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Abstract 

Despite its omnipresence in this information-laden 
society, statistics is hard. The present study explored the 
applicability of a grounded cognition approach to learning 
basic statistical concepts. Participants in 2 experiments 
interacted with perceptually rich computer simulations 
designed to foster understanding of the relations between 
fundamental statistical concepts and to promote the ability 
to reason with statistics. During training, participants were 
asked to estimate the probability of two samples coming 
from the same population, with sample size, variability, and 
difference between means independently manipulated. The 
amount of learning during training was measured by the 
difference between participants’ confidence judgments and 
those of an Ideal Observer. The amount of transfer was 
assessed by the increase in accuracy from a pretest to a 
posttest. Learning and transfer were observed when tailored 
guidance was given along with the perceptually salient 
properties. Implications of our quantitative measures of 
human sensitivity to statistical concepts were discussed.  

Keywords: grounded cognition; statistical inferences; 
statistics education; variability; sample size; mean 

Introduction 
In this information-laden society, the ability to reason with 

statistical ideas and make sense of statistical information, 
has become increasingly crucial and desirable. Thanks to the 
Internet, statistical information is now everywhere and 
easily accessible. In many work-related and everyday 
contexts, statistical literacy is no longer optional since it 
facilitates basic communication. For example, picking a 
product on Amazon usually involves a comparison between 
multiple alternatives varying on different statistical 
dimensions, such as average ratings, total number of 
reviews, and underlying review distribution. Thus, statistics 
is no longer a language that only statisticians and scientists 
speak and understand, nor does it exist merely in some 
academic domains that care about statistical significance. 
The omnipresence of data makes statistical literacy a 
necessity that helps individuals not only confidently 
navigate in a sea of numbers, but understand social and 
natural phenomena more accurately.   

Despite its generally acknowledge importance and the 
great effort made to promote statistics education, statistics is 
hard to learn. Compounding the difficulty is the prevalence 
of statistics anxiety (e.g., Zeidner, 1991). On the bright side, 
technological enhancements enable new ways of presenting 
materials otherwise not feasible. One of the most common 

implementations is to create perceptually rich stimuli 
instantiating various types of interactions that students can 
draw upon when learning new concepts. This focus 
exemplifies a grounded approach to learning (Black, 2010).  

Taken together, we are interested in whether and how 
perceptually grounded interaction can foster statistical 
reasoning. This question, to our best knowledge, has not 
been explicitly documented. In the following paper, we 
discuss common difficulties and misconceptions regarding 
statistical reasoning. We then present existing efforts on 
applying a grounded approach to learning. Finally, we 
introduce the computer simulation we developed to explore 
how grounding can be applied to bolster statistical reasoning. 

Difficulties in Statistical Reasoning 
The definition of statistical reasoning takes many forms, but 
generally, it refers to the way people reason with statistical 
ideas and make sense of statistical information (Garfield & 
Gal, 1999). One of the most robust phenomena in statistics 
education is that while students can successfully implement 
procedures for computing statistics, they have trouble 
applying essentially the same statistics in applications 
assessing their conceptual understanding (Gardner & 
Hudson, 1999). This gap between conceptual and procedural 
understanding is interpreted by some researchers as due to 
an overemphasis on calculating aggregated values and 
plotting graphs for sample data (e.g., Sorto, 2006). In other 
words, statistics to many students are still only about 
describing the properties of a given data set, but not 
generalizing beyond the specific data set to infer what future 
data sets would be likely or unlikely. Moreover, successful 
statistical reasoning requires an integrated understanding of 
fundamental statistical concepts, which unfortunately many 
learners lack. An inaccurate or incomplete understanding of 
basic statistical concepts interferes with proper reasoning, 
such as sampling (e.g., Watson, 2004), variation (e.g., Cobb, 
McClain, & Gravemeijer, 2003). Lastly, statistical reasoning 
always involves reasoning with uncertainty whose difficulty 
has been widely cataloged (Tversky & Kahneman, 1974). 
Hence, it is unsurprising to see lasting difficulties in making 
sense of diverse statistical phenomena.  

A Grounded Cognition Perspective on Education 
Dewey states (1986), “There is an intimate and necessary 
relation between the process of actual experience and 
education.” This assertion echoes the gist of a grounded 
cognition perspective, an idea that environment and bodily 
experiences are of great importance to the development of 
cognitive processes (e.g., Barsalou, 1999). Therefore, many 
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attempted have been made to develop perceptually-rich 
manipulatives as an aid to scaffold students’ conceptual 
learning. Research in this line has suggested three steps 
involved in a grounded cognition approach to learning: a) 
have a perceptually grounded experience, b) learn to 
imagine the perceptually grounded experience, and c) 
imagine the experience when learning from symbolic 
materials (Black, 2010). Successful attempts to apply a 
grounded approach to education have been documented in a 
wide variety of fields, such as mathematics (Suh, Moyer, & 
Heo, 2005) and physics (Zacharia, 2007). The common goal 
of these applications is to help learners develop a “feel” for 
what they are learning (Black, 2010) 

Present Study 
In the current work, we advocate a token representation in 
which each individual datum’s measurement is shown by an 
intuitive visualization in the same visual dimension. For 
example, the height of a manufactured object is indicated by 
its height on the screen. So far the closest design to our 
proposal of token representation might be the Reese’s 
Pieces Samples applet in the Rossman/Chance Applet 
Collection (Rossman & Chance, 2004) in which circles are 
colored in different shades of yellow that resemble actual 
Reese’s pieces, but this coloration is simply used to separate 
targeted pieces from non-targeted pieces with no intention 
to suggest variation among samples. Because observers can 
quickly and accurately compute ensemble statistics about a 
display (e.g., Alvarez & Oliva, 2008). Thus, there is good 
reason to believe that learners are capable of visually 
aggregating tokens to compute aggregated values of interest. 
Moreover, immediate feedback is included in our 
manipulative because repeatedly producing credible data 
that is inconsistent with a learner’s current understanding 
can support reflective change of the underlying 
misconception (e.g., Chin & Brewer, 1993). The use of 
token representation also allows us to investigate how 
perceptual scaffolds with special and generic features 
influence the effectiveness of perceptual grounding, and 
how they affect transfer of learning (if applicable). Not all 
physical properties are created equal. Neuropsychological 
studies have supported location’s uniqueness. The location 
property is processed independently from other properties 
on other dimensions (Humphreys,1981). 

Experiment 1 
Experiment 1 had two goals: on the one hand, on the one 
hand, we were interested in identifying and confirming 
some common misconceptions that college students have 
regarding statistical inference; on the other hand, we would 
like to get insights for developing a grounded simulation of 
population sampling to tackle these misconceptions. 

Participants We recruited 141 undergraduates at Indiana 
University, Bloomington in exchange for course credit.  
 

Stimuli The experiment included three parts: pretest, 
training, and posttest. Both pretest and posttest probed the 

relations between standard deviation, mean, and sample size 
and their effects on confidence judgements. The test pool 
contained 12 three or four-option multiple choice questions. 
Each test had six randomly chosen questions. The pretest 
was used to assess students’ statistical reasoning prior to 
interacting with simulations and the posttest was used to 
detect any changes in their statistical reasoning. It was a 
mixed design with conditions (color and location, discussed 
below) being a between-subject variable and factor levels 
being within-subject variables.  
Cover stories. Our cover stories took place in a factory 
where two machines produce products (widgets or balls) 
under one of the three distinctive settings (i.e., different 
levels of means) on any given day, but their settings change 
from trial to trial. On some days the two machines had the 
same settings whereas on other days they did not. Products’ 
consistency depended on which operator was in charge, 
sometimes with little variation of the products, sometimes 
moderate variation, and other times large variation (i.e., 
different levels of variability). After each day, different 
sized samples of products were presented to the examiner 
(i.e., learner) to estimate the probability that the two 
machines were set to the same setting on that day. The cover 
story was explicit that there were three levels for each of 
three variables: means, standard deviation, and sample size. 
To avoid any misleading interpretations, we limited the use 
of numerical information and standard statistical language. 
Two cover stories for two underlying visual appearances, 
color and location, were created with the same gist. 
Visuals. We picked two easily recognizable visual 
properties: color and location. For each visual dimension, 
the mean, variance, and sample sizes could be visually 
determined without any numerical information being 
required.  A color condition (Figure 1 upper panel) featured 
green circle widgets at three distinctive average lightness 
levels in an RGB color space: (0, 100, 0), (0, 120, 0), and (0, 
140, 0) (greater G values produce lighter greens). Because 
the greenness level was the average value of a population, G 
values of individual widgets were deviated from the mean 
by an amount specified by the standard deviation (19, 38, 
64). Sample size was represented by the number of widgets 
shown. A location condition (Figure 1 bottom panel) was 
identical to the color location except that we used bouncing 
ball heights as our tokens. We used bouncing heights (the 
highest point a bouncing ball reaches after it hits the floor) 
to convey location information.  

 

 
Figure 1. Two examples of a sample trial with left mean = 100, 
right mean = 140, sample size = 20, and standard deviation = 19. 
Upper panel (a sample color trial): on average, the left side 
widget’s shade of green (100) is darker than the right-side widget’s 
shade of green (140). Bottom panel (a sample location trial): on 
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average, the left side balls’ bouncing height (100) was lower than 
the right-side balls’ bouncing height (140).  
 

Feedback. Trial by trial feedback included three parts: The 
first part was how close a learner’s guess (𝑃𝑔𝑢𝑒𝑠𝑠) was to the 
Ideal Observer’s ( 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 ), along with how many points 
were earned 𝑋𝑒𝑎𝑟𝑛𝑒𝑑 = 100 − |𝑃𝑎𝑐𝑡𝑢𝑎𝑙 × 100 −
𝑃𝑔𝑢𝑒𝑠𝑠 × 100|. The Ideal Observer was a Bayesian model 
created under the assumption that it always behaved 
rationally and gave perfect probability estimates. Its 
confidence judgements were made with the same 
information made available to participants. 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  was 
calculated by Markov Chain Monte Carlo sampling. Hence, 
the closer a learner’s guess was to that of the Ideal 
Observer, the more points were earned. The second part was 
a facial expression. This face initially seemed to be 
anticipating a response, and would then present various 
levels of happiness depending on how close a guess was 
(the closer the happier, see Figure 2). The final part was the 
information of underlying settings, including level of 
means, standard deviation, sample size (in plain language 
matching the cover story), and a larger collection of objects 
produced under each setting. The feedback was designed to 
encourage participants to attempt to adjust their guesses to 
maximize their performance. 

 
Figure 2. Facial expression gradient as a function of how close a 
participant’s guess was to the Ideal Observer’s estimate.  
 

Training session. The training session had 144 trials, with 
each trial asking participants to judge the probability that the 
two machines were given the same setting based on self-
drawn samples (statistical inference). The probability was 
translated into confidence (in terms of the two settings being 
the same or different, not in terms of accuracy in their 
judgment). Confidence estimates ranged from 0% 
(definitely different) to 100% (definitely same), with 50% 
indicating complete uncertainty (increments of 1%). The 
samples were manipulated in a 3 (difference between 
means) × 3 (standard deviations) ×  3 (sample sizes) 
repeated measure design. Each factor ranged across three 
levels featuring low, medium, and high values: difference 
between means (0, 20, 40), standard deviation (19, 38, 64), 
and sample size (5,10,20). Each token was normally 
distributed with a mean of one of the mean levels, and a 
standard deviation of one of the standard deviation levels. 
To make judgments simpler, on any given trial, standard 
deviation and sample size were the same between two 
samples while means may or may not differ. Although the 
ground truth was not knowable by either the learners or the 
Ideal Observer, we had half same and half different trials. 
The numbers of trials with each level of sample size and 
standard deviation were equalized accordingly.  

Procedure Participants first completed six multiple choice 
questions in the pretest with feedback on overall accuracy 
upon completion, followed by a cover story as well as 
tutorial matching the condition they were randomly assigned 
into. They were then instructed to press the “Step 1 Draw 
Samples” button to draw two separate samples from behind 
a curtain (contained within gray rectangles) and to move a 
slider to indicate their probability judgment (Step 2). Step 3 
(submit guess) and Step 4 (reveal setting information) were 
designed to provide feedback. Participants then pressed 
“Step 5 Next Game” to start a new trial, repeating the same 
five steps for 144 times. On each trial, their guess, the Ideal 
Observer’s estimate, and points earned were recorded. 
Figure 3 shows a complete feedback page in a color 
condition (the location condition was similar). Upon 
completing the 144th trial, participants were given their total 
score out of the maximum possible score 14400. They then 
completed a posttest containing the six remaining questions 
from the question pool. Questions were randomized and 
overall accuracy was given after completion.   
 

 

 
Figure 3. Experiment 1’s complete feedback page (a color condition). 
 

Results & Discussions 
 

We calculated a correlation for each participant’s guesses 
and the Ideal Observer’ estimates during the training session. 
Those whose correlations were two standard deviations 
below the mean were excluded (N = 1). Hence, 140 
participants were included in the following analysis 
(𝑁𝑐𝑜𝑙𝑜𝑟 = 69, 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 71).   
Difficulties & Misconceptions. Analyses of accuracy with 
respect to the Ideal Observer and sensitivity to standard 
deviation, sample size, and difference between means were 
conducted to reveal the influence of sample factors on 
participants’ statistical reasoning. 
Accuracy analysis. Answers were transformed to reflect 
confidence along the direction of the ground truth. Because 
the slider incremented from 0% - 100% in the direction of 
sameness and decremented from 100% - 0% in the direction 
of difference, values on a same trial were kept as they were 
and value on a different trial were flipped on the 100-point 
scale. For example, an answer of a 60% was coded as 60 on 
a same trial and coded as 40 (100-60) on a different trial.   
As demonstrated in Figure 4, the Ideal Observer’s estimates 
differed significantly from one level to another of a factor, 
so did the averages of participants’ guesses, ps < .001 
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except that their judgments barely changed from a medium 
to a large sample size, p = .18. Sample factors revealed a 
similar pattern: participants were consistently more 
conservative than the Ideal Observer.  

 
Figure 4. Aggregated participants’ guesses and ideal estimates. 
Error bars represent one standard error of the mean.    
 

Sensitivity analysis. Sensitivity was measured by how 
steeply estimates changed as the level of sample factors 
changed. For difference between means, we used original 
estimates. For sample size and standard deviation, we 
measured estimates’ deviations from 50%. Because 50% 
indicates complete uncertainty, greater deviations regardless 
of the direction from 50% suggest greater confidence. This 
is important, because factors like increasing sample size 
should increase confidence in an answer, but the specific 
direction depends on whether the means are truly different.  
A zero (large) difference between means is typically 
associated with a higher probability of sameness 
(difference). Thus, we used original responses to measure    
while and a large difference between means are typically 
associated with greater confidence. 

As suggested by Figure 5, for each sample factor, 
interactions between levels of factors and estimators were 
observed, ps < .001. Indeed, the Ideal Observer responded 
to changes in factors more steeply than participants. We 
used the steepness of change as an approximation of 
sensitivity. Hence, we interpreted these significant 
interactions as suggesting that participants were less 
sensitive than the Ideal Observer with respect to changes in 
standard deviation, sample size, and difference between 
means. A ratio (R) of participants’ sensitivity to the Ideal 
Observer’s sensitivity was calculated for each sample factor 
to compare relative influence of each factor assuming that 
the Ideal Observer reacted perfectly rational to changes in 
statistical information embedded in the token representation. 
R = 1 implied that participants were influenced by a sample 
factor as was the ideal Observer. R > 1 implied over 
sensitivity (giving too much weight to a factor) and R < 1 
implied under sensitivity (giving too little weight to a 
factor). A one-way analysis of variance (ANOVA) revealed 
a significant difference between three ratios, F(2,417) = 
25.41, p < .001. Specifically, participants gave significantly 
more consideration to difference between means (M = .28, 
SD = .23) than standard deviation (M = .14, SD = .20), 
t(278) = 5.32, p < .001 and sample size (M = .09, SD = .25), 
t(278) = 6.54, p < .001. Standard deviation had a marginally 
greater impact on participants than sample size, t(278) = 
1.87, p = .063. Thus, as demonstrated in Figure 5,  it is clear 
that participants were influenced by difference between 
means the most, followed by standard deviation, and then 

sample size. Despite being most sensitive to difference 
between means, the participants (M = -.33, SD = .27) were 
not nearly as influenced by this factor as was the Ideal 
Observer (M = -1.16), t(419) = 63.73, p < .001.  

 
Figure 5. The Ideal Observer and the participants’ sensitivity to 
sample factors. Difference between means was plotted against 
original estimates while standard deviation and sample size were 
plotted against deviation from 50%. Error bars represent one 
standard error of the mean.    
 

Learning & Transfer. Learning was measured by the 
correlation between the number of trials completed and the 
absolute difference between the Idea Observer’s estimates 
and the participants’ guesses.  Intuitively, if learning 
occurred during the perceptual training, the difference 
should decrease as the number of trials increased. No 
learning was observed, r(142) = .056, p = .51. Given that the 
scenarios in the posttest questions were only distantly 
related to the factory-based stories we used in training, we 
treated posttest performance as a measure of far transfer. No 
transfer was observed, t(139) = 1.08, p  = .28. 

The findings of Experiment 1 suggested that participants 
had difficulty reacting in the mathematically warranted way 
to varying levels of sample size, standard deviation, and 
difference between means. They were not influenced by any 
of these factors as was the Ideal Observer. Specifically, the 
participants gave the most weight to difference between 
means, less weight to standard deviation, and very little 
weight to sample size.   

More surprisingly, no learning was observed despite 144 
repetitions and immediate, trial-by-trial feedback. The   
participants were told that the relevant settings information 
should be important for their judgments and encouraged to 
explore how difference between means, standard deviation, 
and sample size affected ideal estimates. Thus, we speculate 
that the absence of learning was due to no explicit 
instructions were given as to how participants should 
integrate numerical information in the feedback to adjust 
their responses. Hence, our findings suggest that explicit 
descriptions of how learners’ estimates deviated from the 
ideal estimates in accord with each of the three factors 
should be given, especially at the initial stage of learning 
when participants did not yet have “internal” guidance. 

 

Experiment 2 
 

Experiment 1 revealed that presenting relevant information 
without explicit guidance of how to use them in probability 
judgments was of little to no use to inducing learning. Thus, 
in Experiment 2, we provided tailored instead of generic 
feedback. Moreover, different levels of standard deviation, 
sample size, and difference between means were used to 
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make more clear-cut trials near 0% and 100% judgments. 
There were also some aesthetic modifications to avoid 
encouraging mistakes due to interface layout. The main goal 
of Experiment 2 was to examine whether explicit guidance 
of how to use perceptually salient cues could bridge the gap 
between perceptually grounded experience and learning, and 
perhaps even transfer.  
 

Participants We recruited 239 undergraduates at Indiana 
University, Bloomington in exchange for course credit.  
 

Stimuli. The design of Experiment 2 was identical to that of 
Experiment 1 with a few modifications to feedback: a) an 
ideal estimate was mapped onto an identical slider 
immediately below the participants’ slider, in the hope of 
letting participants visually see how far their answers were 
away from the Ideal Observer’s; b) sliders were centered to 
avoid the tendency to always move the thumb to the center 
of screen, an act which would lead to higher probabilities of 
sameness (we had many flipped answers in Experiment 1); 
c) increased differences between each factor level: mean 
(100, 125, 150; thus difference between means: 0, 20, 50), 
standard deviation (20, 36, 54), and sample size (4, 9, 20); 
d) tailored feedback was given to show how the Ideal 
Observer reached its estimates (discussed below).  
Tailored feedback. Regardless of the direction from 50% 
(complete uncertainty), no justification was given when the 
deviation between a participant’s guess and the ideal 
estimate was smaller than 15% (𝑃difference < 15%). When 
𝑃difference >  15%  and judgments were in the opposite 
directions, difference between means was highlighted to 
reveal the wrong judgment of which type was more likely. 
When the directions were the same (both below or above 
50%) and 𝑃difference > 15% , in an Ideal-Observer-more-
confident-same (different) case, a larger sample size, a 
smaller (larger) standard deviation, and a more extreme 
difference between the two means were highlighted 
whenever applicable. Likewise, in an Ideal-Observer-less-
confident-same (different) case, a smaller sample size, a 
larger (smaller) standard deviation, and a more moderate 
difference between the two means were highlighted 
whenever applicable (see Figure 6).  

 

 
Figure 6. Experiment 2’s complete feedback page (color condition). 
The location condition had an identical layout. 
 
Results & Discussions 

We applied the same exclusion criteria used in experiment 1 
and included 218 participants for the following analysis 
(𝑁𝑐𝑜𝑙𝑜𝑟 = 113, 𝑁𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 105). 
Accuracy analysis. Similar to Experiment 1, we flipped 
estimates by 100 – estimates when the ground truth was 
different. Again, participants were consistently more 
conservative than the Ideal Observer across difference 
between means, sample size, and standard deviation. 
Sensitivity analysis. Identical to Experiment 1’s analysis, 
we conducted a sensitivity analysis for Experiment 2 by 
analyzing relative steepness of changes in responses. 
Interactions between factor levels and the estimator were 
observed at each factor, ps < .001. A one-way ANOVA 
revealed a significant difference between sensitivity to three 
sample factors, F(2,651) = 64.18, p < .001. As demonstrated 
in Figure 7, the pattern was identical to that in Experiment 
1: participants were influenced by difference between means 
the most (M = .56, SD = .21), followed by standard 
deviation (M = .35, SD = .29), t(434) = 8.42, p < .001, and 
sample size (M = .26, SD = .33), t(434) = 38.79, p < .001. 
They were also more influenced by standard deviation than 
sample size, t(434) = 3.17, p = .0016.  
 

 
Figure 7.  The Ideal Observer and the participants’ sensitivity to 
sample factors. Difference between means was plotted against 
original estimates while standard deviation and sample size were 
plotted against deviations from 50%. Error bars represent one 
standard error of the mean.    
 

Learning & Transfer. Learning was observed as there was 
a significant correlation between the absolute deviation 
between  participants’ guesses and ideal estimates and 
number of trials, r(142) = -.18, p = .029 (see Figure 8a). 
This effect was not simply due to repetition because 
participants in Experiment 1 went through the exact same 
procedures without revealing any signs of learning. Transfer 
of learning was also revealed by a paired sample t-test, with 
higher posttest accuracy (M = .58, SD = .24) than pretest 
accuracy (M = .61, SD = .25), t(217) = -2.18, p = 0.030 
(Figure 8b). The correlation between learning during 
training and transfer of learning, however, was only 
marginally significant, r(216) = .12, p = .068. Thus, there 
was some suggestion that participants who established a 
perceptual grounding of fundamental statistical concepts 
during training did not necessarily develop the ability to 
apply that new gain to contextually dissimilar but 
structurally similar problems.   
Overall, the findings of Experiment 2 showed that with 
tailored feedback, participants in Experiment 2 showed both 
significant learning and transfer of learning. This suggests 
the importance of analytic feedback that specifies not just 
how good a response was, but what factors were probably 
not influencing judgments sufficiently. Meanwhile, the two 
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types of improvement seems to indicate that statistical 
reasoning is not just one thing. While most people think the 
kind of quantitative and immediate feedback we gave in 
Experiment 1 is more common, and is perhaps the gold 
standard, the type of relatively unusual feedback we use in 
Experiment 2 is applicable to many educationally relevant 
interventions.  

 
Figure 8a. Learning: Correlation between the nth trial and the absolute 
difference between the Ideal Observer’s estimates and the participants’ 
guesses.  Figure 8b. Transfer: Error bars represent one standard error 
of the mean.    

 

General Discussion & Conclusion 
 

The central goal of the present study was to assess the 
applicability of a grounded cognition approach to learning 
the relations between basic statistical concepts.  Across two 
experiments, we found that tailored guidance along with 
perceptually salient properties has the potential to induce 
both learning (during training) and transfer of learning.   

Psychometrically, the present study proposes a new 
paradigm to quantitatively measure people’s sensitivity to 
three factors underlying statistical inference (difference 
between means, variance, and sample size). Our task is 
promising because it 1) allows us to compare learners’ 
relative sensitivity to these three factors so as to make 
quantitative claims about how much each factor is 
influencing their judgments, 2) allows us to compare these 
influences to an Ideal Observer that makes optimal use of 
the information in a display, 3) allows us to quantitatively 
measure improvements in the use of these factors over 
training, 4) allows us to give learners quantitative and 
objective feedback on their task performance, and 5) gives 
us a method for quantitatively assessing performance on a 
statistical inference task that is potentially independent 
from, but possibly correlated with, other explicit measures 
of statistical reasoning.  This last feature allows us to 
empirically determine if implicit and explicit measures of 
statistical reasoning are tapping into the same knowledge. 

Experiment 2 produces two kinds of improvement: a) 
training improvement from beginning to the end and b) 
improvement from pretest to posttest, but they are not 
correlated. This suggests that reasoning with statistics is not 
just one thing. An improved ability to reason with 
variability, sample size, and difference between means is 
manifested in both a quantitative and a qualitative way. A 
quantitative understanding is through improved numerical 
integration. Some people improve their ability to integrate 
variability, sample size, and difference between means, and 
hence improve during training. They learn how to give more 
appropriate consideration to the relative weight of each 
factor. A qualitative understanding, on the other hand, is 

manifested through transfer of learning from a pretest to a 
posttest. These people pay attention to the detailed, analytic 
feedback and they do better on posttest (Experiment 1 does 
not have this kind of feedback). Compared to numerical 
judgments during training, pretest and posttest questions are 
more concerned with (at a descriptive level) how changing 
variability, sample size, or difference between means affects 
confidence respectively. Hence, learners who demonstrate a 
qualitative understanding learn directionally how important 
each factor is in statistical reasoning. More importantly, as 
suggested by the lack of correlation between the two 
improvements, they do not occur in an all-or-none fashion. 
Specifically, integrating statistical information is different 
from just being able explicitly state if and how sample size, 
variability, and difference between means should affect 
judgments.  
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