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EPICURE: Spatial and Knowledge Limitations in
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We propose an agent-based model of group foraging, EPICURE, for patchily distributed resources.
Each agent makes probabilistic movement decisions in a gridworld through a linear combination of cur-
rent perceptual information and a reinforcement history. EPICURE captures the empirical results from
several foraging conditions in previous works, and it leads to a reevaluation of findings from those
papers. In particular, human foragers show contingent usage of information, initially using social infor-
mation to discover resource pools before private sampling information has been established. We
describe a series of simulations that test the sources of resource undermatching often found in group
foraging experiments. After testing the effects of foragers’ starting locations, travel costs, the number
of foragers, and the size of uniform food distributions, we discuss a novel hypothesis for undermatch-
ing. Spatial constraints lead to inadequate individual and group information sampling and cause group
undermatching. The foraging group size, food rate, spatial distribution of food, and resulting forager
reinforcement histories interact to produce undermatching, and occasionally overmatching, to

resources.
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1 Introduction

Animals often forage for resources and even mates in
groups. Concrete foraging tasks include chimpanzees
foraging for fruit (Hashimoto et al., 2003), ladybird
beetles foraging for aphids (Kareiva & Odell, 1987),
and guppies choosing mates (Dugatkin, 1992). Mean-
while, abstract foraging tasks include pigeon problem-
solving (Giraldeau & Lefebvre, 1986), human infor-
mation foraging (Pirolli & Card, 1999), and Internet
dating sites. By congregating with others, individuals
can acquire social sampling information and learn new
strategies in order to improve food intake and mate
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selection rates, but these advantages can be compro-
mised by member competition and density-dependent
interference and perceptual limitations. There is an
interesting interplay between each individual’s strat-
egy and the emergent group behavior, which is often
not representative of any of its constituents’ behaviors
(Baum & Kraft, 1998). In this article, we offer a link
between individuals’ foraging decisions and group for-
aging distributions.

The ideal free distribution (IFD) model (Fretwell
& Lucas, 1970) predicts that a group of foragers will
distribute themselves to resource patches in proportion
to the relative resources available at each patch. In an
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environment where one resource pool holds 80% of the
resources while a second pool holds the remaining
20% of resources, the IFD predicts that a group of forag-
ers will optimally distribute themselves to the resource
pools, with 80% of the foragers in the first pool and
20% in the second pool. In predicting this optimal dis-
tribution, the model assumes the foragers have both
freedom of movement and “perfect knowledge” of the
locations, amounts, and appearance rates of all the
resources, thereby allowing the foragers to correctly
assess the value of the resources and optimally distrib-
ute as a group. However, in experiments with two patch
options, many studies report systematic undermatching
in which fewer foragers than expected attend the more
profitable patch while more foragers than expected
attend the less profitable patch. Godin and Keenleyside
(1984) found undermatching in cichlid fish, with the
largest degree of undermatching occurring in the con-
dition with the largest rate difference between resource
pools. Gillis and Kramer (1987) obtained similar results
for large populations (120 and 240) of zebrafish dis-
tributing between three resource pools, although they
did not find significant deviations for small popula-
tions (30 and 60).

Whereas Godin and Keenleyside concluded that
differential competitive abilities had violated the IFD
assumption of equal payoff for each animal at a pool,
Gillis and Kramer concluded that high population den-
sity broke the IFD assumption of perfect information.
Despite the difference in emphasis, both studies seem
to agree that perceptual limitations—whether due to
individual ability or occlusion from high density—
led to decreased available information about the pools
and subsequently undermatching. However, other stud-
ies (Harper, 1982; Kennedy & Gray, 1993) cite compet-
itive differences between organisms and travel costs
between locations as critical factors in producing under-
matching. Baum and Kraft (1998) consistently found
undermatching in a group of 30 pigeons distributing
between two resource patches, although the degree
of undermatching varied as a factor of resource dis-
tributions and travel constraints, and they were una-
ble to detect whether competitive abilities varied.
However, undermatching continued even as the food
rate increased, so Baum and Kraft concluded that food
rate did not affect undermatching. In a meta-analysis of
undermatching in animal foraging studies, Kennedy
and Gray (1993) conclude that information regarding
the “relative and absolute resource availability, number

of animals, perceptual abilities of animals, competitive
interactions, competitive abilities of animals, and the
effects of travel between sites” (Kennedy & Gray, 1993,
p- 165) may all lead to undermatching and violate the
IFD.

As Pirolli and Card (1999) have demonstrated, the
study of foraging is important for cognitive science
because humans may use the same mechanisms in
their distribution to information resources and physi-
cal resources. In fact, dopaminergic activity appears to
critically determine the degree of area-restricted search
in food foraging as well as the degree of goal-directed
cognition in humans (Hills, 2006). Recently, Gold-
stone and Ashpole (2004) and Goldstone, Ashpole, and
Roberts (2005) examined human group foraging behav-
ior under several perceptual conditions. The two papers
present results for all four permutations of visible/
invisible resources and visible/invisible foragers, with
foragers competing online for resources in an 80 x 80
gridworld with 50/50, 65/35, and 80/20 food distribu-
tions at two resource pools. We briefly review the
experimental setup and results from these articles, and
then describe an agent-based model that provides can-
didate mechanistic explanations for group foraging
dynamics. The model allows us to test changes in
dynamic group behavior as a result of environmental
manipulations, and it gives rise to a novel explanation
of resource undermatching in group foraging.

Traditional close-formed equation foraging mod-
els suffer from limitations similar to the mean field
approximation, according to which all individuals in
a group are assumed to be in the same location and
experience the same local environment. Agent-based
models that incorporate space and local variability fre-
quently produce much more realistic models (Seth,
2001). For example, giving agents unique rather than
aggregate positions has proven invaluable in modeling
the continued stability of host—pathogen populations
(de Aguiar, Rauch, & Bar-Yam, 2004), the genetic
diversity in a population (Rauch & Bar Yam, 2004),
and preserved pockets of cooperation surrounded
by defectors (Fehr & Fischbacher, 2004; Nowak &
May, 1992). We contend that Kennedy and Gray’s
(1993) meta-analysis undoubtedly describes many
important factors in undermatching to resources, but
as a result of past models driving the empirical obser-
vations, spatial constraints and their implications for
resource undermatching have been overlooked in pre-
vious studies.



Roberts & Goldstone EPICURE: Spatial and Knowledge Limitations in Group Foraging 293

2 Human Group Foraging

Goldstone and Ashpole (2004) recently examined
dynamic group foraging behavior in humans by devel-
oping an experimental networked Java platform to
create a common two-dimensional virtual world (an
80 x 80 grid) shared across computers. Participants sat
at their respective computers and foraged for resources
in real time, using the computers’ arrow keys to move
up, down, left, and right in order to step on a food
pellet and thereby consume it. We will briefly describe
the experimental manipulations because the Gold-
stone and Ashpole foraging environment and data
serve as the initial basis for our subsequent agent
models.

2.1 Methods

In the Goldstone and Ashpole foraging experiments,
participants engaged in six 5-minute sessions, con-
sisting of all combinations of two perceptual condi-
tions and three resource distribution conditions, and
all participants experienced the same conditions in a
given session. In the “visible” perceptual condition, a
participant could see himself or herself as a yellow dot
in the virtual world, and other participants were visible
as blue dots while available food pellets were repre-
sented as green dots. The visible condition is therefore
a good match for the assumptions of IFD (Fretwell &
Lucas, 1970). In the “invisible” perceptual condition,
a participant could see himself or herself as a yellow
dot in the virtual world, but no other participants or
food were visible in the world. The invisible condition
is an elegant experimental manipulation because the
dynamic group behavior still affects how much food
has been eaten and therefore the likelihood that a partic-
ipant will encounter food. The invisible condition cor-
responds to foraging experiments with sampling under
uncertainty, i.e. only probabilistic information is availa-
ble. The visible and invisible conditions represent two
ends of a foraging perceptual spectrum described by
Clark and Mangel (1984), although their resulting model
dealt with information sharing among foragers.

A new food pellet was dropped in one of two
resource pools every 4/N seconds (where N is the
number of participants), and there were three distribu-
tion conditions that probabilistically determined which
pool received the pellet: 50/50, 65/35, and 80/20. For
example, in the 65/35 distribution condition, 65% of

food arrived at one pool while 35% arrived at the
other pool. At each pool, new pellets were dropped
according to a Gaussian distribution with a mean at
the pool’s center and a standard deviation of 5 units
horizontally and vertically. Food release was con-
strained so that only one pellet could occupy a cell at a
given time, and resource pool locations changed from
session to session. In the invisible perceptual condi-
tion, a pellet appeared on the screen for two seconds
for the participant who stepped on it, and therefore,
participants could gradually ascertain the locations of
the resource pools by exploring the world and occa-
sionally obtaining pellets.

2.2 Results

Goldstone and Ashpole discuss three results: under-
matching, systematic cycles of population migration
between pools, and high variance of participants’ loca-
tions relative to food locations. Although our agent-
based model captures all of these phenomena using
the same parameter values, we are most concerned with
explaining the resource undermatching. Goldstone and
Ashpole found significant undermatching at the 80/20
and 65/35 distribution levels, with more pronounced
undermatching in the more extreme 80/20 conditions.
Since individuals do not directly interfere with each
other (two participants can occupy the same location),
competitive interference can be removed as a possible
explanation of the phenomenon. Furthermore, since
undermatching occurs even in the visible conditions,
where “perfect” knowledge is available, straightfor-
ward accounts in terms of perceptual constraints can be
removed as explanations. Our agent-based foraging
model, EPICURE (simply a name, not an acronym),
seeks to reproduce these results while testing the other
undermatching alternatives—different competitive abil-
ities, travel costs, and the number of foragers—from
Kennedy and Gray’s (1993) meta-analysis.
Goldstone, Ashpole, and Roberts (2005) extended
the foraging experiment to split perceptual condi-
tions: invisible resources with visible agents, and visible
resources with invisible agents. The latter condition is
probably less common in nature, but the invisible
resources/visible agents condition is common and serves
as an impetus for social learning in many species, from
birds to humans, where an individual’s resource dis-
covery can refine the searching of fellow foragers.
Although no direct communication occurred in our
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experiments, this condition could emphasize indirect
communication insofar as a forager may infer the loca-
tion of the invisible food based on the locations of visible
agents. Consistent with this hypothesis, field experi-
ments on migratory birds have shown that the presence
of birds attracts other birds to the region (Pdysi, Elm-
berg, Sjoberg, & Nummi, 1998; Stamps, 1988). Add-
ing birds to a site makes it more likely that still more
birds will choose the site for nesting. Another familiar
example is the tendency of buzzards to use the pres-
ence of other buzzards as an indicator of possible food
sources, and therefore to fly to where a large group of
buzzards is.

Undermatching was once again demonstrated for
this invisible resources/visible agents condition, and
the authors conclude that social bandwagoning there-
fore did not occur, since bandwagoning would lead
foragers to overmatch. The visible resources/invisible
agents condition led to the rare phenomenon of over-
matching, presumably because participants saw the
faster appearance of food at an 80% pool but were not
dissuaded by the greater density of foragers at the pool
because the foragers were invisible.

Undoubtedly the Goldstone et al. foraging para-
digm is simplistic compared with natural foraging
situations, which include issues of diet selection,
territoriality, energy requirements, communication,
reproduction, etc. However, the paradigm allows us
to take important steps in understanding the effects
of the amount and types of information on dynamic
group behavior. Human resource undermatching has
been demonstrated in an even more abstract design
(Critchfield & Attebery, 2003; Sokolowski, Tonneau,
& Freixa-Baque, 1999), with 15 participants each choos-
ing to display a green or red sign and contributing a
token for each trial, and the experimenters drawing 10
winning tokens according to green pool and red pool
payout distributions that varied across games. Similar
undermatching results were found when a certain
number of points were allocated to each chip color,
and the points were equally divided among all mem-
bers who chose that chip color (Kraft & Baum, 2001).
Sokolowski and Tonneau (2004) recently extended
their paradigm to three pools, and they again found
consistent undermatching with respect to the most
profitable resource pool. Furthermore, undermatch-
ing results have been obtained with this paradigm
even when participants could see each others’ pool
choices and switch pools before the experimenter

announced results (Madden, Peden, & Yamaguchi,
2002).

3 An Agent-Based Model of Resource
Matching

In EPICURE, each agent is randomly assigned a location
in the 80 x 80 gridworld at the beginning of the exper-
iment. As in Goldstone and Ashpole (2004), food is
dropped at a rate of 4/N seconds, and unless stated oth-
erwise, N is set to 20 agents, corresponding to the average
number of participants in the Goldstone and Ashpole
experiment. Agents move every 100 milliseconds, and
a movement consists of choosing an available food pel-
let and moving one grid unit towards the chosen pellet.
The interesting aspects of the model lie in the parameters
for action selection, and the usefulness of each parame-
ter critically depends on the perceptual condition we
are modeling. We first describe the full EPICURE model,
and then describe how we set certain parameters to zero
in order to capture the specific conditions from Gold-
stone and Ashpole (2004) and Goldstone et al. (2005).
An interactive Java version of the model is available
at http://cognitrn.psych.indiana.edu/Epicure.html. We
have previously described a less developed version of
the model (Roberts & Goldstone, 2005), but here we
also include modeling results for Goldstone et al. (2005),
a comprehensive examination of our undermatching
explanation, and our results on the contingent usage of
public and private information.

3.1 Full Model

An agent-based model should have minimal represen-
tational requirements while also being sufficiently robust
to handle changes in the empirical environment, such
as a sudden increase in food rates or number of partic-
ipants. When the food is visible, foragers are likely to
move towards the closest pellet, but this tendency is
modulated by the food density around a pellet and the
density of competitors around the pellet. Furthermore,
each location in the gridworld has a reinforcement his-
tory, so foragers are likely to move towards spots that
have been profitable in the past, and away from spots
where little food has been found in the past. Finally,
each of our foragers has a bias to continue moving
towards a chosen location until it is reached, before
choosing a new location.
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Together, these considerations lead to six factors
that let an agent determine each location’s current
worth in the full model:

(1) Inverse Euclidean distance from the agent to a
pellet.

(2) Food density around a location.

(3) Agent density around a location.

(4) Past rewards for finding food at the location.

(5) Past penalties for not finding food at the location.

(6) Inverse Euclidean distance from the location to
the agent’s current goal location.

Each factor is multiplied by a free parameter that
reflects the weight given to the factor, yielding Equa-
tion 1. Equation 1 indicates that the value of cell i,j at
time ¢ is the sum of these weighted factors. Note that
agent density can be a positive or negative factor,
depending on the environmental context, and this will
be described further in Section 4.3.

1
.o - P S
Value(i, j, t) ( lfooddismnce)

+ (Py*fooddensity) + (Py*agentdensity) O
+ (Py*rewards) — (Ps*penalties)
1
P *
+( 6 goaldistance)

Probability of moving to space(i,J)
eValue(i,j, 1)/ K

- Value(i, j, t)/K
e
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The model also incorporates Luce’s choice rule
(Luce, 1959) in Equation 2 to probabilistically choose
a location, given each location’s relative value to the
agent calculated in Equation 1. With Luce’s choice rule,
K is a constant that shifts action selection to be either
more exploratory or more exploitative of information
already obtained. When K is large, even highly valued
locations become small values and thereby indistinguish-
able, leading to uniform random movement choices.
‘When K is small, differences between the location values
are exaggerated by exponentiation, and the probability
of choosing the highest valued location approaches 1
as K approaches 0. Accordingly, the behavior of the
model becomes more deterministic as K converges on

0. Together, the location factors and Luce’s choice
rule create a degree of agent independence while main-
taining the essential dependence on resource and agent
distributions for choosing where to move. Each agent
chooses a respective goal location, and at every time
step, each agent either takes a step towards its goal or
probabilistically chooses a new goal location.

3.2 Constrained Visible Food Model

The visible resources conditions from Goldstone and
Ashpole (2004) and Goldstone et al. (2005) could cer-
tainly incorporate all of the factors above, but we chose
to model the empirical data with a more constrained
set of parameters that excluded information on rein-
forcement histories. Instead, agents in our constrained
visible model only use information on the available
resources and densities of other agents. The parame-
ters for past rewards and past penalties are set to zero,
and agents only choose between pellets that are cur-
rently in the gridworld, rather than choosing between
all locations in the gridworld. This captures the visible
resources/visible agents condition, and for the visible
resources/invisible agents split condition, we also set
the agent density parameter to zero.

3.3 Constrained Invisible Food Model

The invisible resources conditions from Goldstone and
Ashpole (2004) and Goldstone et al. (2005) require the
agents to consider obtained resources information while
no longer having information regarding the available
resources. For these conditions, the food distance and
food density parameters are set to zero (and for the
invisible agents condition, agent density is also set to
zero), and agents must rely on their reinforcement histo-
ries. Experiments have shown that foragers use mem-
ory to return to profitable patches within trials and
even across trials (Bell & Baum, 2002; Milinski, 1987,
Zach & Falls, 1976). At the beginning of a session,
every cell in an agent’s memory is initialized to a con-
stant value. If an agent steps on a cell and receives a pel-
let, the cell’s value receives a large boost in the agent’s
memory, and the neighboring cells are also boosted to
a lesser extent. When an agent steps on a cell without
receiving a pellet, however, a penalty is assessed to the
cell and its neighbors. We set the relative strength of a
neighbor’s reward or penalty as a linear inverse func-
tion of its distance from the current cell.
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The neighborhood assumption leads to quicker
learning, and its ecological validity arises from research
on area-restricted search (Bond & Kamil, 2002; Croze,
1970; Hills, 2006; Thomas, 1974) and two cognitive
phenomena: perceptual discrimination and generaliza-
tion. On one hand, human foragers may not be making
fine perceptual discriminations between cells, espe-
cially given the large number of cells. Thus, a forager
may be rewarded at a location but not make a clear
distinction between the rewarding cell and the reward-
ing cell’s neighbors. Generalization, on the other hand,
implies a more purposeful credit attribution to similar
options. If one cell provides a reward, its neighbors may
be likely to provide rewards too, because there is often
underlying order in the environment, and in the exper-
iments (Goldstone & Ashpole, 2004; Goldstone et al.,
2005), participants were explicitly told that the resources
occur in clumps. In any case, the boosted values in an
agent’s memory increase the probability of choosing
those cells in the future.

By exploring the environment and obtaining a
history of rewards and penalties, each agent constructs
a dynamic representation of the resource patches in
the environment. This captures the information availa-
ble in the invisible resources/invisible agents condi-
tion, and for the invisible resources/visible agents split
condition, we no longer set the agent density parame-
ter to zero.

4 Model Results for the Empirical Data

Our goals with EPICURE were to model the empirical
data from Goldstone and Ashpole (2004) and Gold-
stone et al. (2005), and then test the model in alterna-
tive conditions, in order to determine the sources of
undermatching in the human data.

4.1 Undermatching

Figures 1-4 show the human data and model matching
results for each information condition. The top of each
figure shows the empirical matching results at the three
resource distribution levels of Goldstone and Ashpole
(2004) and Goldstone et al. (2005), but outliers have
been excluded. If a participant was outside both pools
for more than 1/3 of the experiment, the participant’s
data was excluded because it is very unlikely that the
individual was following directions. The bottom of each

figure shows the model’s predictions, and the model uses
the same parameter values to simulate foraging behav-
1ors for the 50/50, 65/35, and 80/20 resource distribu-
tions. The figure captions include the parameter values
for the visible and invisible constrained models. (The
parameter weights are different because these are taken
from earlier runs of each model, before using the full
model equation; however, results are equivalent when
using the full model and simply setting the appropriate
parameter weights to zero.)

The graphs show the proportion of agents in each
pool (within a 25 unit radius of a pool’s center) at a
given time, after normalizing to exclude agents out-
side both pools. For the empirical data, the invisible
resources/invisible agents and visible resources/visible
agents conditions from Goldstone and Ashpole (2004)
are averaged from eight groups of approximately 20
participants. The split visibility conditions from Gold-
stone et al. (2005) are averaged from 10 groups of
approximately 28 participants. The model graphs show
the averaged results from 30 trials, with 20 agents per
trial. EPICURE’s results prior to normalization also
match Goldstone and Ashpole’s results prior to nor-
malization. The matching results show that EPICURE
has captured the undermatching reported by Goldstone
and Ashpole (2004), and also the overmatching found
in the visible resources/invisible agents condition by
Goldstone et al. (2005). Overmatching is rare in the
foraging literature, and Goldstone et al. attribute their
overmatching results to the somewhat unnatural situa-
tion where the faster food arrival at one pool attracts a
disproportionate number of foragers who are not
deterred by invisible competitors.

Equation 3 (Baum, 1974) captures the degree of
undermatching or overmatching in a two patch sys-
tem.

L Fy _ Ny
og}—r; _SLogN; +b 3

The resource amounts in each patch are indicated by
N, and Ny, and the numbers of foragers in each patch
are F, and Fy. The parameter s controls the sensitivity
of foragers to resource distributions, and b is a bias
parameter. The ideal free distribution model predicts
that best-fitting values of s and b are 1 and O respec-
tively, and undermatching occurs when the value of s
is less than 1. Figures 5 and 6 use this equation to
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Figure 1 Empirical and EPICURE matching results for the visible resources, visible agents condition. The top row

shows the average matching results from Goldstone and Ashpole (2004) for the 50/50, 65/35, and 80/20 food distribu-
tion conditions. The bottom row shows the average of 30 EPICURE trials for each condition, with parameter values: dis-
tance = 50.0; goalbias = 10.0; fooddensity = 4.0; agentdensity = 1.0, K= 3.0.

compare the empirical results and EPICURE predic-
tions.

Table 1 shows a log-likelihood analysis for the
invisible resources/invisible agents and visible resources/
visible agents conditions. For the former, our full model
was the constrained invisible food model described above,
and we compared its performance with a restricted
model with the goal bias parameter set to zero. Clearly,
the full model is significantly better at predicting the
observed empirical data. Note that we did not modify
the other parameter weights for the restricted model,
but in our simulations, no parameter combination can
overcome the fundamental problem of this restricted
model: Without goal bias, agents hover in the center of
the world, briefly moving towards a chosen location on
one side before probabilistically choosing a location on

the other side. Similarly, in the visible resources con-
ditions, goal bias prevents agents from switching pools
abnormally often.

For the visible resources/visible agents condition,
our full model was the constrained visible food model
described above, and we compared it with a restricted
model with the food density parameter set to zero. This
difference between models is also significant, though
not nearly as large an effect as for the previous pair.
Once again, we did not modify the other parameter
weights, and it is possible that an optimal parameter set
would show no difference between the models, but we
believe food density is important for many general for-
aging environments. Without food density, agents could
not distinguish between pools with large food density
differences and equal agent densities.
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Figure 2 Empirical and EPICURE matching results for the invisible resources, invisible agents condition. The top row
shows the average matching results from Goldstone and Ashpole (2004) for the 50/50, 65/35, and 80/20 food distribu-
tion conditions. The bottom row shows the average of 30 EPICURE trials for each condition, with parameter values: re-
ward = 4000.0; goalbias = 3000.0; penalty = 40.0; agentdensity = 0.0, K= 100.0.

Table 1 Comparison of full and restricted EPICURE models. For the invisible models, we calculated log-likelihood
from the empirical data for the full model (the constrained invisible model described in the text) and a restricted model
with the goal bias parameter set to zero. For the visible models, we used the constrained visible model described in the
text, and a restricted model with the food density parameter set to zero.

Proportion in 80% pool x>
Empirical invisible 747
Full invisible model 732 X2(1,30) =17,129.11
Restricted invisible model (no goal bias) .993 p<.01
Empirical visible 746
Full visible model 732 X2(1,30) =27.15
p<.01

Restricted visible model (no food density) .708
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Figure 3 Empirical and EPICURE matching results for the visible resources, invisible agents condition. The top row
shows the average matching results from Goldstone et al. (2005) for the 50/50, 65/35, and 80/20 food distribution condi-
tions. The bottom row shows the average of 30 EPICURE trials for each condition, with parameter values: distance =
50.0; goalbias = 10.0; fooddensity = 4.0; agentdensity = 0.0, K= 3.0.

4.2 Population Oscillations

EPICURE also exhibited the respective levels of pop-
ulation oscillations found by Goldstone and Ashpole
(2004), as well as high variance of agents’ locations
relative to resource locations and a comparable amount
of switching between pools. However, further testing of
the model actually led us away from the Fourier anal-
ysis because it was shown to be too sensitive to initial
conditions. For instance, starting the model’s agents at
one pool led to large oscillations in the Fourier analysis
caused by the early migrations as the foragers exhaust
that pool and find the other pool. Furthermore, when
we adopted our stricter criteria for excluding outliers in
the empirical data, we found that the invisible resources/

invisible agents condition no longer has larger popula-
tion oscillations than the other empirical conditions.
This indicates that the original population oscillation
results may have been too sensitive to outlier individ-
uals. Although the analysis may still capture important
population trends, we have decided to focus on match-
ing results for the current article.

4.3 Variable Role of Agent Density

A surprising success of EPICURE is that it shows the
contingent role of agent density. In order to capture the
different agent visibility effects shown in Figures 5
and 6, the agent density factor in the model is negative
for the constrained visible food model, making an agent
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Figure 4 Empirical and EPICURE matching results for the invisible resources, visible agents condition. The top row

shows the average matching results from Goldstone et al.

(2005) for the 50/50, 65/35, and 80/20 food distribution condi-

tions. The bottom row shows the average of 30 EPICURE trials for each condition, with parameter values: reward =
4000.0; goalbias = 3000.0; penalty = 40.0; agentdensity = 125.0, K= 100.0.

less likely to move towards a pellet surrounded by
other foragers, but the factor is positive for the con-
strained invisible food model, making an agent more
likely to choose a cell surrounded by other foragers. In
reevaluating the empirical data (Goldstone et al., 2005),
it appears the human foragers tend to find the invisible
resource pools faster when the other foragers are visi-
ble. We examined the average proportion of foragers
in the 80% pool in the first 50 seconds of each invisible
resources trial (M = 0.549, SD = 0.063 and M = 0.52,
SD =0.059 respectively for visible and invisible agents),
but the difference was not significant given the small
number of trials available for comparison. We found
the opposite trend when examining the proportion of
foragers outside the pools in the first 50 seconds (M =

0.242, SD = 0.037 and M = 0.271, SD = 0.064), although
this comparison also did not reach significance. Using
our standard of 30 simulations for each condition, the
model showed a significantly higher proportion of
agents in the 80% pool for the first 50 seconds of the
visible agents condition compared with the invisible
condition [M =0.579, SD =0.025 and M = 0.543, SD =
0.026, F(1, 59) =29.12, p < 0.001], and a significantly
lower proportion of agents outside the pools for the
first 50 seconds of the visible agents condition [M =
0.196, SD =0.025 and M = 0.235, SD = 0.016, F(1, 59) =
49.67, p <0.001]. Bandwagoning seems to occur early
in the trial as individuals make use of the only available
information: the locations of other foragers. Later in
the trial, however, behavior becomes dominated by
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Figure 5 Resource distributions at patches A and B (N, and N;) to forager distributions at the patches (F, and Fg) for
the empirical conditions in Goldstone and Ashpole (2004) and the corresponding EPICURE simulations.

personal reward history rather than the locations of
other agents.

5 Additional Simulations to Explain
Undermatching

Given the apparently robust performance of EPICURE
in matching human results, we can now discuss addi-
tional simulations designed to discover the source
of undermatching. For the following simulations, we
focused on comparing the invisible resources/invisible
agents (“invisible condition”) and visible resources/
visible agents (“visible condition”) conditions from
Goldstone and Ashpole (2004). For each simulation,

the parameter values were the same as those used to fit
the human data above. Note that given Kennedy and
Gray’s (1993) meta-analysis and our earlier analysis of
the Goldstone and Ashpole (2004) and Goldstone et al.
(2005) results, competitive abilities, travel costs, and
the number of foragers could all be causes of under-
matching. However, we can eliminate competitive abil-
ities as the explanation here, since the agents in our
models all possess the same attributes.

5.1 Starting Locations

Travel costs between resource pools are sometimes
used to explain undermatching on the grounds that
foragers switch less frequently when the pools are far-
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Figure 6 Resource distributions at patches A and B (N, and Ng) to forager distributions at the patches (F, and Fg) for
the empirical conditions in Goldstone et al. (2005) and the corresponding EPICURE simulations.

ther apart, and therefore obtain less information about
the resources and make worse decisions. In order to
test this explanation while trying to avoid possible
confounds from changing the world size, we ran two
types of simulations. First, we conducted simulations
with agents starting inside the pools instead of at ran-
dom locations around the world.

Figure 7 shows the matching results, averaged
over 30 trials, from the invisible condition at the 80/20
distribution level (results were similar for the visible
condition and other distribution levels). Here we have
included the proportion of agents in neither pool to
show that results are identical even before normaliza-
tion. After normalization, these experiments show less

undermatching than Figure 2, but this is due to a more
restrictive definition of being in a pool. For these sim-
ulations, we wanted to guard against possible match-
ing biases caused by the pools’ respective locations in
the gridworld, so we placed the pools in diagonally
opposite corners with pool centers at (20, 20) and (60,
60) and restricted the pool definitions (20 units from
the center) to avoid intersection with the edges of the
gridworld. In the left graph of Figure 7, we started all
agents at random locations inside the 80% pool. In the
middle graph, we started all agents at random loca-
tions inside the 20% pool, and in the right graph, we
started 80% of agents inside the 80% resource pool
and 20% of agents inside the 20% resource pool.
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Figure 7 EPICURE non-normalized matching results for the invisible resources, invisible agents 80/20 food distribu-
tion condition with different agent starting locations. In the left graph, all of the agents start in the 80% pool. In the middle
graph, all of the agents start in the 20% pool. In the right graph, 80% of the agents start in the 80% pool and 20% of the

agents start in the 20% pool.

All of these experiments result in the same under-
matching asymptote despite differences in initial
foraging behaviors. In the extreme situations where
everyone starts at one pool, the agents quickly exhaust
the pool and some find the other pool. Surprisingly, the
asymptotic matching remains the same as when agents
start in the IFD proportions. Another observation can
be made by examining the data prior to normalization.
The 20% pool always has approximately 20% of agents,
and undermatching seems to arise because some agents
leave the 80% pool and are outside both pools. The
cost of switching does not seem to drive behavior.

5.2 Distance Between Pools

Manipulation of agents’ starting locations showed that
agents still disperse in the same proportions and there-
fore undermatching is not caused by a lack of suffi-
cient switching. The other travel cost explanation is
that the distance between pools leads to undermatch-
ing. To test this explanation, we expanded the gridworld
to 120 x 120 cells, and we compared simulations with
pool centers at (20, 20) and (100, 100) with simulations
with pool centers at (40, 40) and (80, 80). For these
simulations, agents started at random locations in the
world rather than being concentrated in the pools.
Figure 8 shows that the simulation results differ
for the visible and invisible conditions. At the bottom,

the invisible condition shows similar undermatching
regardless of the distance between pools. We conclude
that the agents using the constrained invisible resources
model will continually explore the world and only settle
in consistently rewarding locations. Even then, the
agents will leave the area if they stop obtaining rewards.
In this condition, distance between pools therefore has
no effect because the agents will continually explore
until they are rewarded again.

In the top part of Figure 8, however, agents in the
visible condition are clearly affected by the distance
between pools. In fact, the increased distance between
pools leads to nearly perfect matching. These results
agree with the empirical pigeon foraging results of
Baum and Kraft (1998). As the distance between
pools increased, the pigeons more closely matched the
IFD, and they switched pools significantly fewer times.
Likewise, in our simulation, the far apart pools led to
significantly fewer average switches than the closer
pools, M =0.146, SD =0.10 and M =30.72, SD =
10.09, F(1, 59) = 318.38, p < 0.001. The dynamics of
the constrained visible model offer a simple explanation
for these findings. As the pools become more sepa-
rated, it is much less likely that an agent will probabil-
istically choose to switch pools, because the other pool’s
pellets are so far away, leading to small Euclidean
components. Furthermore, if the agent does decide to
switch, the longer distance means there are more oppor-
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Figure 8 EPICURE matching results for the visible (top) and invisible (bottom) 80/20 food distribution conditions with

different travel distances.

tunities for the agent to change its decision and choose
a pellet in the previous pool, though the goal bias tem-
pers this change in decision. The decreased switching,
in turn, promotes better matching because the new
pool must appear to be consistently better in order for
the agent to complete the journey. The burden of switch-
ing is higher, so agents are more likely to switch only
when there is a true advantage. However, even in the
visible condition, the starting location simulations
showed that agents tend to correctly match the 20%
pool, and undermatching seems to arise from agents
leaving the 80% pool and being in neither resource
pool.

5.3 Number of Agents

We examined the effects of different numbers of for-
agers by running visible and invisible condition simu-
lations at the 80/20 distribution level with 10, 20, and
30 agents, respectively. Agents began in random loca-
tions in an 80 x 80 gridworld with pool centers at (20, 20)
and (60, 60). Unlike previous simulations, the food rate
was held constant across conditions, with food dropped
every 4/20 seconds (200 milliseconds). The constant
food rate allowed us to gauge the effects of increased
competition for resources caused by increasing the
number of agents.
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Figure 9 EPICURE non-normalized matching results for the visible (top) and invisible (bottom) 80/20 food distribution
conditions with different numbers of agents and an identical food rate. As in the previous simulations, a new piece of
food is dropped every 4/N seconds, but in these simulations, N = 20 for all conditions.

Figure 9 shows the matching results, averaged
over 30 trials, for 10, 20, and 30 agents in the visible and
invisible conditions. For the visible condition (in the
top half of the figure), post-hoc analysis of variance
(ANOVA) results indicate that 10 agents (M = 0.769,
SD =0.022) and 20 agents (M = 0.764, SD = 0.021) do
not show significantly different levels of undermatching
to the 80% pool, but both show significantly less under-
matching than the 30 agents (M = 0.736, SD = 0.028)
condition, p < 0.001. The differences were more extreme
for the invisible condition in the bottom half of the figure,
where post-hoc ANOVA results revealed a significant
difference (p < 0.001) between all three conditions [M =
0.808, SD = 0.087 (10 agents), M = 0.730, SD = 0.021
(20 agents), and M = 0.633, SD = 0.013 (30 agents)].

Thus, both the visible and invisible conditions are
susceptible to greater undermatching as more agents
compete for the food, but there are key differences in

the effects of the number of agents. Notably, the visi-
ble condition displays undermatching even when the
food rate is effectively doubled, with 10 agents com-
peting for the number of pellets previously given to 20
agents. This indicates that Baum and Kraft (1998)
may not have increased pigeon food rates to the level
at which undermatching would cease. In contrast,
EPICURE shows that the invisible condition matches
perfectly when 10 agents receive this double food rate,
and an increase in the number of agents has greater
effects on matching proportions than in the visible
condition.

5.4 Uniform Distributions

We also conducted simulations with uniform food dis-
tributions instead of the Gaussian food distributions
used in the experiments and our previous simulations.
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Figure 10 EPICURE matching results for the visible (top) and invisible (bottom) 80/20 food distribution conditions with
different uniform distribution pool sizes. In each condition, the first number indicates the radius of the 80% pool (square
regions were used for simplicity), and the second number indicates the radius of the 20% pool. For example, 16 vs. 8 in-
dicates that the 80% pool covers a total area of (16*2) * (16*2) = 1,024 cells while the 20% pool covers a total area of

(8*2) * (8*2) = 256 cells.

Figure 10 shows results for both conditions, with the
visible condition on top and the invisible condition at
the bottom. The first number in each graph indicates
the radius (for simplification, a centered square was
used) of food droppings in the 80% pool, and the
second number indicates the radius of food droppings
for the 20% pool. Thus, the “16 vs. 8” condition cre-
ates an 80% pool that is four times larger than the
20% pool (1,024 cells compared with 256 cells), so
the probabilistic food distribution is reflected by pool
size.

When the pool sizes are identical (8 vs. 8), the
agents slightly undermatch to the resources. In the
8 vs. 16 condition, dramatic undermatching occurs
because it takes more agents in the 20% pool to cover
the much larger area. The pick-up time in the 20%
pool increases as agents converge, then new pellets
dropped far away from the group attract additional
foragers to switch from the 80% pool. In the 16 vs. 8

condition, the rarely observed phenomenon of over-
matching occurs, and the explanation may lie in the
fact that the densities of the pools are equal, but the
coverage times are unequal because the food rate is
low. As each new piece of food is grabbed relatively
quickly, foragers begin to converge as they chase new
pellets. This convergence, along with the large pool
size, gradually increases the time it takes to reach a new
pellet on a far side of the pool, and therefore the new
pellet looks more attractive to migrators switching
pools. Meanwhile, agents in the 20% pool have less
area to cover and fewer pieces of food, so the pick-up
time remains comparatively low. Finally, in the 16 vs.
16 condition, nearly perfect matching is observed. In
this case, food rate is the only factor that distinguishes
between the two pools. The pools are the same size,
but the 80% pool gets four pieces of food for every
one piece in the 20% pool, and agents correctly dis-
tribute themselves in a four to one proportion.
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The invisible condition shows a considerably dif-
ferent pattern. Essentially, the 8 vs. 8 and 8 vs. 16 graphs
show similar degrees of undermatching, whereas the
16 vs. 8 and 16 vs. 16 graphs show nearly correct match-
ing. This may be because many foragers in the first two
cases do not receive good feedback from the environ-
ment as a few individuals can cover the 256 cells of the
80% pool relatively quickly, and although they will not
do so perfectly (because the agents, like the humans,
do not know the true location of each pool, and they are
only sampling), they still disproportionately reduce the
available information for everyone else. Meanwhile, in
the latter two cases, the 80% pool is larger, so informa-
tion cannot be dominated by a few individuals, and
because the 20% pool receives food much less frequently,
even a persistent forager in that pool does not greatly
reduce the available information by sampling the
area.

6 Discussion

EPICURE was successful in modeling the main
results from the Goldstone and Ashpole (2004) and
Goldstone et al. (2005) experiments, and it has given
us a novel explanation of undermatching, as well as a
reinterpretation of the bandwagoning results in Gold-
stone et al. (2005). We will discuss these two main
results separately.

6.1 Spatial Distributions Lead to
Undermatching

Our novel explanation for undermatching contends that
the spatial environment of foraging critically determines
how well foragers can distribute to the resources. In
the context of the Goldstone and Ashpole (2004) visi-
ble condition, a relatively small number of foragers
can cover the two resource pools and easily pick up
food soon after it is dropped every 4/N seconds, because
the food rate is not high enough to tax their foraging
abilities. The Gaussian food distribution enhances this
effect, because only a few foragers are needed to pick
up the majority of the food near the Gaussian centers,
while a few additional foragers can dart to the food
dropped on the peripheries (Roberts & Goldstone,
2005). By this argument, the available resources—and
hence the information available for foraging deci-
sions—decreases the largest amount with the addition

of the first few foragers, so there is a smaller marginal
gain if more foragers are added. The notion is that
every agent can “patrol” a particular area with an effi-
ciency that is relatively, though not completely, inde-
pendent of the number of resources dropped in their
patrolled area. For example, a particular resource might
be efficiently patrolled by five agents, each of whom
has a “turf” of 100 cells. Additional agents tend to
move out toward the less profitable periphery of a
resource pool, or move to another pool.

6.1.1 Agreement with Empirical Undermatching
Results In the Goldstone and Ashpole (2004) and
Goldstone et al. (2005) experiments, both resource
pools have equal variances, so the 20% pool occupies
as much space as the 80% pool. Although more food
is dropped in the 80% pool, the spatial distribution
means that there does not need to be an equal increase
in the number of foragers to pick up that food. The
80% pool has 4 times the productivity of the 20%
pool, but they both have the same spatial extent and
variance, and so can support agents in numbers that
are more similar than predicted by the pools’ produc-
tivities. These considerations seem to be absent from
the literature, which may be due to the preponderance
of models that treat foraging and probability match-
ing as discrete choices between options (Bernstein,
Kacelnik, & Krebs, 1988; Charnov, 1976; Harley, 1981;
Regelmann, 1984; Seth, 2002), rather than often occur-
ring in spatially instantiated situations. Furthermore,
even empirical studies overlook this interplay of food
rate, number of foragers, and spatial constraints. As
mentioned, Baum and Kraft (1998) obtained under-
matching results even as they increased the food rate,
much as in our model. However, it appears that Baum
and Kraft did not use a sufficiently high feeding rate.
A relatively small number of pigeons could eat the
food regardless of the rate, because even at the more
profitable pool, experimenters only dropped a new piece
of food after the previous piece had been eaten. As a
result, pigeon matching distributions did not signifi-
cantly change because the rate increase did not corre-
spondingly increase information. Another result in the
Baum and Kraft study supports our spatial explana-
tion. When the two resource pools were feeding bowls
(corresponding to our 8 vs. 8 condition), the pigeons
showed significantly greater undermatching than when
the resource pools were larger feeding areas or elon-
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gated troughs (corresponding to our 16 vs. 16 condi-
tion), which we claim provide more information to the
average forager because they cannot be exploited as
easily by a few foragers.

Fewer agents are needed to pick up the majority
of the food in the visible than in the invisible condition.
Given that agents in the latter condition must sample
their environment to find the best regions, five agents
cannot pick up the food very quickly, so plenty of infor-
mation remains for reliable matching. As the number
of agents in the invisible condition increases, it becomes
likely that a few of the agents will find the pool cent-
ers and disproportionately reduce the information
available to everyone else, so the agent proportions do
not reflect the true resource distributions.

An examination of the wealth distributions from
Goldstone and Ashpole (2004) indicates that the invisi-
ble condition had a significantly greater wealth disparity
than the visible condition. This finding is consistent with
our interpretation that a lucky few foragers quickly
find the pool centers in the invisible condition and
remain there, making it very difficult for latecomers to
discover the pools. Furthermore, Gillis and Kramer
(1987) found significantly greater undermatching with
240 zebrafish than with 30 zebrafish despite an identi-
cal food rate per fish and a decrease in shows of
aggression as forager density increased. We contend
that the greater prey density allowed some individuals
to fare particularly well in the pool centers and decrease
the information for everyone else, but the decrease in
aggression indicates that interaction history, rather than
competitive ability, may have created the disparities.
Note that EPICURE would predict the same results as
Gillis and Kramer even if the food rate per forager
stayed the same as the number of foragers increased,
rather than keeping a constant rate of food as we did
in our simulations of different agent populations. Ten
foragers would still be able to successfully forage
most of the food dropped for 30 foragers, because the
spatial distribution prevents a linear information
increase as more food and foragers are added.

6.1.2 Contrasts with Other Models The spatial con-
straints explanation also elucidates the conclusions
drawn from Abrahams’ (1986) perceptual limit model.
In simulations with 2, 3, and 4 patches, Abrahams’
agent populations displayed significantly more under-
matching when individual agents had lower perceptual

discrimination abilities. The results arise because agents
with poor perceptual discrimination must essentially
choose a patch at random, which promotes uniform
agent distribution. Unlike Abrahams’ model, EPICURE
has a spatial instantiation and shows that even if agents
have perfect perceptual discrimination abilities (i.e.,
no perceptual limits when modeling Goldstone and
Ashpole visible conditions), the foraging dynamics
still create perceptual limitations via the interplay of
limited space and food rate in limiting agent knowl-
edge. Whereas Abraham claims that populations
should be able to evolve better perceptual discrimina-
tion abilities to perform better, EPICURE shows that
suboptimal matching can be inherent to the group
dynamics.

Our spatial distribution explanation differs from
Sutherland’s (1983) interference model, which involves
direct interactions among foragers, because we are
concerned with indirect interactions in the form of
resource depletion and effects on knowledge. The spa-
tial distribution explanation also differs from the tem-
poral variance analyses put forth as partial accounts of
undermatching (Earn & Johnstone, 1997; Hakoyama,
2003). Those analyses show that properly factoring in
the continuous input rate variance for the resource
pools can explain some, but not all, of the undermatch-
ing in visible resource foraging experiments, but they
still predict matching to the means when resources are
invisible and sampling is required. Their analyses
share some features of the risk-sensitivity literature
(Bateson & Kacelnik, 1998), which finds that indi-
vidual foragers tend to be risk averse with respect to
variance in amount, but risk prone with respect to var-
iance in time. Rita and Ranta (1998) use a renewal
process model with equal competitors to demonstrate
that variance in a group member’s gains increases with
group size, and so (assuming that foragers are risk
averse with respect to variance in gains) undermatch-
ing should be expected. EPICURE demonstrates that
undermatching can naturally arise from individuals’
decisions. Without positing foragers’ sensitivity to
risk, we show that spatial constraints limit the infor-
mation available for matching. Our explanation does
not require variation in a forager’s gains over time,
and in fact, EPICURE suggests little variation over time
if foragers tend to stay in the same places due to their
interaction histories. However, our explanation of
undermatching does rely on variation in gain among
agents.
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6.1.3 Reinterpretation of Other Empirical Results
The spatial distribution explanation offered by EPICURE
and its emphasis on interaction history may also pro-
vide insights into previous foraging experiments where
matching results essentially agree with the IFD. For
example, Milinski (1987) conducted a series of forag-
ing experiments in which six stickleback fish distribute
themselves to two resource pools according to the IFD.
In conjunction with computer modeling results that use
the relative payoff sum rule from Regelmann (1984),
Milinski’s explanation of foraging behavior relies
heavily on differences in competitive abilities. When
prey are conspicuous, good competitors and poor com-
petitors use different strategies. Good competitors stay
near the center of a pool, but poor competitors stay
between pools waiting for prey to appear, then fre-
quently switch between pools. Milinski notes that the
IFD is nonetheless achieved because the subset of
good competitors distribute themselves between pools
according to the IFD, and the subset of poor competi-
tors also distribute themselves between pools accord-
ing to the IFD, but a subsequent reanalysis (Kennedy
& Gray, 1993) shows that good competitors signifi-
cantly overmatched to the more profitable pool (s =
1.23) and poor competitors significantly undermatched
to the more profitable pool (s = 0.31). In any case, the
competitive differences explanation is tenuous in light
of Milinski’s other results. He shows a strong correla-
tion (» = 0.98) in hunting success when the same fish
are used on a second day, but he also shows that indi-
viduals essentially continue using their strategies from
previous trials. For example, three frequent switchers
from one trial can be combined with three frequent
switchers from another trial, but none of these six indi-
viduals significantly change strategies to become more
successful, low frequency switchers. Likewise, no sub-
set of low frequency switchers becomes high frequency
switchers. Thus, the high success correlation between
trials may occur from repeated use of the same strate-
gies. Similarly, pigeons have shown considerable
carryover effects across trials when food is presented
in predictable ratios, but little carryover when the
environment is more unpredictable (Bell & Baum,
2002).

Our spatial constraints explanation provides a sat-
isfying account of these results without resorting to
competitive differences. In our account, the “good”
competitors are those who happen to find the pool
centers early in the experiment, and their early success

leads them to stay near the high reward centers. Mean-
while, the “poor” competitors are those who arrive a
bit later and receive less information because the early
foragers exploit the pool centers. The late foragers
still distribute roughly according to the IFD as they
frequently switch and get prey on the periphery of each
pool. The foragers’ strategies thereby develop from
early reward histories, but the foragers tend to use the
same strategies across trials, leading to similar relative
success.

Certainly competitive abilities can affect forag-
ing success (Arak, 1983; Harper, 1982), and dominant
group members are often found in the profitable
center of a feeding pool (Flynn & Giraldeau, 2001). In
foraging salmon, the ratio of competitive weights to
resource pools has proved to fit the data much better
than the IFD (Grand, 1997), and the undermatching in
the abstract human foraging task with tokens has been
partially explained by factoring in temporal discounting
differences between participants (Critchfield & Atte-
bery, 2003). Although Godin and Keenleyside (1984)
argue that the ability to quickly assess patches may
often be the competitive difference between individu-
als, we have shown that a sustained difference in infor-
mation due to luck and early foraging history can be
mistaken for a difference in abilities. One way to
empirically test these explanations would be to pur-
posefully start a subset of foragers near pool centers
and subsequently compare their strategies and forag-
ing success relative to the other foragers. It seems
plausible that the two explanations will account for
different phases of foraging, with competitive success
initially determined by early knowledge, but differ-
ences in abilities could become the dominant factor in
long foraging sessions where there is little stochastic
change and everyone gradually acquires equal infor-
mation.

Note that only our full model can completely
account for Milinksi’s results with conspicuous prey.
The factors from our constrained visible resources
model must be combined with the memory from our
constrained invisible resources model in order for
some agents to find and remember the pool centers and
preferentially forage there over time. Although we used
the more parsimonious, constrained visible resources
model to capture the data from the Goldstone and
Ashpole (2004) and Goldstone et al. (2005) visible
resources conditions, we agree that a more demanding
foraging situation—such as a slower food rate which
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requires foragers to be close to the pool in order to
compete effectively—also benefits from the reinforce-
ment history component present in the invisible model.
In our constrained visible model, some foragers still
become “good” competitors by virtue of being near a
pool center and picking up food more quickly but,
unlike the invisible condition, these foragers do not
have a resulting knowledge advantage, so other forag-
ers can see the food and compete with them in the
center.

In order to propagate success across trials as found
in animal experiments (Bell & Baum, 2002; Milinski,
1987; Zach & Falls, 1976), the visible condition requires
a reinforcement history so the “good” competitors try
to occupy the pool centers early in each trial.

6.2 Public and Private Information

EPICURE captured the Goldstone et al. (2005) shift in
information usage in the invisible resources/visible
agents condition despite maintaining a constant agent
density value. When a simulation starts, the agent den-
sity factor biases agents to go to areas where other
agents are foraging. Of course, only resource pools sup-
port persistent congregations, because agents must get
rewards to stay in an area. Since the reward value is much
larger than the agent density value, the agent’s behav-
ior becomes primarily driven by private information
once it finds a pellet. But whenever an agent is unsuc-
cessful in finding food for a while and penalizes the
local area, then the public information of agent density
is again useful for exploring and finding another
resource pool.

Across conditions, agent visibility shifts its role
depending on the information context. It is a negative
factor whenever the agent can rely on better informa-
tion, such as the actual locations of visible pellets in
the visible resources conditions. In these situations, the
agent risks strong competition by joining the group
(Sernland, Olsson, & Holmgren, 2003). When better
information is not available, individuals use agent vis-
ibility as a positive factor, but only in highly uncertain
circumstances where no useful private information
has yet been obtained, such as the invisible resources/
visible agents condition discussed above.

Our analysis is consistent with claims by Boyd and
Richerson (1988) that the relative usage of personal
and social information depend on the difficulty and dan-
ger of a task. Although Valone and Giraldeau (1993)

did not find evidence that budgerigars use public infor-
mation in their foraging decisions, Kendall, Coolen,
and Laland (2004) found that naive guppies conformed
to prior social information, but experienced guppies
made foraging decisions based on their own prior
experience rather than social information. Templeton
and Giraldeau (1996) have shown that starlings can
observe each other’s success in order to more efficiently
assess a patch. Fernandez-Juricic and Kacelnik (2004)
show that starlings adjust the proportion of time they
spend gazing at conspecifics based on the quality and
quantity of information obtained from those conspe-
cifics. Furthermore, individuals may use heterospe-
cific public information as well as conspecific public
information, provided that the other species share hab-
itats and similar ecological needs (Parejo, Danchin, &
Aviles, 2005). In general, a meta-analysis of social
learning in animals (Laland, 2004) indicates that ani-
mals try to scrounge as an initial strategy, but they
resort to social learning when scrounging is ineffec-
tive. When individuals have little information or when
acquiring information is dangerous, they rely heavily
on the available public information. As they develop
experience and slowly accumulate private knowledge,
individuals begin to eschew public information and
instead act on their private information.

In fact, a recent Bayesian analysis indicates that
groups should only be formed when information
exchange is necessary or when there are mitigating
factors such as the need for protection (Sernland et al.,
2003). Otherwise, foraging alone is optimal. As group
size increases, the benefit of an increasingly accurate
assessment is not justified by the cost of sharing food,
and the socially optimal solution is not an evolutionar-
ily stable strategy (ESS), so solitary foragers will con-
tinue joining a group until a higher limit is reached
(Clark & Mangel, 1984). Rita and Ranta (1998) use a
renewal processes model to show that groups are par-
ticularly useful when the food patches are far apart or
difficult to discover. In that case, the utility of social
information for finding the patch outweighs the cost
of sharing the resource with other group members.
Accordingly, we would expect greater reliance on social
information in an empirical experiment with a few
large resource pools that stochastically appear and
deplete in different regions of the environment, but we
would expect foragers to rely on private information if
those same resource pools were small and quickly
depleted.
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Table 2 EPICURE predictions and empirical studies for equivalent situations.

Condition EPICURE prediction Empirical evidence

Visible resources, visible agents Undermatching Goldstone and Ashpole (2004)
Kennedy and Gray (1993)
Sokolowski et al. (1999)

Visible resources, invisible agents Overmatching Goldstone et al. (2005)

Invisible resources, visible agents

Invisible resources, invisible agents
Increased number of foragers

Increased distance between pools

Increased pool size or variance

Undermatching, but find pools faster
than invisible resources, invisible
agents

Undermatching
Increased undermatching

Decreased undermatching
Decreased switching

Decreased undermatching

Goldstone et al. (2005)

Goldstone and Ashpole (2004)
Gillis and Kramer (1987)

Baum and Kraft (1998)
Milinski (1987)

Baum and Kraft (1998)

7 Conclusion

We have proposed an agent-based model, EPICURE,
that accurately models the group foraging results from
Goldstone and Ashpole (2004) and Goldstone et al.
(2005). Table 2 summarizes EPICURE’s predictions
and corresponding empirical evidence. After testing the
model in several alternative conditions, we conclude
that previous models and even empirical studies have
overlooked the important interplay of spatial con-
straints and food rate on forager distribution. Under-
matching arises because some foragers happen to sample
the information first when resources are invisible, and
some foragers happen to start near the pool center
(essentially born with silver spoons) when resources
are visible. In both cases, the early advantages actually
make those foragers good long-term competitors, and
their early information advantages lead to information
and sampling deficiencies for the group as a whole, so
undermatching arises and perpetuates. These issues
become clear in the current spatially instantiated model,
but they have been overlooked in previous discrete
choice foraging models and even some empirical for-
aging studies.
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