systems. This
applies even for the recent deep CNN approach of Yun et al. (2020;
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Figure 14
AComparison of the Baseline PATHSModel to an Alternative That Is Biased to Apply
Already Discovered Descriptions to New Scenes

Note. Axes show the average number of steps required to solve a PBP for the baseline (X-axis)
and exploitation-biased (Y-axis) versions of PATHS. The error bars show standard errors of the
means for the simulations. The numbers refer to the specific PBP (see Appendix B, for all
problems). The brightness of the inner circle shows the successful solution rate for the baseline
model, and the outer circle’s brightness shows the accuracy for the exploitation-biased model.
PATHS = perceiving and testing hypotheses on structures; PBP = physical Bongard problem.
See the online article for the color version of this figure.
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described above), which is not only negatively impacted by
overfitting problems but also restricted by its architecture to the
learning of static features. Their transfer learning approach would
need to be significantly extended to learn dynamical features.
These would require more powerful architectures, such as
recurrent or long-short-term-memory networks, trained on more
sophisticated data sets. Even if this could be achieved, the goal of
producing human-understandable rules would be more difficult to
achieve with features generated from recurrent or long-short-term-
memory networks than for better understood feedforward CNNs
(Yun et al., 2020). However, a recurrent network approach might
be able to generate, similar to PATHS, solutions in terms of fast
and iterative internal dynamics. Although difficult to analyze the
resulting internal structures that emerge, such a feat would open up
the possibility of a deeper comparison between such a distributed
approach and the more symbolic and directly interpretable
processing within PATHS (Piantadosi, 2020). Questions could
be explored, such as whether a subset of the symbolic operations
can be seen as an abstraction of the subsymbolic solution or whether
a deep neural network creates an entirely different kind of solution.
One unique contribution of PATHS relative to these other

systems is the sophistication of its relation processing. The above-
reviewed systems construct logical combinations of features such as
white and circle, but they lack explicit processes for discovering
new relations among separate objects such as triangle above circle
or black objects larger than white objects. Many of the original BPs
require spatial or featural relations to be apprehended, and the
hypothesis underlying PATHS is that these relations will need to be
explicitly represented to achieve robust generalization of a classifier
to new instances (Gentner & Asmuth, 2019). This property also sets
them apart from the recent data set “BONGARD-LOGO”, where
the significance of such relations is strongly altered by excluding
several basic geometric features, such as size or distance between
shapes, from being relevant for a concept (Nie et al., 2020).
A final important difference between PATHS and Deep Learning

BP solvers is that even when these latter systems provide an explicit
categorization rule, the rule construction phase is strictly after the
stage in which features are computed. Instead, PATHS crucially
intertwines the process of developing perceptual descriptions with
rule construction. An advantage of intertwining perception and
concept formation (Austerweil & Griffiths, 2013; Sanborn et al.,
2021; Schyns et al., 1998) is that constructing computationally
expensive perceptual descriptions is only pursued when supported
hypotheses indicate that the effort is likely worthwhile.

Core Requirements for Combining Rule-Based Category
Learning With Perceptual Description Construction

The PATHS model is a process-level computational model of
human category learning for rule-based categories and can currently
solve 13 of the 22 PBPs on which human participants were tested.
The PBPs were designed as a challenging problem domain with
structured, dynamic physical scenes as the instances that are
categorized according to specific rules. The model tightly integrates
perception with hypothesis generation and testing: perception drives
rule formation and hypothesized rules guide further perception.
There is a respectable correlation between PATHS and people on
their observed difficulties with different PBPs. Furthermore,
PATHS is influenced by similarity and order of presented scene

pairs in the same qualitative ways as humans. In this sense, PATHS
achieves both its goal of perceiving and learning structured
concepts and of capturing an important characteristic of human
learning performance.

One possible concern about the PATHS model is that it can
currently solve a few PBPs and nothing else. Even if PBPs share
important similarities with real-world concept learning tasks, the
question of properties and insights from the PATHS model that can
be generalized or “exported” into other domains and contexts
remains. We go back to the four theoretical commitments that
underlie PATHS and discuss why they can be applied to inductive
learning more broadly than BPs.

Continual Perception of New Scene Descriptions
Over the Course of Category Learning

In many traditional category learning studies, it is easy to imagine
that the learner has a full description of the objects to be categorized
as soon as they are presented. For example, if eight stimuli are
clearly defined by their shape (triangle vs. square), interior line type
(solid vs. dotted), and size (large vs. small; Nosofsky et al., 1994), or
if colors vary in their saturation and brightness (Nosofsky &
Palmeri, 1997), then it is easy and perhaps safe to assume that
observers have access to those perceptual features upon stimulus
presentation. Other approaches to categorization postulate a gradual
process by which perceptual information is accumulated. These
models incorporate differential feature salience (Lamberts, 2000) or
physiologically plausible neural accumulation processes (Purcell
et al., 2010) to provide accounts for the response times required
to make categorization decisions. Like these latter models, PATHS
incorporates a process by which perceptual descriptions are gradually
enriched over time but for different reasons.

For PATHS, one fundamental reason why perceptual descriptions
are continually elaborated over time is that building perceptual
descriptions is computationally costly. PBPs usefully extend beyond
traditional BPs because they underscore the cost of computing
descriptions. For example, the determination that a particular scene,
if a physics engine were to operate on it, would eventually lead to all
of the scenes’ objects touching one another involves a costly
computation. It requires an internal physics engine to iteratively
predict successive frames until an equilibrium or terminal condition
is achieved. PATHS’s incorporation of a physics engine to infer the
properties of a scene is consistent with research suggesting that
people can run physics-enabled simulations internally (Allen et al.,
2020; Battaglia et al., 2013; T. D. Ullman et al., 2018) and presents
a convincing case in which properties such as support, stable, and
can escape require something like a physical simulation to
determine. While there is clearly a significant computational cost
for both humans and PATHS to make such perceptions, the relative
costs of perceiving different kind of features are likely different
between humans and PATHS—which we do not model explicitly
in PATHS. Nevertheless, viewing PBPs through this lens means
treating the perception of features in PBP scenes as a costly
operation and requires a PBP learning model that minimizes these
costs by creating perceptual descriptions only for features that have
a reasonable chance of being part of a correct categorization rule.
This insight that creating encodings of situations is costly and must
be taken into account by a bounded-rational decision maker
(Lieder & Griffiths, 2020) applies beyond PBPs. For example,
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given the health risks involved in some medical tests, the benefits
of collecting additional information about a patient ought to be
weighed against the costs of injury from the tests themselves.
Likewise, if an investor waits until all of a company’s possible
financial reports are released, they may miss a rare investment
opportunity. The kind of contingent and continual perceptual
description construction process at the heart of PATHS is
applicable to many situations where acquiring information is
costly because of time, labor, or computational resources.
A second reason why perceptual descriptions are continually

created as PATHSworks to solve a PBP is that there is an open-ended
set of possible descriptions that could potentially be built. A typical
kind of description formed by PATHS while working on a PBP is ∃
(objects that are close to (large objects) at the end), translatable into
English as “At the end of the physics simulation, there is at least one
object that is close to a large object.” Given the composed and
complex nature of this description, there are an exceedingly large
number of other descriptions that could alternatively have been
created. A major source of PATHS’s flexibility in finding category
rules is that a grammar is used to construct descriptions out of
atomically detected features. A natural outcome of PATHS creating
new descriptions by recombining previously computed descriptions is
that with ongoing processing, increasingly complex descriptions will
tend to be created. Creating complex descriptions at the beginning of
a run would be inefficient and wasteful and is avoided by having a
continual process of creating new descriptions from old.

The Context-Dependent Nature of Constructing
Perceptual Descriptions

In PATHS, perceptual descriptions are not only continually
formed but they are also contingently formed based on descriptions
that have been formed for other scenes. Complex descriptions that
would be normally be very unlikely to be constructed can be readily
formed if they are first established in another simpler scene. PATHS

incorporates three levels of context with increasing scope. At the
smallest, within-scene level, a feature is more likely to be detected
in an object if the feature has been detected in other objects within
the scene, or if the object has already been highlighted by having
several other features noticed for it. At an intermediate, within-pair
level, once a feature or relation has been noticed within a scene, it
will be checked in the other scene with which it is paired. This is the
reason why the immediate temporal and spatial context has a large
effect on the difficulty of inducing a categorization rule. At the
largest, within-problem level, PATHS keeps a running list of all
selectors and hypotheses that it has tried. Selectors and hypotheses
that have been noticed for many scenes will tend to be noticed for
other scenes. This last contextual influence is key to PATHS
efficiently finding descriptions that apply to all of the scenes within a
category.

There are several ways in which PATHS can give the same scene
very different interpretations depending on context. First, groups of
objects within a scene can be created not only based upon their
spatial proximity but also because they are all picked out by the same
selector. For example, a black circle can be placed in the same group
with a set of circles based on shape, with a set of black objects based
on color, or with white squares if it is sufficiently close to them.
Selectors are flexible because they can also be based on relations or
conjunctions of features. Second, an object in a scene could be
treated as the main object or part of the background. When relations
are computed between objects, one object is assigned to be the target
object and another is the reference object. Thus, a simple scene
could either be described as left-of(triangle, circle) or right-
of(circle, triangle), and only the former would combine well with
another description left-of(white thing, circle) to form left-of(white
triangle, circle). Third, many features and all relations in PATHS
have adaptable thresholds so that, for example, the same situation
could be described as “fairly stable” or “fairly unstable.” For a more
complete example of how this context dependency allows PATHS
to solve a PBP, consider the two problems in Figure 15. The PBPs
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Figure 15
Context Sensitivity of Perception

Note. The scenes highlighted in purple are the same in Problems A and B, and yet PATHS can form the
solution “Left side scenes have a triangle above a rectangle; Right side scenes have a triangle to the right of
a rectangle.” This is possible because the threshold for detecting above and right spatial relations depends
upon the context provided by the other scenes’ descriptions. PATHS = perceiving and testing hypotheses
on structures. See the online article for the color version of this figure.

24 WEITNAUER, GOLDSTONE, AND RITTER



presented in Panels A and B are both solved by PATHS with the
rule: “Left side scenes have a triangle above a rectangle; Right side
scenes have a triangle to the right of a rectangle.” For this to
transpire, the identical scene, highlighted in purple, which appears in
both problems, must be interpreted as containing a triangle above a
rectangle in A but a triangle to the right of a rectangle in B. PATHS
is able to give conflicting interpretations to the scene because the
thresholds for applying spatial relations such as above and right are
adapted to the context provided by the other scenes. By relaxing the
threshold needed to detect a right-of in B, PATHS is able to give the
highlighted scene the same description that it gives the other scenes
in its category. Reminiscent of how Medin et al. (1993) found that
the same ambiguous figure is interpreted by people as possessing
three prongs when compared to a three-pronged object and as
possessing four prongs when compared to a four-pronged object, so
PATHS gives incompatible interpretations of a scene to make it
align better with other scenes in its comparison group.

Hypothesis Construction by Combining Descriptions
Into Compound Rules

PATHS is not unique in possessing a mechanism for recursively
creating compound rules out of simpler expressions. Many
cognitive models have the ability to express new concepts by
applying built-in operations to a finite set of primitive components
in order to generate an open-ended set of descriptions (Goodman
et al., 2008, 2015; Kemp, 2012; Piantadosi et al., 2016). The power
of these compositional systems is that grammars for composing
symbols can express higher order ideas that would be very difficult
to represent directly in the senses, and they permit a combinatorial
explosion of possible ideas (Piantadosi, 2020; Rule et al., 2020). In
linguistics, combinatorial systems have been proposed to represent
open-class verbs like “kill” in terms of the components cause and
die. Within PATHS, physical relational concepts provide good
examples of the generative power of combinatorics. For example,
PATHS can coarsely capture the notion of “circle is free to escape”
(see PBP 31) by building up the hypothesis that “there are can-
move-up circles in all left scenes.” The semantics of the “can-
move-up” component are, in turn, grounded by the execution of a
perceptual simulation that tests whether the object can easily move
out of the scene when at least one directional force is applied to it.
The physics simulation grounds the notion of stability in terms of
whether small perturbations to the initial scene result in large end-state
differences. Likewise, the notion of X supporting Y is grounded in
terms of the conjunction of X being below Y and Y touching X. This
physical grounding of support is clearly not general enough to explain
other uses of “support” such as data supporting an argument or a
parent supporting a child (Regier, 1996). However, PATHS at least
provides a working computational model capable of representing
some relational concepts that would normally be considered high
level and abstract.
A legitimate question remains: “Why build a model of rule-

based category learning if most human categories are not
structured by rules?”According to prototype approaches, concepts
are organized around family resemblances rather than features that
are individually necessary and jointly sufficient for categorization
(Lakoff, 1987; Rosch & Mervis, 1975). Prototype accounts can
naturally accommodate observations that are awkward for rule-
based approaches, such as people’s general difficulty describing

rules that make up natural concepts such as robin, chair, and
mother (Goldstone et al., 2018). However, category learning
systems that devise rules are still, arguably even increasingly,
important for several reasons. First, empirical results on category
learning often produce findings that are more compellingly
explained by people forming rules rather than learning prototypes
or storing instances (Nosofsky & Palmeri, 1998; Piantadosi &
Jacobs, 2016). Second, for AI systems, a practically and
theoretically important goal is developing intelligent systems
that can explain or justify the decisions that they make (Samek &
Müller, 2019). For example, if a doctor cannot understand why a
deep learning system categorizes a patient’s growth as malignant,
then the doctor is less likely to trust the categorization and may not
implement the best course of treatment. Third, teachers who strive
to efficiently impart knowledge to students plainly benefit if they
are able to give their students rules, even if they are imperfect. The
student of German who learns from their teacher that nouns that
end in “e” usually have a feminine grammatical gender may make
some mistakes but will very often correctly guess the gender of a
word never before seen. Fourth, rule-based reasoning allows for
stronger inferencing than is possible with systems that use overall
similarity (Sloman, 1996). For example, Cuba may be similar to
Jamaica, because of their climates, and similar to Russia politically,
but these similarities do not sanction the inference that Jamaica is
similar to Russia (Tversky, 1977). If a search engine is going to
produce the correct answer to a query such as “Howmany U.S. cities
that have a population over 500,000 are located North of Latitude
40?” then it is likely going to need to have the capacity to represent
rules as conjunctions of conditions.

Bidirectional Interactions Between Perceiving
New Aspects of Scenes and Constructing Rules
That Distinguish Categories

An ongoing key issue for cognition is how people’s low-level
perceptual systems are connected to their high-level conceptual
and reasoning systems. In traditional symbolic AI systems, this
connection is not sought, and computation only involves symbol-
to-symbol transformations. However, others have argued that if
symbolic conceptual and reasoning processes are not interfaced
with perception and action, then these high-level systems can
neither get information from nor affect the world (Harnad, 1990).
Proponents of embodied cognition emphasize that abstract conceptual
representations gain their flexibility and richness from their foundation
in perceptual systems (Barsalou, 1999, 2008; Goldstone & Barsalou,
1998). Likewise, researchers in robotics have had to grapple with the
need to have agents that interact with their environments on a
sensorimotor level and yet need concepts that allow them to transfer
what they have learned to different environments (Lázaro-Gredilla
et al., 2019).

BPs offer an ideal domain for studying the interface between
perception and concepts because they require both the flexible
perception of features from complex visuospatial inputs and
conceptual apparatus to organize descriptions into explicit rules
(Edelman & Shahbazi, 2012; Hofstadter, 1979; M. Mitchell, 2019;
Piantadosi, 2020). While PATHS hardly solves the general problem
of how to interface low-level perceptual inputs to conceptual symbols,
it does offer a working computational model that solves nontrivial
problems requiring both perception and symbolic representations.

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

CONCEPT LEARNING 25



Critical to PATHS’s operation are bidirectional interactions between
perception and hypothesis formation. When features, groups, and
relations are identified in a scene in the form of selectors, they spur
the formation of hypotheses. Hypotheses are candidate rules for
distinguishing between the scenes on the two sides of a BP. These
hypotheses, in turn, direct PATHS to search for additional
confirmatory and disconfirmatory evidence. From the vast number
of costly descriptions that could potentially be built for a scene, a
much smaller set of descriptions is thereby prioritized for
construction. Efficient learning from complex examples relies on
good choices about the order in which features and rules are explored.
Modeling the iterative and concurrent nature of perception and rule
construction allows these processes to mutually guide these choices.
We take these four core requirements to be domain-general

principles for category learning in situations where new perceptual
descriptions must be created to support the categorization. It might be
argued that much of PATHS’ processing is task specific, useful for
PBPs but not generalizing well to other tasks. In response, we would
argue that many of the specific interpretative processes developed for
PBPs have applications for other problems. Some of these generally
applicable mechanisms include the graded determination of spatial
relations, the prioritized testing of descriptions developed for one
scene on other scenes, the creation of new descriptions by composing
existing descriptions and grouping objects in a scene into clusters
based on expressions using quantifiers. Beyond PBPs, these
mechanisms have direct relevance to problems in the abstraction
and reasoning corpus (Chollet, 2019), visual analogical reasoning
(M. Mitchell, 2021), and Raven’s progressive matrices problems
(Hersche et al., 2023). Some of PATHS’ description generation
mechanisms are restricted in their relevance to visual perception
and simulation rather than being completely abstract and amodal,
but concepts that involve spatialized perception and simulation are
rife throughout human experience (Allen et al., 2020; Battaglia et
al., 2013; T. D. Ullman et al., 2017). Moreover, nontrivial cases of
creating new scene descriptions may necessarily involve percep-
tually constrained interpretative processes such as the ones found
in PATHS (S. Ullman, 1987). Eventually, these processes may
themselves be learnable (Lázaro-Gredilla et al., 2019).

Conclusion

BPs provide an elegant context for exploring the complex process
of finding rules that organize rich perceptual inputs into categories.
Solving these problems requires a cognitive system to bridge the
semantic gap between low-level perception and high-level concep-
tualization (M.Mitchell, 2020). The PBPs that we introduce augment
the set of typical BPs so as to emphasize the need for solvers to
engage in costly perceptual simulations that approximately follow
physical laws. PBPs are attractive due to their open feature space,
their dynamic and structured content, and the fact that they allow for
easy manipulation of the similarity of scenes presented next to each
other. While studies with human participants serve as a comparison
for the model, they also directly advanced our understanding of how
the mode of presentation and similarity of instances influence human
concept learning. These studies show the benefit of cross-category
comparison of similar relative to dissimilar PBP scenes and the
benefit of within-category comparison of dissimilar relative to similar
PBP scenes. The components of PATHS that perceive dynamic
physical attributes of scenes such as stability, support, and movability

by using a physics engine to perform counterfactual reasoning can be
reused in other work that explores the perceptual grounding of high-
level concepts. PATHS also presents a system for integrating
perceptual processes tightly with higher level cognitive processes.
This integration is required across fields as diverse as active
learning, optimal experiment design, analogy making, and
memory retrieval. Within the field of concept learning itself,
there has been a tendency to treat the perceptual encoding process
as separate from, and completed before, the process of constructing
characterizations of concepts. PBPs show the conceptual problems
that arise when these processes are kept separate, and PATHS
provides a model of how they can be effectively integrated.
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Appendix A

Solutions to Bongard Problems Presented in Main Text

Figure 1 problems:

• Upper left—left side: small objects included; right side: no
small objects.

• Upper right—left side: black object is triangle; right side:
black object is circle.

• Lower left—left side: line endpoints have same orientation;
right side: line endpoints are oriented 90° relative to one
another.

• Lower right—left side: the line and point form an isosceles
triangle; right side: the line and point form a scalene triangle.

Figure 2 problems:

• Upper left—left side: objects end up touching each other;
right side: objects end up apart.

• Upper right—left side: circle does not land between two
identical objects; right side: circle lands between two
identical objects.

• Lower left—left side: object collide; right side: objects do
not collide.

• Lower right—left side: structure is not destroyed; right side:
structure is destroyed.

(Appendices continue)
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Appendix B

All Bongard Problems Tested on Humans and PATHS
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Note. PATHS = perceiving and testing hypotheses on structures. See the online article for the color version of
this figure.
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Appendix C

Solutions to All Bongard Problems in Appendix B

PBP Left side Right side

02 One object Two objects
04 Squares Circles
08 Unstable situation Stable situation
09 Objects move in opposite directions Objects move in same direction
11 Objects close to each other Objects far from each other
12 Small object falls off Small object stays on top
13 Objects form a tower Objects form an arc
16 The circle is left of the square The square is left of the circle
18 Objects touch eventually Objects do not eventually touch
19 An object flies through the air All objects always touch something
20 Square supports other object Square does not support other object
21 Strong collision Weak or no collision
22 Objects collide Objects do not collide
23 Collision No collision
24 Several possible outcomes One possible outcome
26 Circle moves right Circle moves left
28 Rolls well Does not roll well
30 Unstable situation Stable situation
31 Circle can be picked up Circle cannot be picked up
33 Construction gets destroyed Construction stays intact

Note. PBPs = physical Bongard problems.
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