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Science education faces the difficult task of helping students understand and 
appropriately generalize scientific principles across a variety of superficially 
dissimilar specific phenomena. Can cognitive technologies be adapted to benefit 
both learning specific domains and generalizable transfer? This issue is exam-
ined by teaching students complex adaptive systems with computer-based simu-
lations. With a particular emphasis on fostering understanding that transfers 
to dissimilar phenomena, the studies reported here examine the influence of 
different descriptions and perceptual instantiations of the scientific principle of 
competitive specialization. Experiment 1 examines the role of intuitive descrip-
tions to concrete ones, finding that intuitive descriptions leads to enhanced 
domain-specific learning but also deters transfer. Experiment 2 successfully 
alleviated these difficulties by combining intuitive descriptions with idealized 
graphical elements. Experiment 3 demonstrates that idealized graphics are more 
effective than concrete graphics even when unintuitive descriptions are applied 
to them. When graphics are concrete, learning and transfer largely depend on 
the particular description. However, when graphics are idealized, a wider variety 
of descriptions results in levels of learning and transfer similar to the best combi-
nation involving concrete graphics. Although computer-based simulations can 
be effective for learning that transfers, designing effective simulations requires an 
understanding of concreteness and idealization in both the graphical interface 
and its description.
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1.	 Introduction

A central purpose of science is to produce models that provide unifying explana-
tions of diverse phenomena and to generalize these models appropriately. Follow-
ing the axiom of preaching what we practice, a corresponding goal of scientific 
education should be to teach students to appreciate and use these overarching 
models, not just particular instances. Models in physics seek to explain all types of 
masses under a variety of circumstances, not just a particular cube on an incline 
plane. Chemistry seeks to explain many types of reactions across different envi-
ronmental conditions, not just the result of exposing magnesium oxide to water. 
Biological models that provide explanations that apply across organisms and psy-
chological explanations that cut across particular situations move these fields for-
ward. Because scientific models typically capture deep principles that govern con-
cretely dissimilar phenomena, they are largely sparse descriptions of structure. But 
novices in a domain are often more likely to attend to rich concrete information 
than relational structure (Chi, Feltovich, and Glaser 1981; Rattermann and Gent-
ner 1998; Markman and Gentner 1993), so although fostering an understanding 
of deep structure is the very purpose of science, this is also what makes science 
education challenging. How can sparse relational structure be highlighted in the 
midst of the rich salient details of the particular phenomena? Indeed this has been 
a source of much dissatisfaction with students’ (and teachers’) conceptions of sci-
ence (Duschl 1990; Lederman 1992).

In the research presented here, the focus is on two, sometimes divergent, goals 
of scientific education: (1) the understanding of general models and (2) transfer-
ring that general structure across specific phenomena. Technological innovations 
such as computer simulations play an increasingly important role in science edu-
cation by helping students build working models. However, to develop effective 
simulations we need to know how students understand and interact with simula-
tions. Our research is an attempt to maximize the pedagogical impact of simula-
tions to foster both learning of particular phenomena but also to promote ap-
propriate transfer. To such an end, we will provide a review of complex systems, 
an example of a scientific approach that necessitates an understanding of general 
models. Then we will review previous research that shows the impact of simula-
tions in learning. Finally, we will present theoretical and empirical motivations 
for strategically choosing a level of concreteness in simulations (perceptually and 
contextually) that effectively fosters transfer.
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2.	 Complex systems for science education

Complex adaptive systems (CAS) provide a particularly striking example of a situ-
ation where there is common structure shared among dissimilar concrete phenom-
ena. CAS models phenomena use the simple interactions of individual units (or 
agents) to explain complex behavior at the macroscopic level. The key idea of these 
models is that even without a leader or centralized process, sophisticated high-level 
organization can emerge from low-level interactions (Bar-Yam 1997; Resnick 1994; 
Resnick and Wilensky 1993). Many real-world phenomena, from biology to so-
cial sciences, can be modeled with the formalisms of CAS. These principles often 
provide useful unifying descriptions across traditional scientific boundaries (Casti 
1994; Flake 1998). For example, the growth of human lungs (Garcia-Ruiz et al. 
1993), snowflakes (Bentley and Humphreys 1962), and cities (Batty 2005) can all 
be modeled by Diffusion-Limited Aggregation, where individual units enter a sys-
tem randomly and if a moving unit touches another one, they become attached. 
The same pattern of fractally connected branches emerges across all these systems. 
Although lungs, snowflakes, and cities seem to belong in different domains of in-
quiry due to salient differences among these phenomena, the structural regulari-
ties highlighted by this CAS construal (Ball 1999) are highly useful for prediction 
and quantification. A CAS perspective can provide a unifying explanation for the 
development of spots on mammalian skin as well as the distribution of religious 
communities over a country (Turing 1952); oscillations in chemical reactions as 
well as predator-prey populations (Ball 1999); the specialization of ants over food 
resources as well as neurons over perceptual stimuli (O’Reilly 2001).

There are also some specifically pedagogical reasons to bring CAS principles 
to the science classroom. First, since transfer of structural principles unifying su-
perficially dissimilar domains is particularly problematic for students, CAS theo-
ries provide many examples of models that do just that. This has the potential to 
overcome students’ resistance to science classes that they frequently view as overly 
particularistic. CAS principles are mechanistic descriptions of phenomena and 
offer compelling accounts of the similarity between otherwise dissimilar phenom-
ena. Also, since CAS models are of authentic scientific interest, this can foster 
productive cross-fertilization across fields. The bridging is not only across phe-
nomena, but also within phenomena since CAS principles offer bridging causal 
explanations among microscopic elements in a system and observed macroscopic 
emergent behavior. Building these links across and within scientific domains dem-
onstrates different levels of description and offers students new ways of parsing 
phenomena. Finally, these systems provide situations where analogical reasoning 
and transfer naturally emerge as cognitively crucial ingredients. This last reason is 
of particular importance to educators and students who hope that their efforts and 
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study will transfer between the classroom and the real world as well as between 
domains (Anderson, Greeno, Reder, and Simon 2000).

However, the very characteristics that make CAS principles such good science 
and potentially good for research in science education also make them particular-
ly difficult to understand. First, because CAS modeling requires multiple levels of 
understanding, emergent and local interactions (Wilensky and Resnick 1999), stu-
dents often only learn one-level of analysis and typically it is the overall structure 
that is most difficult to grasp. Second, past research has shown many failures of 
the spontaneous transfer of principles between superficially dissimilar contexts 
(e.g., Gick and Holyoak 1980; Reed, Ernst, and Banerji 1974). Third, relatively little 
research has been done to inform the design of CAS curricula, hands-on experi-
ences, exercises, and laboratories to promote deep understanding of complex sys-
tems. Educational technology that is optimized for maximizing performance on a 
system will often not be the technology that is optimal for transferring knowledge 
and skills from one domain to another. For example, for training people to drive a 
car, developing a driving simulation that is as realistic as possible is sensible. How-
ever, it does not follow that realism and incorporating details faithful to a domain 
are beneficial if we are principally interested in transfer understandings to new 
domains with different details.

We propose to use recent developments in technology to address educational 
challenges. Technological advances have given rise to new tools for studying com-
plex systems. Because effective real-life observation of whole system, such as an 
entire population of neurons or a predator-prey ecosystem, is often difficult, too 
complex, or too cumbersome, computer-based simulations provide a powerful 
new tool for scientific inquiry (Casti 1997) as well as education. Simulations offer 
promise in meeting the challenges of learning complex systems. We will discuss the 
broad advantages of using simulated environments to (1) effectively allow interac-
tive control coupled with (2) perceptually grounding of higher order principles.

2.1	 Advantages of simulations

Dynamic simulations instantiate scientific principles with simplified percep-
tual models, representing only the main elements and their interactions. These 
computer simulations have been called “artificial worlds”, providing a functional 
laboratory for testing hypotheses (Casti 1997). Traditional laboratories are ideally 
controlled environments and computer simulations similarly constrain the poten-
tial influences on the environment via the availability of parameters. Students can 
explore these models by changing key parameters and examining the subsequent 
effects on the system (Miller, Lehman, and Koedinger 1999; Resnick 1994; Schank 
and Farrel 1988).
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Such an interaction between a student and a simulation is particularly power-
ful because actions in this environment are coupled with ordered consequences. 
Often this coupling is designed to show students immediate visual consequences 
that correspond to changes in particular parameters (e.g., Jackson, Stratford, Kra-
jcik, and Soloway 1996; Resnick 1994; Wilensky 1999). The organization of what 
gets learned is often directly connected to actions in the world (Scribner 1985), and 
so there has been an increasing interest in understanding cognition as the product 
of interactions with the environment. Embodied accounts of learning suggest that 
such coupling between activity and the environment is what leads to flexible and 
useful knowledge (Winn 1995; Smith and Gasser 2005). Even simple learning 
mechanisms can be flexibly ‘intelligent’ when they are sensitive to these couplings 
(Brooks 1991). Giving students feedback in these simulated environments gives 
them information about the system in a less direct, but potentially more effective, 
way than traditional textbook exposition. Particularly because CAS principles are 
often instantiated at the agent-level, it is difficult for students to connect changes 
at the micro-level to patterns at the global-level (Penner 2001). Simulations couple 
their micro-level changes to global consequences.

More specifically to scientific inquiry, simulations also provide economical 
opportunities for practicing skills. Because the environment is conducive to pre-
dictive problem-solving, students can test their theories and examine the conse-
quences (White 1993; White and Fredericksen 1998). Resetting a computer simu-
lation is easy to do, allowing students to start over and try out several tests in 
succession, something that might be costly or difficult in the real world or even 
a real laboratory. Additionally, as much as science is interested in predicting re-
ality, the real world is unpredictable. Simulations are highly regular worlds that 
are created as perfect instantiations of scientific models. This allows a students’ 
experimentation to be highly predictable, if they have a good understanding of the 
model. In the real world, a predictive failure is possible because either one’s model 
is wrong or one does not understand the implications of one’s model. By allowing 
students to explore simulations governed by exact and simple rules, the former 
possibility is eliminated and students can concentrate on understanding why a set 
of rules gives rise to the behavior describable at several levels.

Dede and colleagues (1997) have used simulated environments in Scienc-
eSpace to help students realize when they do not have adequate models of the 
physical universe by allowing them to remove friction or gravity from the simula-
tion. These impossible and extreme ways of controlling simulations are particular-
ly needed to illustrate CAS principles. Emergent explanations are often overlooked 
for centralized ones (Resnick and Wilensky 1998; Jacobson 2001) and students are 
likely to seek a centralized authority or plan (i.e., one of the agents being a special 
leader), so being able to truly make every agent behave identically is important. 
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This control allows students to see that the emergent structures they see are not 
caused by seeded differences among the elements, but come about because of their 
interactions. Also, because these interactive systems are made up of independent 
agents, they can seem perceptually noisy. Simulated environments allow students 
to have control over “the noise” in regular ways.

These visual interactive simulations are perfect models and, perhaps equal-
ly importantly, are also tools for constructing mental models. Although mental 
models have been implicated in effective scientific understanding (Gentner and 
Stevens 1983), actually being able to model simultaneous agents and interactions 
poses high demands on working memory and other cognitive processes (Narayan-
an and Hegarty 1998). CAS principles may be particularly difficult to instantiate 
mentally because the behavior of the components may be very different from the 
global patterns that arise. Students are surprised when they find that a traffic sys-
tem composed of cars moving forward creates traffic jams that move backwards 
along the highway (Wilensky 1997; Wilensky and Resnick 1999). They only realize 
that this is a consequence of the system by observing it in the simulation.

These are a few of the potential benefits to complex systems education that 
visual simulations might provide. Undoubtedly this potential has been recognized 
given the recent proliferation of simulations used in educational settings. A note-
worthy example is the StarLogo/NetLogo environment developed by Resnick and 
Wilensky (Resnick 1994; Resnick and Wilensky 1998; Wilensky 1999, 2001). Star-
Logo/NetLogo provides a platform for creating virtual environments made up of 
fixed patches and moving agents that can interact with patches and each other. 
Students can control various parameters to change the nature of those interac-
tions. Simulations such as NetLogo systems often foster intuitions for complex 
systems such as slime-mold aggregation and predator-prey oscillations better than 
abstract equations and noninteractive animations (Resnick and Wilensky 1998; 
Wilensky and Resnick 1999).

However, not all simulations are created equal and there have been relative-
ly few attempts to test the effectiveness of particular design choices (for notable 
exceptions, see Jackson, Stratford, Krajcik, and Soloway 1996; Klahr and Carver 
1988; Miller et al. 1999). Although simulations on the whole might offer poten-
tial advantages over more traditional tools, systematic differences between sim-
ulations might also influence their actual effectiveness, particularly for transfer. 
Simulations should not be seen as panaceas to science education, just as concrete 
manipulatives or other learning tools should not be seen as generic solutions to 
the aims of education (see Uttal, Scudder, and DeLoache 1997 for a defense of 
this claim). Cognitive studies of learning and transfer offer valuable direction for 
designing simulations that are optimal teaching tools for the aims of science edu-
cation: Unifying structural construals and generalizable skills.
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3.	 Fostering transfer

Complex systems principles are cognitively influential because they lead to situa-
tions being construed in new and productive ways. The student or scientist armed 
with a model of Diffusion Limited Aggregation sees striking similarities between 
lungs and snowflakes that are missed by most others. Complex systems concepts 
are thus inductively productive; however, they are highly perspective-dependent. 
When corrosion on tin organ pipes speeds up the spread of further corrosion, it is 
exactly an autocatalytic process, with the rich mathematically governed behaviors 
that characterize all autocatalytic processes. However, the organ pipes not only 
instantiate an autocatalytic process, but also a resonating chamber and a harmonic 
series generator. An effective science education arms students with new perspec-
tives to apply to the world.

The problem with these scientific construals is that they reflect a particular per-
spective out of a number of reasonable descriptions. Because of human processing 
limitations, differing construals compete against each other. However, appropri-
ate generalization and transfer may require understanding multiple construals at 
once. At one level, participants do need to understand specific phenomena and 
how they instantiate certain principles. However, they also need to understand 
that these individual phenomena are in equivalence classes organized according to 
abstract principles. The specific and the general, the individual and the aggregate, 
the superficial and structural construals — all compete against each other, and 
every learning situation is wrought with these possible perspectives.

In the domain of science education, there is a wide variety of what could be 
considered critical transfer, from broadly generalizable skills, such as the ability to 
ask testable questions, to more specific instances of transfer, such as recognizing the 
link between a particular equation and a linguistic description of phenomena (for 
more detailed analysis of the types of transfer, see Barnett and Ceci 2002). Choos-
ing the right perspective to apply to a situation may be important in many types 
of transfer but because we are limited in our ability to explore these in a series of 
short experiments, our empirical investigations will be restricted to transfer as solv-
ing problems similarly across deeply related phenomena, despite superficial differ-
ences. Thus, our aim is to design simulations that help students recognize structural 
similarities between two dissimilar contexts. Teaching or exposing students to a 
perspective that emphasizes deep structure may be critical for this type of transfer.

What can we do to emphasize structural information? One answer comes 
from evidence that deep processing can be facilitated with concrete representa-
tions (Barsalou 1999; Cheng 2002; Goldstone 1994a, 1994b; Goldstone and Barsa-
lou 1999). When concrete details support relational reasoning, learners benefit 
from this redundancy (Gentner and Toupin 1986; Gentner and Rattermann 1991; 
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DeLoache et al. 1991). There are many ongoing attempts to make simulations 
more similar to their real world referents (DiFonzo, Hantula, and Bordia 1998; 
Grady 1998; Heim 2000).

As vivid and interesting as these representations may be, it remains to be seen 
whether concreteness leads to better learning. Particularly if we are interested in 
learning that transfers, a detailed and concrete construal may not be desirable. 
For instance, in the case of math manipulatives, detailed interesting objects may 
distract children from actual principles of mathematics (Uttal, Liu, and DeLoache 
1999). These details are particularly critical when they detract from relational con-
struals (Goldstone, Medin, and Gentner 1993).

However, even in situations where the details are not irrelevant but in fact 
relevant to structure, there is evidence to show that idealizations are better for 
generalization. Bassok and Holyoak (1989) examined transfer from algebra-to-
physics versus physics-to-algebra. Even though physics is a fairly abstract domain, 
doing physics problems did not transfer to algebra as much as algebra to physics. 
Algebra captures the pure structural commonality shared by the two situations 
and this isolation of critical information may promote transfer. A particularly 
striking instance of relevant concreteness’ detrimental effect on transfer comes 
from Kaminski, Sloutsky, and Heckler (2005, 2006). They taught students a ver-
sion of modular arithmetic either through arbitrary abstract symbols or meaning-
ful concrete representations of cups (see Figure 1). They taught students a system 
of relations structured according to addition modulo 3, a math system where there 
are only three numbers. Under modulo 3, 1+1 = 2, 2+2 = 1, and 1+2 = 0. When stu-
dents were taught this system with arbitrary symbols in place of numbers, learning 
was more difficult than learning with cups iconically filled 1/3 or 2/3 of the way. 
However, transfer to another modulo 3 system was better for the arbitrary condi-
tion than the iconic condition. They attributed this advantage of simple symbols 
to be by virtue of their similarity to other abstractly related systems. Another as-
pect of the transfer disadvantage of relevant concreteness is that these vivid de-
tails are conflated with relational structure. These findings demonstrate how even 
concreteness perfectly correlated with abstract structure can result in an overly 

Figure 1.  Training stimuli used in Kaminski, Sloutsky, and Heckler (2005, 2006) to teach 
students modular arithmetic. Although the modular arithmetic system is naturally in-
stantiated by the cups scenario, instruction using the cups led students to generalize their 
knowledge less effectively than training with the more simplified geometric shapes.
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concrete construal, because learners do not have to rely on abstract structure to 
comprehend the situation.

Because the benefits of concrete understanding and abstract transfer seem 
to map well to the concrete/idealized perceptual dimension, we want to examine 
their role in designing effective simulations. There are two ways of understand-
ing concreteness that may be important to simulation design. One is in terms of 
situational concreteness with a high degree of similarity between the model and 
the real world situation that it represents (model-to-modeled-world relation). A 
second way of being concrete is to be perceptually-based. This way of being “con-
crete” is closer to Barsalou’s Perceptual Symbols Theory (1999) which proposes 
a central role of perceptual processes in comprehending even abstract concepts 
such as logical relations. Simulations may include aspects of both situational and 
perceptual concreteness but we believe that these are separable. Presenting a gen-
eral Diffusion Limited Aggregation system using the domain of water spreading 
into viscous oil, but with simple blue patches representing water and black patches 
representing oil, would count as situationally concrete but perceptually idealized. 
Presenting the same system in terms of two unidentified fluids but with slickly 
rendered, three dimensionally shaded graphics, would count as situationally ideal-
ized but perceptually rich.

Based on evidence that suggests that perceptual processes may ground con-
ceptual ones (see Goldstone and Barsalou 1994 for a review), all of this research 
here on simulation design has been based on perceptual simulations. The magni-
tudes of situational and perceptual concreteness were adjusted to examine the re-
sulting effects on learning and transfer. Our research group has conducted several 
studies aimed at informing the design of effective interactive simulations. The aim 
is to foster a flexible understanding of structural principles, the kind that transfers 
across dissimilar phenomena. To do this, these studies use simulations of two dis-
similar phenomena, both governed by the CAS principle of “Competitive Special-
ization,” to examine the effects of concreteness/idealization on transferable learn-
ing. First, here is a review of competitive specialization and an introduction to the 
simulations. Then we will summarize experiments that examined several aspects 
of the simulations’ design.

4.	 Case study: Competitive specialization

One advantage of teaching complex systems to study transfer is that these prin-
ciples are of authentic scientific interest and the phenomena described by these 
systems are the result of real applications of these principles. We have focused here 
on one of the principles taught in our undergraduate CAS course at our university, 
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“competitive specialization.” This principle describes situations where units start 
off homogenous and undifferentiated but by uniformly obeying simple rules, be-
come specialized and individualized. A well-worked out example of Competitive 
Specialization is the development of neurons in the primary visual cortex that 
start off homogenous and become specialized to respond to visually presented 
lines with specific spatial orientations (von der Malsburg 1973). Another example 
regards the optimal allocation of agents that specialize to different spatial regions 
of territory. In such situations, specialization is required for optimal covering of all 
regions, so that every region has a reasonably close agent. For example, if oil drills 
are to optimally cover a territory or waitstaff are to optimally cover a party, they 
will each need to cover different regions. Inefficient covering means that there are 
some regions redundantly covered by multiple oil drills or waitstaff, while some 
regions are not covered at all. The same structure can be seen in neuron specializa-
tion if the range of visual stimuli is construed as a space where distance represents 
similarity: Efficient covering is achieved when each stimulus region has a neuron 
or neural assembly responsible for it.

A centralized solution might involve some sort of algorithm, plan, or leader to 
instruct these individual agents (e.g., oil drills, waitstaff, or neurons) to distribute 
over a territory (e.g., Texas, a party, or a range of stimuli). However, competitive spe-
cialization offers a decentralized solution to achieving optimal covering, by execut-
ing three simple steps repeatedly. In order to get agents to specialize over a territory: 
(1) randomly select one region from the entire territory to be covered, (2) determine 
the agent closest to the selected region, (3) adapt the closest agent towards the region 
with a relatively fast rate while adapting all other agents toward that region with a 
slower rate. These steps iterated repeatedly will result in agents specializing towards 
regions they are already close to. Agents that are not close to selected regions move 
slowly towards them so that they are free to cover other regions that may be selected 
later. The two critical parameters of competitive specialization are the adaptation 
rate of the closest agent and the rate of the other agents. Although there are other pa-
rameters that can be changed such as the number of agents or regions of space, the 
rates of adaptation are critical to achieving optimal specialization. Combinations of 
these critical parameters will be demonstrated in the next section.

Laboratory and classroom investigations have shown that simulations can fos-
ter transferable learning between instances of competitive specialization (Gold-
stone and Sakamoto 2003; Goldstone and Son 2005; Goldstone, Landy, and Son 
2008). In these experiments, students are directed in a period of focused explora-
tion with a relatively literal spatial instance of agents covering a territory. Then, 
students are probed with another simulation that instantiates the principles of 
competitive specialization in a metaphorical space — in particular, a similarity 
space. Their understanding of each simulation is measured with multiple-choice 
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quiz questions in all experiments. Some of the studies also examine how quickly 
students apply learned solutions as well as the quality of written out observa-
tions. An example simulation of agents covering a literal space (ants covering food 
patches) and another with agents covering metaphorical space (neuron sensors 
covering similarity space) will be shown in further detail. All simulations have 
been developed in NetLogo (Wilensky 1999).

4.1	 Specialization in literal space

These simulations of competitive specialization involved agents spreading evenly 
over territory drawn by users. One example involves ants foraging food resources. 
At each time step, the ants-system iterates the rules described generally above and 
specifically here: A piece of food is randomly selected, the closest ant moves to-
wards it with one rate while all other ants move toward it with a different rate. 
When a piece of food was selected, it was highlighted (yellow dot on the green 
patches, see Figure 2). Learners were told that there were no hidden complexities 
and these rules governed the behavior of the ants (by pressing the ‘cover’ com-
mand). To explore the simulation, students could draw food, add ants to the sys-
tem, move ants, and randomize the ants’ positions. They were also encouraged to 
explore various parameters (described as controlling factors) of the system, the 

Figure 2.  Screenshot of Ants and Food simulation created with NetLogo. Randomly se-
lected food pieces (one is shown by the small yellow square) are sampled from the green 
regions drawn by the user. The ants move toward the sampled food with parametrically 
controllable speeds.
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critical ones being the ‘closest-ant-movement-speed’ and ‘other-ants-movement-
speed’ that could be adjusted on sliders (see Figure 2). We will call these param-
eters the ‘closest rate’ and the ‘not closest rate.’

To guide their explorations of the parameters, a worksheet with several steps 
asked students to think about and perform a number of actions to the simulation 
(this worksheet and corresponding simulation can be downloaded at http://jys.
bol.ucla.edu/simulations). (1) Students were asked to consider how to achieve an 
efficient covering solution such that the pieces of food each have an ant nearby. 
(2) Students were asked to manually place ants far away from the food in nonopti-
mal configurations and note that the graph (in the bottom left corner of Figure 2) 
depicting the average distance between selected food to the closest ant was high. 
Then students were asked to manually place the ants in optimal configurations 
(i.e., one on each region) and note that the graphed distance was low. (3) Students 
were asked to randomize the position of the ants and have the ants automatically 

Figure 3.  Resulting configurations from various parameter settings of the Ants and Food 
simulation. Only when the ant closest to randomly selected pieces of food moves quickly 
and the other ants move slowly does the optimal covering pattern (lowest panel) emerge.

http://jys.bol.ucla.edu/simulations
http://jys.bol.ucla.edu/simulations


© 2009. John Benjamins Publishing Company
All rights reserved

	 Fostering general transfer	 13

achieve this optimal configuration by finding parameter values (instead of the 
manual ‘move ant’ command) to achieve low average distance.

Starting with the initial configuration of two ants and two food patches shown 
in Figure 2, the results of different parameter settings are shown in Figure 3. If 
only the closest ant moves, and the not-closest ant does not move at all, then the 
ant slightly closer to the food will move closer to all of the food regions because 
the food regions are all relatively close together. In subsequent iterations, this ant 
will continue to be the closest ant no matter what piece of food is selected. The 
other ant will never get the opportunity to be the closest ant and will never move 
at all. On the other hand, if both closest and not-closest rates are equally high, all 
ants will move closer to the food. However, because all ants will be moving equally 
quickly toward selected food regardless of their initial positions, their movements 
and positions become identical after several iterations. These are both sub-optimal 
parameter settings because either one ant or a group of ants are trying to cover the 
entire food space instead of specializing for different regions. In these cases, either 
one or all ants will eventually hover around the center of mass of the available 
food. The solution for competitive specialization is instantiated by having the clos-
est ant move quickly while the other ants only move very slowly. Even if one ant 
starts off covering most of the available food, soon the other ants will come close 
enough to cover peripheral patches. Eventually, each ant will occupy a local center 
of mass (the entire space is divided by the number of available ants).

4.2	 Specialization in metaphorical space

This second type of simulation involves agents specializing over a different kind 
of space, similarity space. Inspired by self-organizing neuronal sensors (Von de 

Figure 4.  Rumelhart and Zipser’s (1985) geometric construal of competitive learning 
shows (A) input patterns, represented by x’s, as vector endpoints in a multidimensional 
space, (B) initially random pattern sensors are circles, and (C) the result when a sensor 
that “wins” the competition adapts towards the selected input while the other sensor 
adapts more slowly towards the input.
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Malsburg 1973), the Sensors and Inputs simulation shows how initially homog-
enous sensors — sensors that react similarly to all inputs — become specialized to 
a certain range of inputs. The simulation is based on Rumelhart and Zipser’s com-
petitive learning algorithm (1985) used to find clusters of patterns in neural net-
work inputs. They provide a geometric construal of pattern learning that is useful 
to review here. Imagine each input as a vector in a multidimensional feature-space 
(vector endpoints are illustrated in Figure 4 in a hypersphere). Inputs that share 
many features, a classic view of similarity, have endpoints that are close together 
and dissimilar inputs are far apart. Sensors start off with random feature values 
(feature weights in the original competitive learning algorithm), in other words 
as random points in the high-dimensional space. Applying the rules of competi-
tive specialization, (1) an input is randomly presented, (2) the sensor that is most 
similar is chosen as the winner, and (3) the winner adapts a large amount towards 
the presented input and the losers adapt by a small amount.

Figure 5.  Screenshot of Sensors and Inputs simulation. Four input pictures (top row) 
have been drawn by the user and the two sensors (bottom row) are initialized with ran-
dom pixel values.
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This technique roughly produces sensors that capture general similarities among 
groups of instances (for improvements to this algorithm, see Goldstone 2003). 
Specialized sensors react to inputs that are close in multidimensional space just as 
the specialized ants in the previous section react to points of food that are close 
in 2-dimensional space. Although this simulation was created based on this more 
abstract conceptualization of spatial proximity, the user-interface only indirectly 
reflected this (see Figure 5). A sensor adapting toward an input, distance reduc-
tion in the high-dimensional space, merely looks more similar to the input.

In the simulation, inputs are drawn in on the first row and sensors are ran-
domly initialized on the second row. Inputs are defined as arrays of pixels such that 
inputs that are “close” in multidimensional space have many overlapping pixels 
and look like each other. As the sensors are adapted towards inputs, they come 
to share more pixels and look like them. The key parameters in the Sensors and 
Inputs simulation are ‘adaption-rate-for-most-similar-sensor’ and ‘adaption-rate-
for-all-other-sensors’ (which we will refer to as the most-similar and other rates).

Students can control these parameters, draw inputs, set the number of inputs 
and sensors to explore the simulation. Once again, the rules governing the system 
were explicated to students in a worksheet (worksheet and simulation available for 
download) and they were told that the command ‘match sensors to inputs’ would 
execute the rules iteratively. Students were generically asked to think about how 
sensors could become specialized for similar inputs by following the three rules. 
Unlike the simulations for specialization in literal space (i.e., ants and food), this 
simulation did not have a series of exercises mapped out for students. They were 
allowed to freely explore this simulation.

Consider Figure 5’s set of initial input patterns drawn by a user and two ran-
dom sensors. Figure 6 demonstrates how changing the two critical adaptation 
parameters results in varying degrees of specialization. If only the sensor most 
similar to a randomly selected input pattern adapts and the other does not adapt at 
all, the sensor that starts off a bit more similar to the patterns becomes even more 
similar to the inputs (which happen to be similar to each other by virtue of their 
black backgrounds). This sensor reacts to all inputs and comes to looks like all the 
inputs superimposed on top of each other, while the other sensor never reacts to 
any input. If all sensors (the most similar and others) adapt at the same rate, they 
all react to all inputs, again a sub-optimal solution. Specialization occurs when the 
most-similar sensor adapts at a faster rate and the others adapt more slowly. Even 
though one sensor might start off adapting towards all four inputs, the other will 
also be adapting toward them. Eventually, the closer, winning sensor, by virtue of 
adapting to one of the inputs, will be pulled away from the other inputs. The other, 
losing sensor can then adapt quickly, because it is the most-similar sensor to these 
inputs. The resulting sensors are each similar to some subset of the inputs, and 
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these subsets form groups according to similarity. These three combinations of 
adaptation rates show results that are analogous to the literal-space parameter re-
sults shown in Figure 2. These instances from both literal-space and metaphorical-
space are equivalent under the abstract description of competitive specialization. 
Our studies examine the conditions under which students can come to appreciate 
this equivalence.

5.	 Experimental findings

Two situations being analogous does not predict whether students will be able to 
appreciate the analogy. However, in education the aim is two-fold: To help students 
appreciate the relations between phenomena, the analogies, but also deeply under-
stand the phenomena themselves, the individual analogs. Although concreteness 
typically leads to good understanding of particular situations, it often endangers 
transfer between them (Bransford, Brown, and Cocking 1999). Idealization has 
been characterized as necessary for transfer (Singley and Anderson 1989) but may 

Figure 6.  Resulting sensors from various parameter settings of the Sensors and Inputs 
simulation. Optimal covering of the sensors to the input patterns is achieved only when 
the sensor most similar to a randomly selected input pattern adapts quickly and the other 
sensor adapts slowly. In this case, when an optimal covering is found, the sensors sponta-
neously group the input patterns into subsets according to their similarity.
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not provide enough understanding to transfer in the first place. There is an inher-
ent tension between these two design directions, but the potential for grounded 
understanding that transfers has been tempting enough to draw several theoretical 
attempts to put together the advantages of concrete situated contexts with ideal-
ized, generalizable abstractions. These combination attempts range from “situated 
abstraction” (Noss, Hoyles, and Pozzi 2002) and “situated generalization” (Carra-
her, Nemirovsky, and Schliemann 1995) to “abstraction in context” (Hershkowitz, 
Schwarz, and Dreyfus 2001).

Despite the implications of empirical research that shows promise for com-
bining concreteness and idealization, there have been few attempts to find de-
sign principles that emphasize the advantages of each. We will summarize several 
previously published studies examining the effects of graphical concreteness and 
idealization. Then we present three new studies examining the effect of concretely 
intuitive versus idealized descriptions and the best way for combining concrete/
idealized graphics and descriptions.

5.1	 Perceptual concreteness and idealization

Our initial foray into teaching competitive specialization to undergraduates was 
simply to examine whether there was an effect of training with concrete or ide-
alized graphics on transfer (Goldstone and Sakamoto 2003; Goldstone and Son 
2005). All participants were trained in an earlier version of the Ants and Food sim-
ulation with concrete graphics (black ants and small fruit) or idealized elements 
(black dots and green blobs) as shown in Figure 7. Afterwards they were able to 
explore the Sensors and Inputs simulation. Participants answered multiple-choice 
questions after each simulation that probed their knowledge of the embedded 
competitive specialization principles. Although these questions were always writ-
ten in context-specific terms (i.e., “when the ant moves towards the food”, “when 

Figure 7.  Graphical concrete/idealized manipulations used in the Ants and Food simula-
tions (Goldstone and Sakamoto 2003; Goldstone and Son 2005).
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the sensor adapts towards the input”), they could only be answered correctly by 
applying the principles of competitive specialization. These questions were writ-
ten to be analogous across the two contexts (ants and sensors) and examples are 
provided in the Appendix. This procedure helps distinguish the effect of percep-
tual concreteness on both initial learning (Ants and Food simulation) and transfer 
(Sensors and Input simulation).

Even these relatively minor manipulations of concreteness — after all line 
drawings of ants are not that much more concrete than black dots — were found 
to have impact on both initial learning on the Ants and Food quiz and transfer to 
the Sensors and Inputs quiz. Participants in the concrete condition, with draw-
ings readily perceptible as ants, showed better initial quiz performance than those 
in the idealized condition (39.8% and 33.8%, respectively). However, despite an 
initial disadvantage, the idealized condition showed better transfer to the Sen-
sors and Inputs quiz (41.3%) than the concrete condition (36.4%). In particular, 
learners who had a poor understanding of the initial learning situation transferred 
better with idealized simulations.

These results can be described by the complementary advantages of concrete-
ness and idealization. Although the concretely detailed ants and food graphics al-
lowed students to learn effectively from that simulation, their knowledge may have 
been tied down to that domain. Students do well as long as they remain in the do-
main but fail to adapt their knowledge to new isomorphic situations. However, the 
idealized dots, because they were ambiguous and perhaps less intuitively connected 
to ants, had to be interpreted as ants, introducing difficulties in learning. However, 
this very ambiguity allows the idealized dots to serve as a useful representation for 
transfer, interpreted through the context of other isomorphic systems.

What is so striking about these results is how trivial the difference between 
conditions is. Looking from the ants and dots (Figure 7), the “idealization” seems 
insignificant. But in some sense, this physical change, stripping away the details 
such as ant legs and fruit stems to leave generic dots and blobs, is abstraction. Re-
search from schema development (Fivush 1984) and the creation of mental mod-
els (Schwartz and Black 1996) suggest that the psychological process of forgetting 
or removing details creates structural representations. An external training that 
mimicked such processes might act as an aid to structural transfer.

Our first effort to combine the advantages of both concrete and idealized 
graphics was “concreteness fading,” to start users with concrete graphics that tran-
sition into more abstract idealizations. Given that concrete similarities to corre-
sponding real-world elements may have helped users gain an advantage in initially 
comprehending the simulation, concrete graphics are introduced first. But after 
this link has been established, the ants shift to dots and the fruit patches shift to 
blobs as a means of “fading” out the details that may have initially helped but also 
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hurt transfer to new domains. We compared fading to “concreteness introduc-
tion,” where the idealized simulations became more detailed over time. Both of 
these conditions could potentially promote transfer because it is frequently ad-
vantageous to introduce multiple versions of the same analog (Gick and Holy-
oak 1980, 1983; Reeves and Weisberg 1990). To examine the effect of variability, 
consistent conditions (only concrete or only idealized) were also included in the 
experiment.

The same simulations from Goldstone and Sakamoto (2003) were used for 
teaching and probing transfer. In variable conditions, such as concreteness fading, 
10 minutes after participants explored the concrete ants and food simulation, this 
message appeared, “We are now changing the appearances of the food and ants, 
but they still behave just as they did before.” Then the alternative graphics ap-
peared for another 10 minutes before the participants took the ants and food quiz. 
The concreteness introduction condition received 10 minutes of the idealized 
simulation, followed by the concrete one. There were no switches in the consistent 
conditions that received 20 minutes of the concrete simulation or 20 minutes of 
the idealized one.
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Figure 8.  Results from Experiment 1 reported in Goldstone and Son (2005).
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The results revealed several informative aspects of presenting both concrete and 
idealized graphics. By combining concreteness fading and introduction condi-
tions into a “variability” condition and the idealized and concrete conditions into 
a “consistency” condition, we found an aggregate advantage of variability over 
consistency for both learning (61.3% to 56.8%, respectively) and transfer (57.5 to 
50.1%, respectively). In addition, there was a more pronounced advantage when 
the variation in graphics was in the direction from concrete to idealized than vice 
versa (shown in Figure 8). A second experiment showed these effects in two mea-
sures of comprehension, quiz scores as well as problem-solving within the simula-
tion environment.

The advantage of variability fits with theoretical intuitions that both concrete-
ness and idealization contribute to learning and generalization. It is often difficult 
to focus on structure apart from rich details (Ratterman and Gentner 1998) or 
the context it is embedded in (Catrambone and Holyoak 1989; Holyoak and Koh 
1987). Knowledge has even been characterized as completely dependent on these 
contextual details (Lave 1988; Lave and Wenger 1991). Researchers have docu-
mented housewives and fishermen carrying out complex mathematical computa-
tions for problems in familiar contexts without being able to demonstrate these 
skills in less familiar settings (Nunes, Schliemann, and Carrahar 1993). These re-
sults have been interpreted as evidence for domain-specific knowledge of math-
ematics. Concrete graphics might represent a situation where both structure and 
concrete context are present to support learning. However, this can produce a 
highly contextually tied specific construal helpful for understanding the presented 
situation. Idealized graphical representations cut those ties, fostering the learning 
experience to transfer to new situations. Being exposed to both construals seems 
to be additively advantageous because both concreteness fading and introduction 
conditions experience benefits to both learning and transfer.

It may seem as though participants in the variable condition were given a clue 
as to the more abstract commonality between the two spatial instances (ants and 
dots) of competitive specialization. Furthermore, even though informal inter-
views suggest that participants easily treated these instances as the “same thing” 
(Goldstone and Son 2005, 100), this practice in expanding their equivalence class 
of competitive specialization exemplars may have played a significant role in pro-
moting the noticing of structural similarities. Several studies from analogical and 
symbolic reasoning have shown that comparison between two highly similar in-
stances enhances attention to relational information (Loewenstein and Gentner 
2005; Markman and Gentner 1993).

Although having both concrete and idealized graphics are better than just one 
or the other, the distinctive advantage of concreteness fading indicates an addi-
tional advantage of positioning concrete graphics first. One of the disadvantages, 
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and advantages, of idealized simulations is that they can be multiply interpreted. 
This is advantageous in transfer since the idealized learning can be re-used for 
new interpretations. But this ambiguity makes initial learning difficult. Presenting 
concrete graphics first is beneficial because ambiguous objects are interpreted in 
light of previously seen unambiguous objects (Leeper 1935; Medin, Goldstone, 
and Gentner 1993; Moore and Engel 2001). The perceptual scaffolding provided 
by concrete details provides a link between real world elements and the elements 
of the model. Stripping away seemingly unimportant elements of that scaffolding 
helps learners become more sensitive to the scaffold itself.

5.2	 Intuitive concreteness

Our characterization of concreteness fading largely depends on the idea that the 
influence of concreteness comes from activating past knowledge to provide an 
intuitive basis for comprehending new material. If this is indeed the case, intuitive 
concreteness does not have to be instantiated purely perceptually. After all, the 
verbal description of “ants and food” provides a concrete situational interpretation 
for the perceptual elements of a simulation. One of the advantages of concrete 
pictures is that they match with their concrete interpretations. However, just as 
these matching intuitions might facilitate comprehending the current domain, we 
wondered if the complementary disadvantage to transfer might also result from 
this intuitive background.

In an attempt to separate the effects of a concrete description with an intui-
tive one, we changed the contextual descriptions applied to the spatial covering 
simulation. Although ants covering food is a concrete example of agents efficiently 
covering space, competitive specialization is not a very common way of under-
standing ant behavior. However, a highly intuitive example comes from the sports 
domain: Zone defense, a strategy in soccer or basketball where players defend 
zones of a playing field. The same general rules for competitive specialization can 
be described in the zone defense context: A shooter is randomly selected from the 
available shooting regions, the closest defender moves towards the selected shoot-
er quickly while all other defenders move more slowly. Figure 9 shows the ants and 
food simulation modified to reflect zone defense. These rules seem to genuinely 
reflect what players might actually do on the soccer field (the defender closest to a 
shooter should run quickly towards that player!) rather than being abstract rules 
imposed upon a system. A poor soccer team has one player that defends the entire 
field while the rest of the defenders sit by. Conversely, a whole team of individuals 
trying to pursue every shooter is not very good either, as any parent of a six-year 
old soccer player will attest. Only when individuals specialize does the entire team 
cover the entire field. Experiment 1 examined whether these intuitive descriptions 
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enable understanding and/or foster transfer, and Experiment 2 incorporated ide-
alization to make better use of intuitions. Experiment 3 further examined the in-
terpretability of idealized graphics.

6.	 Experiment 1

Space frequently provides a perceptual metaphor for understanding more abstract 
structures (Gardenfors 2000; Goldstone and Barsalou 1998) so both ant and de-
fender simulations might foster good understanding of competitive specialization. 
Highly intuitive examples might foster even better understanding of competitive 
specialization. However, if the goal of CAS simulations is to produce transferable 
understanding, will these intuitive construals transfer to highly dissimilar situa-
tions? Does spatially grounded learning transfer to non-spatial situations?

6.1	 Method

Participants. Thirty-seven undergraduates from Indiana University participated 
in this experiment for credit. Participants were randomly placed in one of two 
learning conditions: 18 received Concrete descriptions (“ants and food”) and 19 
received Intuitive descriptions (“defenders and shooter zones”).

Materials and Procedure. All of our simulations were instantiated in NetLogo 
and are described more fully in Section 4. Both of the learning simulations were 
instantiations of specialization over physical space while the transfer simulation 

Figure 9.  Screenshot of Defenders and Shooters simulation.
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was over similarity space. The “Ants and Food” simulation was a combination of 
concrete and idealized graphical elements used in previous studies (Goldstone and 
Sakamoto 2003; Goldstone and Son 2005) with line drawings of ants as agents 
and blobs depicting the food regions. In the “Defenders and Shooters simulation”, 
defenders were depicted as stick figures and blobs depicted shooter regions. Par-
ticipants received a packet of instructions and were given examples of configura-
tions. They were guided through several combinations of parameters to help them 
discover the settings that would result in efficient specialization. After participants 
explored the first simulation, they took a seven-question multiple-choice quiz 
modified from previously used quizzes.

The transfer simulation was the Sensors and Inputs simulation shown in Sec-
tion 4. There was a handout of instructions but no guidance as to useful parameter 
settings. Participants were instructed to explore this simulation before going on to 
a seven-question quiz with elements comparable to the learning quiz. All materials 
(including the NetLogo simulations) are available on our website (http://jys.bol.
ucla.edu/simulations). Afterwards, participants were debriefed and asked whether 
they where familiar with zone defense.

6.2	 Results

Because our manipulation of “intuitiveness” hinges on whether students were al-
ready familiar with zone defense, we used the debriefing question to determine 
whether it was a known concept. Zone defense seems to be a general concept among 
our undergraduates because only one person in our Intuitive condition and three in 
the Concrete condition reported that they did not know what a zone defense was.

The quiz results are shown in Figure 10 and were analyzed with a 2 (quiz-
type: learning, transfer) x 2 (description condition: Concrete, Intuitive) repeated-
measures ANOVA. There was a significant effect of test, F(1, 35) = 21.40, p < .001, 
and an interaction between test and description, F(1, 35) = 5.27, p < .05. A paired 
T-test revealed that the average score on the learning quiz (59.9%) was signifi-
cantly higher than the transfer quiz (39%), t(36) = 4.43, p < .001. Closer examina-
tion of the interaction revealed that this was mostly caused by the Intuitive con-
dition which performed 30.8 percentage points better on learning than transfer, 
t(18) = 5.05, p < .001. On the other hand, the concrete condition did not show a sig-
nificant difference, only 10 percentage points better on learning than transfer tests, 
t(17) = 1.60. Although T-tests between the two description conditions were not 
significant, p > .15, it seems that whatever learning the intuitive condition might 
have shown did not come across for transfer performance.

To further examine this possibility, we examined the correlations between 
test scores between the two training conditions and the transfer test. The concrete 

http://jys.bol.ucla.edu/simulations
http://jys.bol.ucla.edu/simulations
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condition showed a significant correlation between learning and transfer perfor-
mance across participants, r = .53, p < .05, suggesting that those who understood 
the Ants and Food simulation well also did well on the Sensors and Inputs quiz. 
However, the intuitive condition’s training and testing quiz scores were not signifi-
cantly correlated, r = .38. This, combined with the paired T-test results, suggests 
that what students learned during training in the intuitive condition did not trans-
fer well to the analogous but superficially unrelated simulation.

These results are interesting because defender and shooter are relational terms 
and zone defense is a structurally proper instantiation of competitive specializa-
tion. Additionally, through this simulation participants can invoke other context-
specific intuitions that support this structure. Informal observation of written 
notes on the instruction packets showed that participants in the Intuitive condition 
used sports-specific terms to describe particular states of the system. For example, 
when describing the “clumping” that happens when all agents move at the same 
rate (see Figure 11), participants called this “bunch ball” and when describing a 
state where some defenders are not covering anything, participants used descrip-
tions such as “shooters [are] being left wide open” or “inefficient block.” Contrast 
this to the domain-specific comments made by those in the concrete condition: 
“the rest stay hungry”, “ants dying out”, “ended up on the grass”, “wiggle around”, 
“chewing food”. These statements neither describe competitive specialization nor 

Figure 10.  Results for Experiment 1. The intuitive condition does well (few errors) on the 
initial simulation, but shows less transfer to an analogous situation than does the concrete 
condition.
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are related to particular parameter settings. This contrast illustrates one of the 
learning benefits from intuitive simulations — that the relation between the world 
and the model becomes transparent thus allowing domain-specific intuitions from 
the world to help students interpret the model. However, taken to the extreme, 
these benefits can also become detrimental, particularly for transfer.

When situations are too intuitive and the model-to-modeled-world link too 
transparent, the model ceases to become a general representation of the rules of 
competitive specialization. Instead the model simply provides an interpretation 
of zone defense. This learning example strongly tied to the sports domain allows 
learners to use their intuitions about sports to answer the learning quiz questions, 
but without the support of domain specific knowledge, they did not have any pre-
vious learning that could help them in a dissimilar transfer situation. All of this 
supporting contextualization that helped during the learning quiz may have acted 
as a crutch rather than a scaffold (Pani, Jeffres, Shippey, and Schwartz 1996). By 
drawing upon so much rich knowledge, participants may not have learned any-
thing new about the competitive specialization principles underlying zone defense. 
In some sense, the relations were so deeply embedded in the zone defense context 
that participants could not separate them out.

Another way to construe this tight model-to-modeled-world link is that although 
zone defense clearly demonstrates this link, it also prevents learners from making 
the model-to-modelable-worlds link. This link requires learners to understand the 

Figure 11.  (a) This state on the left is the result of all defenders moving at the same rate. 
(b) The state on the right is the results of only the closest-defender moving at all. These 
results were described in sports-specific terms such as “bunch ball” or “shooters being 
wide open,” respectively.
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model’s potential referents beyond merely understanding the model itself. Here it 
may be useful to invoke DeLoache’s dual-representation hypothesis (1995) which 
proposes that transfer between a model and a referential object comes from under-
standing two things: (1) the model itself as well as (2) the model’s referential role. 
DeLoache’s studies (1995, 2000) examine children’s use of scale models as maps 
for larger rooms. In these studies, young children are shown a small Snoopy doll 
hidden under a small piece of furniture in a small model room. They are taken to 
a larger room that is set up in the same way and asked to find big Snoopy in the 
corresponding location. Typically 2.5-year-olds have trouble using the model while 
3-year-olds use the model location to find Snoopy. DeLoache (2000) proposes that 
in order to transfer information from the model to the larger room, children must 
represent both the shown location as well as the referential relation between the 
model and the room. Thus, when younger children are shown the model behind a 
pane of fiberglass, strengthening the model’s referential role, they make better use 
of the model in the finding task. Distance from the model directs more attention 
to the room that is being modeled rather than the model itself. Additionally, if the 
older children are given an opportunity to play with the model before the finding 
task, weakening the referential understanding by making the model an interesting 
object in its own right, their ability to use the model declines.

Our intuitiveness manipulation may have similarly weakened the referential 
role by making the model itself an object with interesting properties. This probably 
contributed to increases in actual understanding of the model as well, as shown in 
Experiment 1. Following DeLoache’s lead, one solution for making effective use of 
intuitive models might be to make the model less interesting as a domain in and 
of itself, and strengthen the model-to-modelable-worlds link. Experiment 2 is an 
attempt to put our own “fiber glass” in front of the model.

7.	 Experiment 2

Experiment 2 is an effort to make the zone defense simulation less evocative of 
real-life zone defense in order to foster improvements in generalization. We used 
the insight from previous studies on perceptual idealization and created a generic 
spatial covering simulation in NetLogo with dots and blobs. Dots can be described 
as people, animals, defenders, or oil drills so the two descriptions (“defenders” and 
“ants”) from Experiment 1 were each applied to the dot simulation. This experi-
ment thus distinguishes whether the differences found between concrete inter-
pretations and intuitive ones are mediated by their matching pictures or solely by 
these descriptions. If intuitive descriptions are always detrimental to transfer, we 
should see the same pattern of results as Experiment 1. If they are not detrimental 
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when applied to idealized dots, this provides further support for the benefits of 
idealized simulations.

7.1	 Method

Participants. Forty-seven undergraduates from Indiana University participated 
in this experiment for credit. Although all participants learned with a simula-
tion that had dots and blobs, they were described in two ways: 22 had Concrete 
descriptions (“ants and food”) and 25 had Intuitive descriptions (“defenders and 
shooter zones”).

Materials and Procedure. The procedure is identical to that of Experiment 1. The 
only change is in the elements depicted in the learning simulations. The ants in the 
Ants and Food simulation were changed to dots and the people in the Defenders 
and Shooters simulation were also changed to dots (Figure 12). Transfer was mea-
sured with the Sensors and Inputs simulation used previously.

7.2	 Results

There were several participants who reported that they did not know zone defense 
(6 in the Intuitive condition and 5 in the concrete condition) but this was not a 
significant factor by any analysis. The main quiz results are shown in Figure 13 and 
were analyzed with a 2x2, quiz-type (learning, transfer) x description condition 
(Concrete, Intuitive) repeated-measures ANOVA. There was a significant effect 
of test, F(1, 45) = 45.00, p < .001, but no effect of description, F(1, 45) = .171, nor 
interaction, F(1, 35) = 1.78. A paired T-test revealed that scores on the learning 
quiz were 14.2% higher than on the transfer quiz, t(46) = 3.88, p < .001. Collapsing 
across concrete and intuitive conditions, scores on the two quizzes were correlated 

Figure 12.  Pictures from the instruction packets of Experiment 2.
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across participants, r = .38, p < .01. Although the intuitive condition still per-
formed significantly better on learning than transfer (18.8%), p < .001, their scores 
on these two quizzes are now also significantly correlated, r = .51, p < .01. On the 
other hand, the concrete condition’s 9% difference between the tests was not reli-
ably difference, t(21) = 1.60, nor were participants’ training and test scores corre-
lated, r = .28. T-tests between the two description conditions were not significant 
for either quiz, p > .30.

In Experiment 1, intuitive descriptions seemed to have value for learning but 
was devastating for transfer. By using idealized simulations, the major disadvan-
tage of using intuitive descriptions, lack of transfer, seems to have been mitigated. 
There were two reasons that intuitive stories hurt transfer in Experiment 1: (1) by 
embedding the rules of competitive specialization too deeply in one domain and 
(2) by weakening the model’s referential role. Idealized pictures could help alle-
viate both of these effects on transfer. By being visually less similar to the zone 
defense context, idealized graphics may have forced students to work harder to 
make the link between the simulation elements and zone defense, but this effort 
could enable more transfer. Turning defenders into more context-neutral dots 
gave students practice with interpreting rich and complex scenarios using the lens 
of competitive specialization. This practice is helpful when students are then given 

Figure 13.  Results from Experiment 2. The graphical elements for all participants were 
idealized, but the descriptions associated with these elements could either be concrete 
(e.g., ants) or intuitively related to competitive specialization (intuitive). Pairing idealized 
graphics with the intuitive defenders background story yields good understanding of the 
training simulation (low error rate on quiz), and equivalent transfer to the concrete story.
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the sensors simulation because it employs competitive specialization in an even 
subtler manner. By this account, students benefit not only from exposure to clear 
principles, but perhaps even more importantly by receiving training in the critical 
cognitive skill of interpreting model elements according to the principles. This 
suggestion is consistent with Bransford and Schwartz’s (1999) framing of transfer 
in terms of giving students skills for future learning. Additionally, by virtue of be-
ing interpretable in more ways, simple dots are more applicable to the wide variety 
of competitive specialization instances than little people.

However, idealized simulations also seem to compromise some of the advan-
tages of using concrete descriptions. Concrete visual situations described con-
cretely have a strong model-to-modeled-world link providing a frame for the 
abstract principles of competitive specialization. Idealized graphics reduces this 
meaningful link, thus reducing the amount of learning in the initial simulation. 
This may have contributed to a similar level of decrease in transfer.

A priori, an important design aspect seems to be how simulations get lin-
guistically described. They typically can be described in a number of ways and 
some of these descriptions may be more helpful for later needs than others. Ac-
cording to constructivist theories of learning, most notably Piaget (1980), knowl-
edge is constructed by coordinating multiple instances or representations. With 
the rise of multimedia educational tools, there is a greater need for understand-
ing the integration of both visual information and linguistic descriptions (Mayer 
1993; Schnotz 1993). There are several theories posing a form of dual coding (e.g., 
Baddeley 1992; Mayer 1992; Paivio 1986; Schnotz 1993) that suggest that these 
two streams must be coordinated with each other for effective learning (Clark and 
Paivio 1991; Mayer 1984). Paivio (1986) referred to a process of “building refer-
ential connections” that may be relevant to the linguistic interactions with con-
crete and idealized graphics. Although descriptions that match their perceptual 
elements have strong referential connections already (i.e., “ants” is strongly linked 
to pictures of ants), in order to foster generalizable knowledge, we need to create 
a new link, not to ants but to “originally homogenous agents that become spe-
cialized.” Ambiguous visual stimuli weaken the referential link to ants per se but 
may allow this more abstract class to be formed instead. An interesting prediction 
might be that using these ambiguous visual stimuli with multiple linguistic de-
scriptions (e.g., first calling the elements “ants” and then “defenders”) might result 
in better internalization of the underlying principle.

Although the studies reported here examine the impact of using concrete and 
intuitive linguistic descriptions to understand multiply interpretable perceptual 
events, it is possible that there is a way to use abstract linguistic descriptions to 
interpret concrete perceptual events. We have made several unsuccessful attempts 
to find ways to build this referential connection in the opposite direction. Pilot 
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studies have examined the effects of describing the concrete depictions of ants 
in abstract ways, such as “coverers and resources,” with the aim of combining 
graphical concreteness and linguistic idealization. We have even tried teaching 
with two analogs simultaneously by showing pictures of ants but describing them 
as “defenders and shooters.” However, both of these training conditions result in 
marginally detrimental effects on both learning and transfer. Pilot results from ab-
stract and second-analog description conditions are shown in Figure 14. As of yet 
we have not found a successful way of combining concrete pictures with abstract 
words, in contrast to the beneficial effects of idealized pictures with concrete and 
intuitive descriptions shown in Figure 14. Through these failed attempts, we real-
ize how difficult it is to create words that helpfully capture the wide array of agents 
that can take part in competitive specialization. One way of “abstracting” without 
being abstract per se is to describe perceptual ants as “insects” or “animals.” Al-
though we have not tested such descriptions, this may be able to foster a wider 
appreciation for the types of things that could be agents of competitive specializa-
tion. However, it may be more effective to teach with idealized images describable 
in multiple ways than to have one abstract description applied to multiple concrete 
instances. Although scientific efforts for universal principles are typically aimed 
towards the latter, the pedagogical aims of teaching science may be better achieved 
through the former.

Figure 14.  Results of pilot studies on abstract descriptions. The graphical elements for all 
participants were ants, but the descriptions associated with these elements could be either 
abstract (e.g., “coverers”) or a second analog (e.g., “defenders”). These descriptions yield 
generally poor understanding of the training simulation (high error rate on quiz) and 
similarly poor transfer.
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8.	 Experiment 3

Experiment 3 may more clearly illustrate the benefit of idealized images to take on 
a broad range of descriptions. In an effort to come up with a general but meaning-
ful term to capture agents that ‘cover’ both physical and metaphorical space, the 
simulation depicting ants was modified in terms of “lids specializing over pots.” 
The same descriptive modifications were made to the idealized dot simulation. For 
both ant and dot depictions, the rules of competitive specialization are described 
as follows: A pot is randomly selected, the closest lid moves towards it with one 
rate, while all other lids move toward it with a different rate. “Lids and Pots” is 
not at all an intuitive cover story but it is a concrete one. Lids and pots are about 
physical covering situations and are relatively concrete simple objects. There is 
no a priori reason to believe that this description should help anyone understand 
competitive specialization, much less show transfer to the domain of sensors and 
inputs, and this was true for those who received the ants simulation described as 
“lids”.

8.1	 Method

Participants. Thirty-one undergraduates from Indiana University participated in 
this experiment for credit. Although all participants learned with a simulation de-
scribed as “lids covering pots,” this was applied to two different graphics: 12 par-
ticipants learned with Concrete ants and 19 with Idealized dots.

Materials and Procedure. The procedure is identical to that of Experiment 1 
and 2. The elements depicted in the learning simulations were literal space instan-
tiations of competitive specialization with element depicted as either ants or dots. 
Both were (somewhat oddly) described as “lids”. The Sensors and Inputs simula-
tion provided a measure of transfer.

8.2	 Results and discussion

The main quiz results are shown in Figure 15 and were analyzed with a 2x2, quiz-
type (learning, transfer) x learning graphics (Concrete ants, Idealized dots) re-
peated-measures ANOVA. There was a significant effect of test, F(1, 29) = 10.15, 
p < .01, and a significant effect of graphical elements, F(1, 29) = 4.93, p < .05, but no 
interaction, F(1, 29) = .11. A paired T-test revealed that scores on the learning quiz 
were 13.8% higher than on the transfer quiz, t(30) = 3.40, p < .01, and these scores 
were significantly correlated, r = .46, p < .01. Learning with ant graphics resulted in 
significantly worse performance on both learning, t(30) = 5.44, p < .05, and trans-
fer quizzes, t(30) = 4.4, p < .05. Describing idealized dots as “lids and pots” allowed 
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participants not only to learn and transfer better than those who were shown con-
crete ants, but also to learn and transfer at levels comparable to participants from 
Experiment 2 who had more meaningful descriptions applied to the dots.

Considering how odd the description of “lids covering pots” is (at least com-
pared to ants covering food and defenders covering shooters), it is surprising that 
any graphical elements could allow participants to learn competitive specialization 
from it. This is a demonstration of the advantage of idealized graphics. Their flex-
ibility, to be interpreted in multiple ways, gives them an advantage over more spe-
cific and less interpretable concrete graphics. Whereas participants were confused 
when a line drawing of an ant was called a “lid”, they were apparently more ame-
nable to calling an idealized dot a “lid”.

9.	 Some design principles for interactive simulations

With regard to concreteness and idealization, as well as an eye on both learning and 
transfer, there are a few design principles that emerge from these experiments:

Figure 15.  Experiment 3 results illustrating the flexibility of idealized depictions of simu-
lation elements. The two graphical conditions, ants versus dots, represent the depicted 
elements in the learning simulation described as “lids and pots.” However, as odd and 
unintuitive as this description may be, the idealized graphics allow students to learn and 
transfer better than concrete graphics.
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Get the best of both worlds

Both educators and cognitive scientists have realized the advantages that come 
from both concrete learning instances as well as abstract representations of struc-
ture. A simple design suggestion is to present multiple instantiations of the same 
idea in easily relatable ways. In many ways, presenting students with multiple 
linked representations is not a new idea; however, our research suggests some 
strategies for traversing across the different types of representations. For example, 
although sparse equations and highly concrete instantiations of them are relatable, 
one problem is that they are too different from each other to reconcile properly. 
Simulations can range over a continuum of concreteness, from virtual reality all 
the way down to simple dots. Learners may benefit by taking small manageable 
steps across that continuum. Highly concrete simulations invite learners to involve 
their past knowledge and intuitions. Shifting those simulations towards increas-
ingly idealized forms may help by providing connection to that past knowledge 
while removing some of the irrelevant specific details.

Be wary of too much concrete intuition

Although highly intuitive learning situations seem to be easier for learners to 
grasp, educators should be aware of the potential detriment to transfer. Intuitions 
that are highly tied to a context may only be effective in that context. One danger 
is that these intuitions often allow students to excel in domain-specific tests of 
knowledge, where intuitions are consistent with the correct answer (Dror, Peron, 
Hind, and Charlton 2005). The disadvantage is only seen in tests of transfer to dis-
similar contexts. Thus, students and teachers may feel that students have learned 
more with a model grounded in intuition, but the student may be less able to apply 
their knowledge to new analogs. Scientific simulations should be designed with 
the primary goal of fostering scientific intuitions rather than simply depending on 
these intuitions. This emphasis on creating new ways of seeing and interpreting 
situations implicates being able to transcend specific contexts. So it is important 
to test the effectiveness of simulations for later transfer as well as immediate per-
formance (see also Bransford and Scwhartz 1998). However, combining intuitions 
with other more abstract design elements, such as idealized graphics, allows stu-
dents to use their intuitions more effectively for transfer.

When in doubt, idealize perceptual elements

Perceptual simulations instantiate models. Experience with simulations may po-
tentially provide building blocks for mental models and idealized elements may 
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provide particularly efficient building blocks that can be used to model a variety of 
situations. This effective portrayal may also be the advantage of extreme or carica-
tured examples which exaggerate critical features (Dror, Stevenage, and Ashworth 
2008). Furthermore, idealized perceptual elements, by being less connected to spe-
cific real-world categories, can illustrate a greater diversity of contextually specific 
descriptions than concretely similar elements. In this way, idealized simulations 
appear to provide effective mental manipulatives for building future models.

Additionally, since it is rather difficult to find abstract descriptions that stu-
dents immediately grasp, using idealized graphics can draw upon their already 
well-developed perceptual capabilities. Idealized graphics seem relatively resilient 
to the dangers of intuitive descriptions, while more concrete elements must be 
described in particular ways to be effective.

10.	 Conclusions

For a long time, scientific models were visually presented by the insertion of pic-
tures or graphs in text. The possibilities present in complex interactive simulations 
for radically affecting science as well as science education are enormous. How-
ever, to make use of all of that potential, we must design simulations that respect 
psychological, not just technical, constraints. The psychology of analogical prob-
lem-solving and other forms of relational reasoning often draws evidence from 
mathematical and scientific learning because these domains are aimed at precisely 
encapsulating structure, stripping away irrelevant details. Scientific explanations, 
by using the same mathematical or formal abstractions, reflect a level of descrip-
tion useful for problem-solving in a variety of situations, thereby allowing these 
disparate situations to be similar. We propose that simulations may be able to help 
students create models that explain a wide variety of phenomena. However, there 
is always the danger that learners will deal with these learning technologies in 
superficial or otherwise inadequate ways, so research on relevant aspects of design 
aspects is vital.

The interesting claims that come out of science can be counterintuitive. Com-
plex systems have that flavor because most people assume that in order to explain 
high-level behavior, one must have a high-level plan (Chi 2005). In trying to foster 
the opposite intuition, that some high-level phenomena can have low-level emer-
gent solutions, educational technologies will play an important role in helping cre-
ate new intuitions. Combining the advantages of seeing appropriate simulations 
with compelling intuitive explanations may be an efficient way of using available 
resources to create effective learning opportunities.
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Appendix

Selected questions from Ants and Food Quiz
1.	� To make the ants as a population spread out evenly over the food, which strategy is best:
	 a.	� Have all the ants move as quickly as possible.
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	 b.	� Make the ant that is closest to a piece of food move more quickly than all the other 
ants.

	 c.	� Make the ant that is closest to a piece of food move more slowly than all the other ants.
	 d.	� Early on, make the closest ant move more quickly than the others, but later on, make the 

closest ant move more slowly.

2.	� Why don’t the ants cover the food well if the closet ant and all of the other ants all move with 
the same speed?

	 a.	�� The closest ant will quickly cover food but the other ants will have to quickly find other 
food that needs covering.

	 b.	�� If other ants move as fast as the closest ant, then when a piece of food is selected, all 
of the ants, close and far, will move towards it. The ants will all be covering the same 
piece of food.

	 c.	�� If all the ants move with the same speed, then they will all get an equal opportunity to 
cover food but there is a limited supply of food for everyone.

	 d.	�� If the closest ant moves as fast as the other ants, then it will get to the food first, and will 
prevent the other ants from covering it. The other ants will only cover food after the 
closest ones have finished.

3.	� To have the ants cover the food well, it is necessary to have the ants become specialized for 
particular food patches. Which action most directly allows for this specialization?

	 a.	�� Make sure that there are not very many ants on the field. That way, no matter what speed 
they are moving at each ant can be far away from other ants.

	 b.	�� Make sure that there are many ants on the field. That way, no matter what speed they are 
moving at each ant become specialized for a tiny patch.

	 c.	�� Make the ant that is closest to the chosen piece of food move quickly to the food, but 
other ants should only move slowly towards it.

	 d.	�� Make the ant that is closest to a chosen piece of food move slowly to the food, but other 
ants should move more quickly towards it.

4.	� If there are two equally sized patches of food and only one ant, what usually happens after a 
long time?

	 a.	�� The ant will alternate between the patches, but only if it moves very slowly.
	 b.	�� Pieces from both food patches will be randomly chosen so ant will end up halfway 

between the two patches.
	 c.	�� Pieces from both food patches will be randomly chosen so the ant will have to select one 

of the patches and stay there.
	 d.	�� The ant will not move toward either of the patches unless it is very close to them in the 

first place.

Selected questions from Defenders and Shooters Quiz (Analogous questions to Ants and Food 
Quiz)

1.	� To make the defenders as a population spread out evenly over the shooters, which strategy 
is best:

	 a.	�� Have all the defenders move as quickly as possible.
	 b.	�� Make the defender that is closest to a shooter move more quickly than all the other 

defenders.
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	 c.	�� Make the defender that is closest to a shooter move more slowly than all the other de-
fenders.

	 d.	�� Early on, make the closest defender move more quickly than the others, but later on, 
make the closest defender move more slowly.

2.	� Why don’t the defenders cover the shooters well if the closet defender and all of the other 
defenders all move with the same speed?

	 a.	�� The closest defender will quickly cover shooters but the other defenders will have to 
quickly find other shooters that need covering.

	 b.	�� If other defenders move as fast as the closest defender, then when a shooter is selected, 
all of the defenders, close and far, will move towards him. The defenders will all be 
covering the same shooter.

	 c.	�� If all the defenders move with the same speed, then they will all get an equal opportunity 
to cover shooters but there is a limited number of shooters for everyone.

	 d.	�� If the closest defender moves as fast as the other defenders, then he will get to the shoot-
ers first, and will prevent the other defenders from covering them. The other defenders 
will only cover shooters after the closest ones have finished.

3.	� To have the defenders cover the shooters well, it is necessary to have the defenders become 
specialized for particular shooters. Which action most directly allows for this specializa-
tion?

	 a.	�� Make sure that there are not very many defenders on the field. That way, no matter what 
speed they are moving at each defender can be far away from other defenders.

	 b.	�� Make sure that there are many defenders on the field. That way, no matter what speed 
they are moving at each defender become specialized for very few shooters.

	 c.	�� Make the defender that is closest to the chosen shooter move quickly to the shooter, 
but other defenders should only move slowly towards him.

	 d.	�� Make the defender that is closest to a chosen shooter move slowly to the shooter, but 
other defenders should move more quickly towards him.

4.	� If there are two equally sized regions of shooters and only one defender, what usually hap-
pens after a long time?

	 a.	�� The defender will alternate between the regions, but only if he moves very slowly.
	 b.	�� Shooters from both regions of shooters will be randomly chosen so defender will end 

up halfway between the two regions.
	 c.	�� Shooters from both regions of shooters will be randomly chosen so the defender will 

have to select one of the regions and stay there.
	 d.	�� The defender will not move toward either of the regions unless he is very close to them 

in the first place.

Selected questions from Sensors and Inputs Quiz (Analogous questions to Ants and Food Quiz)

1.	� To make the sensors best represent the natural groups in a set of inputs, you should:
	 a.	�� Have the sensors adapt as quickly as possible.
	 b.	�� Make the sensor that is most similar to a selected input adapt more quickly than all 

the other sensors.
	 c.	�� Make the sensor that is most similar to a selected input adapt more slowly than all the 

other sensors.
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	 d.	�� Early on, make the most similar sensor adapt more quickly than the others, but later on, 
make the most similar sensor adapt more slowly.

2.	� Why aren’t specialized sensors formed if all of the sensors (the most similar and the others) 
all adapt equally quickly?

	 a.	�� The most similar sensor will quickly become responsible for inputs but the other sensors 
will have to quickly find other inputs that need matching.

	 b.	�� If other sensors adapt as quickly as the most similar sensor, then when a new input 
is selected, then all sensors will adapt to it. The sensors will all try to match the same 
input.

	 c.	�� If all of the sensors adapt with the same speed, then they will all get an equal opportu-
nity to look like the selected input but there is a limited number of inputs available for 
matching.

	 d.	�� If the most similar sensor adapts as quickly as the other sensors, then it will match the 
input first, and will prevent the other sensors from matching it.

3.	� To create sensors that can accommodate the whole range of inputs naturally, it is necessary 
to have the sensors become specialized for different inputs. Which action most directly al-
lows for this specialization?

	 a.	�� Create just a few sensors. That way, no matter the rate of adaptation each sensor can be 
very dissimilar from the other sensors.

	 b.	�� Create more sensors than there are inputs. That way, no matter the rate of adaptation 
each sensor can become very specialized.

	 c.	�� Make the sensor that is most similar to the selected input adapt quickly to that input, 
but the other sensors should only adapt slowly to it.

	 d.	�� Make the sensor that is most similar to the selected input adapt slowly to the input, but 
the other sensors should adapt quickly to it.

4.	� There are two inputs and only one sensor, what usually happens?
	 a.	�� The sensor will alternate between matching the two inputs, but only if it adapts very 

slowly.
	 b.	�� The sensor will be a blend of the two inputs, highlighting parts shared by the inputs.
	 c.	�� The sensor will become specialized for one of the inputs only.
	 d.	�� The sensor will not become adapted to either input, unless it is highly similar to them in 

the first place.
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