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Going Beyond Formalisms

A Grounded and Embodied Learning Approach to the Design of Pedagogical Statistics
Simulations

Sebahat Gok & Robert L. Goldstone

Computer-based interactive simulations that model the processes of sampling from a population are increasingly
being used in data literacy education. However, these simulations are often summarized by graphs designed from
the point of view of experts which makes them difficult for novices to grasp. In our ongoing design-based research
project, we build and test alternative sampling simulations to the standard ones. Based on a grounded and
embodied learning perspective, the core to our design position is that difficult and abstract sampling concepts
and processes should: be grounded in familiar objects that are intuitive to interpret, incorporate concrete
animations that spontaneously activate learners’ gestures, and be accompanied by verbal instruction for a deeply
integrated learning. Here, we report the results from the initial two phases of our project. In the first iteration,
through an online experiment (N=126), we show that superficial perceptual elements in a standard simulation
can lead to misinterpretation of concepts. In the second iteration, we pilot test a new grounded simulation with
think-aloud interviews (N=9). We reflect on the complementary affordances of visual models, verbal instruction,
and learners’ gestures in fostering integrated and deep understanding of concepts.

Introduction
Data literacy, defined as “competence in making sense of
data, including management, modeling, interpretation,
and presentation of data in critical manner” (Gehrke et
al., 2021, p. 201), has gained attention in K-12 (Common
Core State Standards, 2022) and undergraduate
education (de Veaux et al., 2017) with the increasing
reliance on data for critical decision-making processes in
today’s society. At both levels, curricular programs aim to
equip students with the skills of making informed
decisions and solving personal and societal problems
based on data. To this end, students are expected to make
inferences from observed samples which require flexible
reasoning of statistical concepts such as population,
sampling, variation, and randomness (Adhikari et al.,
2021; Gehrke et al. 2021). However, statistical concepts
can be notoriously difficult to grasp (Hokor, 2022;
Schwartz et al., 1998; Tversky & Kahneman, 1972). To
make statistical inference accessible to students,
educators have developed interactive computer

simulations (e.g., Donoghue et al., 2021; Sutherland &
Ridgway, 2017). The simulations combine the affordances
of multiple forms of media by integrating interactive
dynamic graphs, verbal tags, and explanations. Immersed
in their rich representations, students engage in practices
of modeling real-world phenomena through inquiry-based
investigations (Pfannkuch et al., 2018).

While the simulations are enthusiastically welcomed by
the education community, the empirical evidence from
the existing simulations are highly variable in terms of
whether simulations bring considerable learning gains for
statistical concepts. Some studies incorporating
simulations in classrooms found dismal results. With
simulations, students still lacked a causal understanding
of probabilistic processes, and simulations sometimes
even caused additional misconceptions because they led
to incorrect interpretations of graphs (Ben-zvi et al.,
2012; Lehrer & Schauble, 2017; Maxara & Biehler, 2010).
A few studies, however, reported positive learning gains
associated with simulations (Jacob & Doerr, 2014; van
Dikje-Drogers et al., 2021). The variations in the results
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suggest there is more to understand about how
simulations are most effective in supporting novices’
learning of data concepts and processes. In this ongoing
design-based research project, the researchers aim to
help meet this need by building, comparing, and testing
alternative types of sampling simulations. This article
reports the results from initial iterations with a focus on
design decisions regarding the visual, dynamic, and
verbal features of the simulations from a grounded and
embodied learning perspective.  

Before introducing this work, however, it is important to
understand the traditional solution to which we are
seeking an alternative. Many  current simulations use,
what we call, generic representations of data. In the next
section, we describe these types of representations,
discuss their limitations, and then, introduce how we re-
envision the data representations that form the
foundations for the current work.

Generic Visual Representations of Data

Simulations that model sampling processes, the focus in
this study, typically adopt generic visual representations
such as histograms and pie charts (See figure 1). We call
such graphs generic as they are conventional
representations depicting concepts and relations in ways
that strip away the real visual attributes of the data they
represent.  Relying on generic graphs for teaching new
concepts often has limitations. While such graphs can be
effective data representation tools for experts, they are
not always suitable to the developmental needs of novice
students (Nathan, 2021). Students often have poor
understanding of generic graphs. In histograms, students
often confuse what the horizontal and vertical dimensions
mean. For example, they think flatness of histograms
indicate low variability, or that the X-axis indicates
chronological order even when there is no time-related
variable in the data (Kaplan et al., 2014). Such
misconceptions have been shown to be resistant to
training.

Figure 1

Examples of Standard Simulations

Note. A representative sample of popular and modern
pedagogical statistical simulations used in K-12 and
undergraduate education (On top left; from the Bootstrap
program by Brown University team, on top right; from the
Introduction to Data Science curriculum team by UCLA
College of Statistics, on bottom left; from Rossman and
Chance, on bottom right, from the team of Locks). Note
that each depicts data in a highly similar fashion. The
same type of histograms are used whether one aims to
depict the distribution of people, cities, recycle bins, or
abstract process of sampling. We will call the simulations
which employ such generic histograms standard
simulations in the rest of the paper.

The standard simulations are ungrounded in the sense
that they are not connected to things students already
know from their primary, personal, and real-world
experiences. For novices, these types of representations
often require numerous mental inferences (Rau, 2017)
and learners’ failure to learn with them might indicate a
lack of understanding of the representations rather than
the ideas behind them. (Nathan, 2021). For graphs to be
effective, students should be able to understand how they
depict information (Rau, 2017), and the representations
should be grounded in learners’ familiar experiences
(Nathan, 2021). To this end, the current study goes
beyond generic graphs and re-envisions how data
representations from simulations can be made more
accessible to novices through the lens of the grounded
and embodied learning framework with the overarching
goal of reducing the entry barriers to data literacy.

Grounded and Embodied Learning
Framework

Earlier theories of cognition postulated meaning occurs
from the manipulation and combination of mental
symbols (Anderson, 1996; Newell & Simon, 1956).
According to these symbolic cognition accounts,
reasoning is guided by abstract rules dissociated from
modal systems and bodies. This approach assumes people
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can effectively be trained with abstract versions of rules,
and they will later be able to transfer what they have
learned by applying the acquired symbolic rules to distant
domains (Smith et al., 1992). Symbolic cognition theories
have had a large influence on education. In statistics
education, the focus has traditionally been on mastery of
abstract rules and mathematical formalisms with little
attention paid to learners’ perceptions, bodily actions,
and interactions with their environment (e.g., Lovett et
al., 2008; Nisbett et al., 1987). The abstract rules,
however, are often hard to grasp, easy to misapply and
forget, because they are often disconnected from
students’ life experiences (Nathan, 2021).

In later years, symbolic accounts of cognition have been
challenged by different strands in cognitive science such
as grounded cognition, embodied cognition, dynamic
cognition, and situated cognition, to name a few (for a
review, see Barsalou, 2008). Even though the strands
differ from each other about their view on the nature of
the mind, they all have commonly argued for closer
relationships between abstract thoughts, sensorimotor
systems, and situated activity. Recently, Nathan (2021)
has combined these modern strands of cognition under
the umbrella term of “grounded and embodied learning
(GEL) framework” to offer a new lens for the design of
educational environments. The GEL framework  premises
meaning arises from the relationship of a person’s actions
and the affordances of the particular situation the
individual is in. The affordances of a situation depend on
the individual’s goals, personal learning history, and the
cultural norms they acquired. One’s primary experiences,
perceptions, gestures, and body are central to how one
makes sense of the world (Nathan, 2021). Based on this
thesis, the GEL framework suggests educational
experiences should be designed in a way that connects
abstract ideas and representations to students’ lived
experiences, including perceptions and body-based
interactions, for meaningful learning to occur (Nathan,
2021).

We are not the first to investigate what opportunities a
grounded and embodied learning approach can offer for
the design of multimedia learning experiences.
Abrahamson (2012) designed physical random device
generators that tap into students’ pre-analytic perceptual
judgments to teach compound events. Loy (2021)
designed static lined-up graphs for students to engage in
hypothesis testing based on the perceptual differences
between graphs before conducting mathematical analysis.
Zhang et al. (2022) designed instructional statistics
videos in which students observed hand movements of an
instructor drawing normal distribution graphs, and were
instructed to mimic the positions of central tendencies in
the graphs with their hand movements (Zhang et al.,
2021). These studies either reported statistically
significant learning gains from their design approach

(Zhang et al., 2021, 2022) or qualitatively meaningful
learning experiences (Abrahamson, 2012; Loy, 2021).
Building upon this body of literature, we design sampling
simulations enriched with icons that draw on people’s
ability to easily track frequency information from such
representations (Brase, 2008), and animations that
represent mathematical computations dynamically and
spatially. While interpreting the graphs, the students
mimic these spatial movements with their gestures (hand
and finger movements) which can indicate deeper
engagement than just “seeing the graph” (Gerofsky,
2011, p. 245). In the next section, we detail our approach
to multimedia learning for the design of computer
simulations at the current project.

‘Re-thinking’ Multimedia Learning from the Lens of
Grounded and Embodied Learning Framework 

Multimedia theory traditionally distinguishes between
learning from pictures and words, noting that these two
modalities offer complementary advantages and
disadvantages (Mayer, 2009). Pictures excel at
representing analog, continuous, and rich information,
particularly about spatial relations (Hegarty, 2011),
whereas words excel at conveying discrete, symbolic
interpretations (Dingemanse et al., 2015). In many
domains, both modalities are needed for effective
learning. nstructional strategies that promote their
integration. for example through concurrent presentation
of both, are often particularly effective (Mayer &
Anderson, 1992).

Moving beyond this classic distinction between words and
pictures, researchers have further investigated pictorial
representations to understand the unique affordances of
graphical displays that are static, animated, and
interactive. Relative to static images, animations offer
advantages when learning involves understanding how
variables change over time and space (Ploetzner et al.,
2020), but they can come at the cost of discouraging
students from constructing their own mental model of a
situation (Mayer et al., 2005). Relative to “canned”
animations, simulations offer learners “live,” dynamically
computed sequences of images that often incorporate
interactivity (National Research Council, 2011). This
interactivity can promote learning directly by having
learners come to understand how parameters they
control influence how the simulation unfolds, and
indirectly by increasing learners’ motivation to learn and
engage (Magana et al., 2022).

Our interest in simulations for teaching concepts related
to statistical inference stems from their promise in
helping learners to create their own internal mental
models (Boyle et al., 2014). In our observations of
students learning mathematical principles using
computer simulations, students often actively interpret
the interactions of the elements while interacting with the
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simulations (Goldstone & Wilensky, 2008). These
interpretations are firmly “grounded in the particular
simulation with which they are interacting” (p. 480).
However, as the interpretations are highly selective,
perspectival, and idealized (Goldstone & Sakomoto, 2003;
Goldstone & Son, 2005), they can apply to two situations
which look apparently dissimilar. Students’
understandings are thus grounded in a specific concrete
context, yet also transferable to new contexts. This route
to transfer of learning through interpretation of concrete
simulations is often more effective than approaches that
stress formalisms.  Formalisms such as logical
expressions or algebraic notation do unify disparate
situations under a common formalism, but seeing the
applicability of a formalism to a situation is notoriously
difficult for students (Nathan, 2012).  Instead, when
simulations are paired with lesson plans that guide
learners to notice useful patterns, learners come to
perceive these patterns, and the perceptual routines that
the learners acquire along the way naturally carry over to
new situations (Goldstone et al., 2017).  Far transfer
based on noticing a shared formalism is rare (Day &
Goldstone, 2012).  By contrast, people who train their
perceptual systems to find a pattern often automatically
use their trained perceptual system in new contexts
(Kellman & Massey, 2013).

The Authors’ Positionality

Researchers’ beliefs about the nature of social reality,
knowledge, and how we interact with the world impact
their research process (Holmes, 2020). Whether
researchers are aware of it or not, these ontological and
epistemological beliefs have influences on how they
conduct their research and how they interpret their
results. Therefore, an explicit acknowledgment of the
author position is important for readers to make a better-
informed judgment about the research process.

The research and design team of this project consists of
the two authors of this article. The first author is a
graduate student of instructional design and cognitive
science with 10 years of teaching and design experience
in different fields spanning science, educational
technology, and foreign language education. The second
author is a professor of cognitive science whose expertise
lies in the bidirectional relationships of human perception
and cognition. While his earlier research focused on basic
processes involved in human cognition, in later years, his
worked broadened to apply cognitive theories to the
design of educational technologies in mathematics and
science classrooms. Based on this body of work, he has
developed computer-based mathematics tutors which are
used in K-12 educational institutions nationwide.

The researchers believe the study of human cognition can
provide insights for the design of educational

technologies, and, reciprocally, the results from
educational work can further enrichen our understanding
of human cognition. Our situatedness in the field of
cognitive science and related expertise has directly
influenced the theoretical framework we adopted, and
our institutional affiliation has influenced the choice of
participants through the opportunities available to us. 
Furthermore, the first author’s training in instructional
design has influenced the iterative design choices of the
project based on a design-based research framework.

The first author designed the instructional activities that
accompanied the simulations while the second author
designed the simulations based on his expertise in
perceptual and conceptual learning. In the light of
reading of the related work in the field, the first author
identified the research questions, conducted experiments,
interviews, and the data analysis, and both authors met
weekly to discuss the project, their interpretations of the
results, and what steps to take next. Concurrently, we
also received feedback from our informal meetings with
colleagues who were statistics educators, cognitive
scientists, and instructional designers, which might have
influenced our design choices in addition to analysis of
the empirical results.

The Current Study

The overarching research question is whether difficult
concepts in statistical reasoning related to sampling can
be successfully learned by incorporating a grounded and
embodied learning perspective to computer-based
simulations. Through a design-based research
methodology (Barab & Squire, 2004), we employed
iterative design cycles of the simulation as a multimedia
artifact by combining it with instructional texts. We
present findings from two design iterations and several
design decisions employed to elicit a well-grounded
understanding of sampling for inference making in
statistics.

The Design Iterations
In the first iteration, we aimed to test what standard
simulations commonly used for data literacy and statistics
education offer (See figure 1). To this end, we emulated
the common visual features of these simulations. We
tested our standard simulation against a more traditional
teaching method that does not employ simulations
through a controlled experiment. In the second iteration,
we went beyond the standard features of statistical
simulations and investigated the promises of an
innovative grounded simulation through think-aloud
interviews with students. Before presenting our
iterations, we first overview the subject domain we
focused on in the current study.
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The Subject Domain: Distribution of Sample
Means

Learning objectives focused on the topic of distribution of
sample means. For statistical inference, students need to
be able to flexibly reason about distributions of sample
means and how sample size affects their properties. We
overview the key sampling processes, the rules of
sampling processes with their rationale, and common
student misconceptions below in Table 1.

Table 1

The Summary of the Subject Domain

Sampling Processes Rules and
rationales Misconceptions

An example of a normally distributed population graph with mean
= 50.

In real life, we often cannot collect information from the whole
population, therefore, we draw samples from it. Two different
samples with size 4 and 20 are drawn below to point out the
importance of sample size in estimating population mean.

Rule: As
sample
size
increases,
it is more
likely that
the sample
mean gets
closer to
the
population
mean.
Rationale:
For a
larger
sample, it
is less
likely that
all values
are low or
high. As a
result, low
and high
values
cancel
each other
out.

Students often
know that
larger samples
generally allow
for a better
estimate of the
population
mean.
However, they
(wrongly)
believe that it
is the sample
size’s
proportion to
population, not
its absolute
size, that
affects this
estimation

A random sample of a specific size is taken from the population and its
mean value is calculated and then recorded. Another random sample
with the same size is then taken and its value is recorded. This process
is repeated many times. In other words, means of many random samples
of a specific size are collected from the population. This collection of
sample means is called the distribution of means. See below two
different distributions of means with sample size 4 and 20.

As sample
size gets
larger, the
standard
deviation of
the
distribution
of means
gets
smaller.
Rationale:
Remember
that the
distribution
of means is
a collection
of means of
random
samples of a
particular
size. With a
larger
sample size,
more of the
sample
means will
be closer to
the actual
mean, which
will
decrease
the
standard
deviation of
the
distributions
of means.

This rule is
notoriously
difficult for
students to
grasp. Students
often confuse
sampling
distributions of
means with an
individual
sample. Students
often believe
standard
deviation
increases or
stays stable with
larger samples.

Note. A review of sampling processes that are depicted in
sampling simulations (in the left column), the rules with
their rationales that explain these processes (in the
middle column), and what students often wrongly believe
about these processes (in the right column).

The First Iteration: Comparing a
Standard Simulation to a Non-
simulation Method
In the first iteration, we aimed to gauge whether a
standard simulation that emulates popular simulations
would provide different learning experiences than a more
traditional teaching method that is based on direct
instruction through static text and images.

Participant

141 undergraduate students from the researchers’
university participated in a one-hour online study to
receive participation credits in an introductory
Psychology course. Based on self-reports, their ages were
between 18 and24, 68% were female, and 65% were
white. We expected the experiment to be relevant for
students’ learning goals as they were required to take at
least one statistics course to complete their
undergraduate degree.

The Design of Conditions

For the non-simulation condition, we designed a
traditional mode of instruction through a computer
program. The students first received direct instruction via
verbal and pictorial information, and then, attempted to
solve graph problems followed by feedback.  For the
standard simulation condition, we mimicked the features
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of popular pedagogical simulations overviewed in the first
section (see Figure 1). That is, we placed an individual
sample distribution on the top of the screen, and the
distribution of sample means on the bottom, both
expressed as generic histograms.

Students’ simultaneous engagement with visual
representations and verbal explanations can lead to
deeper learning through the integration of their intuitive
understanding from visuals and more formal and explicit
ways of understanding from language (Aleven &
Koedigner, 2002). To this end, we combined interactive
dynamic visualizations and verbal explanation prompts
together to provide the opportunity for students to
integrate visual and verbal information together (See
Figure 2).

Figure 2

The Standard Simulation from the First Iteration

Note. A screenshot from our standard simulation with
self-explanation prompts. The simulation group first
attempted to solve graph interpretation problems and
then explored the correct solution with interactive
simulations, augmented by guided self-explanation
prompts.

Hypothesis

The previous work advocating use of simulations for
teaching sampling distributions argued simulations foster
a deeper conceptual understanding of sampling concept
(Chance et al., 2004; Cobb & Moore, 1997). Based on this
body of work, we hypothesized that the standard
simulation condition would have significantly better
performance in the posttest than the non-simulation
condition.

Research Design and Procedures

In an online computer-based experiment, the participants
were randomly assigned to one of two groups: Simulation
vs. non-simulation group. The intervention consisted of a
pretest, learning, and post-test phases.  Pretest and post-
test items included 12 identical multiple-choice questions
classified as graph, story problems, and rule questions.
Additionally, the post-test included two open-ended rule-

explanation questions (See Table 2).

Table 2

Example Items

Example Graph Item (5 questions in total):

The population distribution for an exam score is displayed above. Below, you
see two distributions of the sample means for random samples drawn from
the population. One comes from a distribution with sample size of 2. The
other comes from a distribution with sample size of 15. Which distribution
comes from a situation where the sample size is 15? A. B.*

Example Story Problem Item (5 questions in total): American males must register at
a local post office when they turn 18. In addition to other information, the height of
each male is obtained. The national mean (average) height for 18-year old males is
69 inches (5 ft. 9 in.). Every day for one year, about 5 men registered at a small post
office and about 50 men registered at a large post office. At the end of each day, a
clerk at each post office computed and recorded the mean height of the men who
registered there that day.One day, you will visit one of the offices. You want to find
the office where the mean height of the men is closer to that of the population's.
Which office should you go to increase your chances?A. You should go to the small
office.B. You should go to the large office.*C. Both have equal chancesD. There is no
basis for predicting which post office would have more chances.
Example Rule Question (2 questions in total):Consider any possible population of
values and all of the samples of a specific size (n) that can be taken from that
population. Below are four statements about the distribution of the sample means.
Which one is CORRECT?A. As the sample size increases, the distribution of sample
means will have a smaller and smaller standard deviation.*B. As the sample size
increases, the distribution of sample means will have a larger and larger standard
deviation.C. No matter what the sample size is, the distribution of sample means will
have the same standard deviation.D. As the sample size increases, the distribution of
sample means will have a similar standard deviation to that of the population.
Explanation questions (2 questions) The sample mean tends to get closer to the
population mean as sample size increases. Explain why this is
correct.____________________________________________________________________________As
the sample size increases, the distribution of sample means will have a smaller and
smaller standard deviation. Explain why this is
correct._____________________________________________________

Note. ‘*’ identifies the correct answer.
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Scoring of verbal data

We conducted a pilot study prior to the actual study. The
two authors applied inductive coding to the responses of
the rule explanation questions to create the coding
scheme. The authors discussed the codes and ensured
coding agreement. The data from the actual study was
analyzed based on this coding scheme. The response to
each question constituted the unit size, which
corresponded to one category. Both authors
independently coded 20% of data. The interrater
agreement for assigning each response to categories was
85% for the first item, and 84% for the second item. After
the two authors discussed the differing categorization
and achieved a mutual agreement, the first author
completed the coding of all data. The authors were blind
to which conditions the data were obtained from during
the complete coding process. 

Results

We measured learning gains for each question type
separately. For each problem type (except verbal
explanation questions), we ran two statistical analyses.
First, ANCOVA on the post-test scores with prior
knowledge as a covariate and the condition (simulation
vs. non-simulation) as independent variable. Second, we
collapsed the conditions and ran a paired t-test to
measure overall learning gain from pre- to post-test. (See
Table 3).

 At graph questions, there was not a significant effect of
condition, F(1, 138) = 1.01, p = 0.31. However, there was
an overall learning gain from pre (M = 1.53, SD = 1.12)
to posttest (M = 2.46, SD = 1.43), t(140) = 7.14, p <
0.01.

At story problems, there was not a significant difference
between the conditions, F(1, 138) = 1.89, p = 0.17.
Further, there was not any significant difference between
pre (M = 2.60, SD = 1.15) and posttest performance (M =
2.45, SD = 1.27), t(140) = 1.59, p = 0.11.

At rule problems, there was not a significant difference
between the conditions, F(1, 138) = 0.19, p = 0.65.
However, there was a significant learning gain from pre-
(M = .96, SD = 0.69) to post-test (M = 1.20, SD = 0.77),
t(140) = 3.61, p < 0.01.

Table 3

Iteration 1: Pre and Posttest Scores

 Graph Questions Story Problems Rule Questions
 Sim Non-sim Sim Non-sim Sim Non-sim
Pretest 32.8% 28.2% 52% 52.2% 50% 46%
Posttest 52% 46.4% 47.2% 50.8% 59.5% 60.5%

Note. Average percentage of correct answers in pre and
post test for simulation (Sim) and non-simulation (Non-
sim) group.

For verbal responses, we ran a Pearson’s chi-square test
on the coded responses. For the first item (See Table 2),
“Explain why the sample mean tends to get closer to the
population mean as sample size increases”, there was a
significant association between the response categories
and the condition ( χ2(7) = 16.08, p = 0.02).

Table 4

Percentage Responses to the First Item: “Explain why the
sample mean tends to get closer to the population mean
as sample size increases.”

Response category Non-Sim
group

Sim
group

Larger sample is a better representation
of the population*

55% 37%

Bigger sample size results in less likelihood
and/or impact of outliers

10% 18%

As sample size increases, the standard
deviation increases

0% 12%

Nonsense explanation 15% 17%

Note. ‘*’ identifies the correct explanation.

            For the second item, “Explain why the standard
deviation of the distribution of sample means will get
smaller as sample size increases.”, there was not a
significant association between response categories and
the condition ( χ2(5) = 6.53, p = 0.25; see Table 5).

Table 5

Percentage Responses to the Second Item: “Explain why
the standard deviation of the distribution of sample
means will get smaller as sample sizes increases.”

Response category Non-Sim
group

Sim
group

Nonsense explanation 60% 52%
More sample means are closer to the
population mean as sample size increases.*

15% 21%

More data are closer to the average as
sample size increases

8% 11%

A larger sample size leads to less likelihood
and/or impact of outliers in data

11% 4%

Note. ‘*’ identifies the correct explanation.

Discussion

In the first iteration, we ran an experiment to compare a
simulation-based vs. non-simulation learning method for a
sampling distribution task. In the non-simulation group,
participants first received direct instruction with verbal
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information and pictures and then, solved graph problems
with feedback. The simulation group first attempted
solving graph problems with feedback and then, explored
the solution through interactive simulations accompanied
by self-explanation prompts. We measured learning with
four types of test items: graph problems, story problems,
rule statement items, and open-ended explanation items.

Both groups increased performance at similar levels from
pre- to post-test for graph problems. However, neither
improved their learning at story problems. These results
suggest both groups gained mostly a superficial
understanding of the concepts by attending to the
physical features of the graphs (e.g., “the distribution of
sample means will look narrower when the sample size is
larger”). 

The groups improved their learning of rules to a similar
level from pre- to post-test. However, neither were able to
explain the rationale of the rule. For the first open-ended
explanation item (“Explain why sample mean tends to get
closer to the population mean as sample size increases”),
an answer that would indicate understanding of the
sampling process could be “it is less likely that all
numbers will be low or high for a large sample. As a
result, it is more likely that low and high numbers will
average each other out in larger samples”. Rather,
students mostly gave a superficial response that would be
expected without any exposure to instruction, such as
“larger samples are a better representation of the
population”.  55% of the students in the non-simulation
group and 37% of the students in the simulation group
gave this kind of explanation for the item.

Unfortunately, the simulation group (37%) used this
superficial, but nevertheless correct, explanation less
than the non-simulation group (55%) and instead, more
often displayed misconceptions in their explanation. Some
of them (12 %) believed that the standard deviation would
increase with larger samples (note that this answer never
appeared in the non-simulation condition). This is a
surprising kind of explanation about why larger samples
tend to give a better estimation of the population mean.
Thus, the simulation-based learning method has
overridden some students’ intuition and caused an
unusual type of misconception.

Prior work with simulations sheds light on this interesting
result. Adams et al. (2008) found in their physics
simulations that when students see items that look
superficially similar (or different) to each other (such as
shape and color), they believe this superficial similarity
(or difference) also meant a deeper conceptual similarity
(or difference). In the domain of sampling simulations,
van Dijke-Droogers et al. (2021) observed that simply
differentiating the color and shape of the sampling
distribution graph from individual sample graphs
decreased students’ conceptual confusions. In the light of

this evidence, we believe students’ confusion in the
current study resulted from interacting simultaneously
with the individual sample distribution (on top) and the
distribution of sample means (on bottom) graphs which
look similar to each other (See figure 2). Students learned
the rule that the standard deviation of the distribution of
sample means changes while engaging with the graph at
the bottom, but wrongly associated this rule with the
single sample graph at the top. Given that the graphs
looked like each other, students wrongly believed this
visual similarity also meant conceptual similarity. The
confusing perceptual aspects of the graphs might also
explain why combining them with self-explanations did
not lead to better learning unlike in the previous work
(Aleven & Koedinger, 2002).

We caution that the results from this iteration might not
apply to all standard simulations used in statistics
education. This iteration had important limitations that
constrain generalizability. First, the experiment lasted for
an hour which might be shorter than the time allocated to
this topic in real classrooms. Furthermore, in real
classroom settings, students might have the additional
opportunity to revisit the topic of sampling distributions
several times through practice. Therefore, the mediocre
overall results might be attributable to the limited
exposure of students to the material. Second, the study
took place as an online experiment. Students might have
made less effort in the study than they would typically
make if they engaged with the simulation in the
classroom in the company of their peers and teacher.
Nevertheless, the fact that there were still differences
between the two design conditions in terms of learning
outcomes even at a short experimental manipulation
suggest that it is worthwhile paying attention to the
specific design choices in simulations.

 The Second Iteration: Developing
a Grounded Sampling Simulation
The findings from the first iteration suggested that the
standard simulation was not particularly helpful in
fostering conceptual understanding, and overall, resulted
in similarly mediocre results compared to a more
traditional form of teaching. Moreover, the simulation
even created an additional misconception. Our
interpretation is that representing different types of
distributions by similar, generic histograms causes
conceptual confusion.  The advantage of the standard
kinds of histograms (shown in figures 1 and 2) is that the
same graphical format can be used to represent a huge
variety of different types and structures of data.  The
disadvantage is that important differences between these
structures are obscured.

For the second iteration, we aimed to engage students’
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natural perceptual learning capabilities more effectively
through a grounded cognition perspective. Inspired by
the notion that complex cognition is grounded in well-
learned perceptual and bodily processes, we employed
concrete and familiar visual design elements to foster
better sense making of abstract sampling processes.

However, we did not solely rely on visuals for effective
teaching of abstract and difficult concepts. As in the first
iteration, we aimed to combine the affordances of verbal
and visual information for more integrated and deeper
learning of concepts. To this end, we designed a paper
task sheet to guide students’ interactions with the
simulation.                                                                           
                      

The Design of the Grounded Simulation and
Task Sheet

Based on the grounded and embodied learning
framework (Goldstone et al., 2010; Nathan, 2021), in our
second iteration, we aimed for abstract concepts and
processes to be represented with familiar objects and
concrete animations in the simulation (See the simulation
at
https://pcl.sitehost.iu.edu/robsexperiments/tests&example
s/tokenSampling/iteration2.html). This core design
principle came into play with three main design choices.
First, we replaced the standard bars and bins of the
histograms with icons sitting on top of each other to ease
the representational competence required for grasping
histograms. Each icon represents a single instance of the
population or a single mean taken from a sample. Second,
in order to avoid the confusion that happened in the first
iteration, we graphically differentiated the representation
of the distribution of sample means from actual
observations by using different icons for each. Third, we
dynamically animated the statistical processes such as
calculating the means from the sample so that students
could construct a spatial representation corresponding to
the process of “cancellation of low and high scores” while
trying to understand the distribution of means (See table
6).

 

Table 6

Visual Design Elements in the Grounded Simulation

Design principles Instantiation of the
principle

What feature of
the standard
histogram is

replaced?

1. Use icon-based
histograms to ease
the
representational
competence
required for
understanding
histograms

representing each
individual data point by an
icon of a gear

bars that
summarize a
collection of
data

representing the value of
each data point by the
number of spikes on a gear

position on the X-
axis

grounding frequency
naturally in terms of counts
of icons sitting on top of each
other in a column

frequency or
density on the Y-
axis

individual colors to reinforce
that each icon is representing
a unique individual in the
population

uni-colored
graph

2. Visually distinguish
between graphs that
depict different
processes

representing the collection of
means with a white color,
which is different from the
colors of the actual gears,
and with the letter “M” inside
the gear to emphasize what is
collected here is “means of
different sets of sampled
gears”, not the gears
themselves.

Identical
visualizations of
the histograms of
the distribution
of a sample and
the collection of
means of
samples

3. Dynamically and
spatially animate
statistical processes

randomly sampled
observations fall down from
the population to the sample
graph

NA

when a sample falls down,
their original place in the
population flashes, which
graphically depicts the
concept of sampling with
replacement.

NA

 Animating the process of
computing the means from
the sample observations by
having the sampled gears
converge to their mean, so
that students can construct a
spatial representation
corresponding to the process
that “low and high numbers
average each other out”.

NA

The accompanying task sheet included two phases of
activities. In the first phase, the activities guided students
during their interaction with the simulation with
prediction and test questions, drawing tasks, and oral
reasoning tasks. In the second phase, the students
stopped interacting with the simulation and read
information from the paper which explained the rules
with text and histograms. After they finished reading,
they answered post-test questions which required
answering graph questions and story problems and giving
rationales for the rules, as in the first iteration (See Table
7). The students discussed their responses aloud with the
interviewer. The interviewer did not give feedback on
students’ answers; however, she explained any unclarities
with the instruction and probed students for further
explanation.

Table 7

Paper Task Sheet
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During the interaction with the simulation
Activity Example item
Predicting
and testing
(with
drawing and
written
explanations)

Think about if we were to take 2 gears randomly from the population,
find their average (mean) number of teeth, and record the average. If
we repeatedly did this and collected a list of 2-gear averages, how would
this collection look like? What would be the range of averages we would
see? Draw the diagram below in the blank space above 3a.Predict: Do
the same task we did above, but this time think about taking 10 gears at
a time instead of 2. Draw the diagram below in the blank space above
3b. Means of sample gears (n=2) Means of sample gears (n=10)
Compare your two diagrams above. What happens as the sample size
increases? Write your thoughts briefly
______________________________________________________Test: Now, go to
the simulation and collect sample means with sizes 2 and 10. Do you
observe any changes as the sample size increases?
_______________________________________________Conclusion: After seeing
the simulation, do you change your thoughts? __________________________

Further
reasoning
questions

Wisdom of the crowdIn 1906, British scientist Sir Francis Galton asked
787 villagers to guess the weight of an ox. None of them got the right
answer, but when Galton averaged their guesses, he arrived at a near
perfect estimate. Often the average of many people’s guesses is closer
to the actual number than most individuals’ guesses. Why? Unusual
population distributionsWhat happens to the collection of sample means
when we sample from a population with two distinct clumps? Population
sizeWhat would happen if we reduce/increase population size? Does
sampling 10 from a population of 50 still come as close to the mean as
sampling from a population of 100?

After the interaction with the simulation
Information
sheet

Below are two sampling distributions of means with two different
sample sizes obtained from the same population. The population has a
mean = 80 and standard deviation (sd) = 20.

Notice that as n gets larger, the standard deviation of the distribution of
sample means gets smaller, with the sample means tending to
approximate the population mean more closely with larger sample size.

Rule
explanation

Identical open-ended items with the first study to gauge students’
reasoning about the rules

Graph
questions

Similar items with the first study that involve identifying the sampling
distribution of means histograms with smaller vs larger sample size.

Story
problems

Maternity task A certain town is served by two hospitals. In the larger
hospital about 45 babies are born each day, and in the smaller hospital
about 15 babies are born each day. As you know, about 50% of all
babies are boys. The exact percentage of baby boys, however, varies
from day to day. Sometimes it may be higher than 50%; sometimes
lower. Which hospital do you think is more likely to find on one day that
more than 60% percent of the babies born were boys? a) Large hospital
b) Small hospital* c) They are the sameMedical survey A medical survey
is being held to study some factors pertaining to coronary diseases. Two
teams are collecting data. One checks three men a day, and the other
checks one man a day. These men are chosen randomly from the
population. Each man’s height is measured during the checkup. The
average height of adult males is 5 ft 10 in., and there are as many men
whose height is above average as there are men whose height is below
average. The team checking three men a day ranks them with respect to
their height, and counts the days on which the average height of men is
more than 5 ft 11 m. The other team merely counts the days on which
the man they checked was taller than 5 ft 11 in. Which team do you
think counted more such days?Team checking one man*

Note. ‘*’ identifies the correct answer.

Participants

Nine undergraduate students from the researchers’
university participated in a one-hour face-to-face study at
the exchange of course credits for an introductory
psychology course. The participants were different
individuals from the ones in the first iteration. Based on

self-reports, their ages were between 18 and 24; six were
female and three were male; and their majors were
psychology (N=3), business school (N=2), human
development (N=1), interior design (N=1), biology (N=1),
and finance (N=1). Six students had been introduced to
basic statistics topics in high school or college while three
of them reported no prior statistics background.

Research Design

The study took place as a think-aloud interview study with
individual students at a research laboratory. The first
author and each individual student sat next to each other
across a desktop computer. The student interacted with
the simulation displayed on the computer while reading
the directions from the paper task sheet on the table. The
interviewer repeatedly told the student to think aloud
during this process, asked further follow-up questions,
gauged students’ understanding of the tasks, and
responded to any clarification questions from the
student.   

Data Analysis 

We transcribed the interview recordings and subjected
them to content analysis by applying inductive coding to
raw data. The authors met frequently and revised the
codebook until they ensured coding agreement before
reporting.           

Findings

The first impressions of the graph. Students were mostly
able to interpret the new simulation without much
difficulty. Seven students correctly identified the change
in the horizontal dimension by pointing out the increasing
number of spikes on the gears from left to right. On the
other hand, two students suggested gears were jumping
higher or there was a little wave from left to right. For
those two students with no previous statistics
background, the random and irrelevant features of the
graph overshadowed conceptually important patterns.

Learning with predict and test strategy

The predicting and testing pedagogy was largely
successful. Except for one or two students for each
predict-and-test question, the students were able to reach
the correct conclusion about how sample size affects the
distribution of samples and sample means after
interacting with the graphs. For the remaining few cases,
students still misinterpreted the pattern even after
testing it on the graph, and sometimes it took a few tests
with different graphs for them to identify the important
patterns. For example, in one case, a student had
predicted that mean would increase with larger sample
size. When he tested his prediction on the screen, even
though he saw that the mean tended to be closer to the
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population mean with a larger sample size, he missed this
pattern. Instead, he suggested that the mean stays the
same whatever the sample size is. This student, however,
was able to reach the correct conclusion after
experimenting with a second graph. Another was
distracted by the unrelated and random patterns such as
the colors of the dots, the speed of how gears fall, and the
shape they make when falling. This student finally
reached the correct conclusion after the interviewer
directed her attention to the relevant feature which was
the sample mean line.

Figure 3

An Example Student Drawing

Note. A student’s drawings when predicting how the
graph is going to look (on the left) and their updated
graph after testing it with the simulation  (on the right).
The student seems to have diminished their confusion
between the number of the gears and the number of the
means of gears from predicting to testing phase.

Grasping the process that “low and high numbers
average out for larger samples”

One of the important learning objectives was for students
to grasp the process that larger samples tend to estimate
the population mean better because it is more likely that
low and high numbers average out as sample size
increases. To this aim, we animated this process as shown
in Table 6. The results suggest that students mostly
showed a quick understanding of this process. For
example, for the wisdom of crowd question (See table 7),
six students successfully suggested that lower and higher
numbers average out to the correct weight of the ox.
More interestingly, when asked if the question was
related to what they saw in the simulation, the responses
suggested that students were not aware of the
connection. This is consistent with previous results
suggesting that learners can benefit from an earlier
situation when presented with a subsequent analog even
when they show no explicit awareness of the connection
between the two (Day & Goldstone, 2011).

Separate affordances of simulation vs. task sheet

After the students had finished several inquiry-based
activities with the simulation, they read a paper task
sheet which mimicked a textbook. This task sheet
explicitly stated the rules the students had discovered
when interacting with the simulation. Next, the students
solved graph problems that asked them to identify
histograms in relation to sample size. When solving these

problems, they referred to the rule they read on the paper
instead of their own discoveries with the simulation such
as “That graph belongs to the smaller sample size
because of the rule on the paper”. When they were trying
to reason about a rule, though, the students referred to
the visual aspects of the simulation, for example, “Oh, the
standard deviation is smaller for the graph with the
larger sample because the means should closely sit on top
of each other”.

Post-test performance

The aggregate percentage of correct answers were 72%
for the graph questions and 78% for the story problems
(we did not ask rule selection questions in this iteration).
Furthermore, as in the first iteration, we analyzed the
verbal data from the rule explanation questions (See table
8 and 9). Students mostly showed a good understanding
of the relationship between the sample size and the
standard deviation of the distribution of sample means. 

Table 8

Percentage Responses to the First Item: “Explain why
sample mean tends to get closer to the population mean
as sample size increases.”

Response category number (%)
Small and large numbers average each other out.** 2 (22.22%)
More points allow a more accurate average.* 2 (22.22%)
There is less variability 2 (22.22%)
There is a larger pool of numbers. 1 (11.11%)
Sample becomes more proportional to the entire population. 1 (11.11%)
More sample means are closer to the population mean as sample size increases 1 (11.11 %)

“**” The ideal explanation “*” Correct, but superficial
explanation

Table 9

Percentage Responses to the Second Item: “Explain why
the standard deviation of the distribution of sample
means will get smaller as sample sizes increases.”

Response category number (%)
More sample means are closer to the population mean as sample size increases.* 7 (77.77%)
There is a larger range. 1 (11.11%)
Insufficient explanation 1 (11.11%)

Note. ‘*’ identifies the correct explanation.

Discussion 

In the second iteration, we investigated students’
learning of sampling concepts through our new grounded
simulation. Augmented by a task sheet, students first
predicted how the sample size would affect the features
of the distributions and then, experimented with the
simulation to test their prediction. After this inquiry-
based activity, the students read information on the sheet
which explicitly stated the rules that they had discovered
while interacting with the simulation. As in the first
iteration, the students’ learning was measured in a post-
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test through graph questions, story problems, and rule
explanation items. The results suggest students overall
made few conceptual confusions, and they were able to
explain causal mechanisms of sampling processes even
without any statistics background. A large percentage of
students provided correct answers to graph problems,
showed good reasoning at story problems, and wrote
quality explanations of rules.

An important caution is that this iteration was designed
as an initial study to test our new simulation with a small
sample size (n=9). While the results show initial promise
of designing a simulation based on grounded and
embodied learning considerations, strong generalized
conclusions should not be drawn considering the nature
of the study and lack of control conditions. Our next
research goal is to compare a standard and grounded
simulation through a rigorous controlled experiment with
a larger sample size to allow direct comparison between
different approaches to simulations. Still, the initial
results reveal important insights about students’
interactions with the simulation, the role of verbal
information that accompanies the simulation, and the
choice of instructional activities in which the simulation is
situated.

The simulation and the task sheet had separate
affordances that contributed to overall learning. What
was the contribution of the visual elements of the
simulation? Our results suggest perceptual features do
not contribute to learning, only at superficial levels.
Perceptual learning can be powerful and deep when the
perceptual features are carefully designed in a way that
reveals the important concepts. More specifically,
students’ observations of the falling gears collapsing into
a mean facilitated their understanding of the sampling
process. Students transferred what they had observed
from these animations to their discussions of the story
problems as their verbal explanations suggested. More
interestingly, students were apparently unaware of the
structural connections between the simulation and
subsequent stories, which supports prior findings by Day
and Goldstone (2011, 2012) which suggested that
perceptual learning is a powerful, automatic, and implicit
mechanism for transfer.

Furthermore, the first author observed during interviews
that students often used gestures that mimic the
animations while they were discussing their reasoning.
For example, they brought two outstretched hands or
fingers together while talking about the process of
obtaining a mean from a sample. Prior research suggests
that gestures ease the understanding of abstract and
difficult mathematical concepts and processes (Nathan et
al., 2021), and students’ embodiment of the graphs
suggest deeper engagement than merely watching them
(Gerofsky, 2011). Similarly, we suspect animations, and

the students’ spontaneous gestures mimicking these
animations, might have had facilitative effects on their
understanding of the difficult concept of sampling
distribution.     

What about the role of verbal information in the task
sheet? The results suggest that providing students with
verbally explicit rules, which mimicked a typical textbook,
had important influences on their learning. When
discussing the rules, students often referred to the rules
stated on the task sheet even though they had themselves
discovered these rules while experimenting with the
simulation. It is possible that perceptual learning through
simulations was rather implicit, and the task sheet served
as an explicit verbal memory aid. The verbal form of
information serves as a tool for discourse. However,
verbal information can be rather rote and inert when
students do not understand their use (Aleven &
Koedigner, 2002). In this case, the abstract verbal rules
were first grounded in concrete visual animations. In
other words, perceptual learning might have served as a
grounding for meaningful learning of explicit verbal
information.

We are further improving the design of our simulation for
a third iteration by implementing design principles from
embodied learning (Alibali & Nathan, 2018) and
concreteness fading (Fyfe et al., 2014).  We mentioned
students spontaneously used gestures that mimicked the
animations they saw on the screen. A follow-up question
is whether asking students to gesture helps them to
understand the sampling concepts better? To answer this
question, we are currently designing a task in which
students are instructed to mimic the animations with
their hands when they are watching a video of the
simulation.

While our icon-based approach to sampling simulations
suggests promising results, an important caveat is such
concrete representations can place limits on students’
transfer of their learning in some cases (Goldstone &
Sakamoto, 2003). For example, students learning
sampling processes through our iconic graphs might not
apply their knowledge when they encounter a generic
histogram in a textbook. Therefore, a more promising
approach might be to start with concrete representations
to make statistics more accessible to novices, and then
gradually fade them into more idealized ones so that
students can effectively use the generic histograms that
statisticians typically use. To this end, in a third iteration,
we have combined the grounded and standard graphs
into a single simulation. Over the course of training, the
richer, more contextualized depiction is replaced with
simpler rectangles (see the simulation at
https://pcl.sitehost.iu.edu/robsexperiments/tests&example
s/tokenSampling/iteration3.html).

Overall, we conclude that a deliberate design approach
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informed by theory and empirical testing is important for
providing incremental improvements to pedagogical
simulations. We also believe that instructional activities
that situate the simulation are at least as important as its
design elements. In the final section, we reflect on design
aspects of the statistics simulations and the
accompanying instructional activities based on the results
from our two iterations.

General Discussion
With the accessibility of modern technologies, computer-
based interactive simulations are becoming increasingly
common in data literacy education with the purpose of
making statistics concepts accessible to novice students.
We argued these simulations often do not deliver on their
promises because they are designed from an expert
perspective; that is,  they do not ground the data
representations in students’ primary experiences, their
perceptions, or bodily actions. As an alternative, we
proposed a novel statistics simulation designed based on
aGEL framework. In the current work, we specifically
focused on icon-based graph representations. Our data
suggests that our icon-based, dynamically animated
graph shows initial promise in making difficult sampling
concepts more accessible to students. Similarly, prior
research has shown iconic representations to
dramatically improve people’s learning of base-rate
concepts (Brase, 2014). From an ecological perspective,
iconic representations tap into people’s ability to
effortlessly track frequency information as it
approximates the presentations of frequencies of objects
people see in their everyday environment (Brase & Hill,
2015).

The initial results from the current work suggest several
dimensions to test with simulations for future work. We
view simulations to be complements to textbooks and
lectures rather than their replacements. Prior work
suggests active inquiry helps students learn more
effectively from the subsequent instruction (Schwartz &
Martin, 2004). Linguistic materials and verbal
instructions turn intuitive and implicit kinds of learning
gained from the simulations into explicit and verbalizable
tools for powerful and effective discourse. Accordingly,
we designed simulation activities to precede the verbal
information sheet, which served as a more standard form
of instruction. Future research and design studies should
further explore how to combine different forms of media
as complements to simulation.

An important result from the think-aloud interviews was
students often did not see what was happening in the
simulations objectively, rather they saw it as a
combination of their prior beliefs and what was
happening on the screen. Providing several
experimentation opportunities with simulations helped

students gradually update their prior beliefs in the
direction of actual results. An important implication for
future research and design is to aim to better understand
the relationship between students' prior beliefs and the
role of repeated practice in inquiry activities with
simulation.

In the current work, we focused on the combination of
icon-based graphs, spatial representations of
mathematical processes, and gestures as one possible
way of instantiating grounded and embodied learning for
sampling simulations. However,  the GEL framework is
not only constrained to individual student’s perception
and body-based activities. The GEL framework views
social and cultural experiences to be critical components
of grounding scientific conceptualizations. Accordingly,
future work should consider different instantiations of
sampling simulations based on students’ personal and
social experiences for a complementary perspective on
grounding.

Conclusion
Overall, the three iterations of the statistical sampling
simulation have underscored the pedagogical benefits of
providing grounded models for learners.  It may be
tempting to prioritize equations and summary rules when
teaching statistical concepts because these formalisms
are designed to be broadly applicable to an unlimited
number of scenarios.  However, the problem with these
generic formalisms is that future scenarios do not clearly
present themselves to the learner as being governed by
the formalisms.  Instead, what is needed is for learners to
develop new ways of seeing future scenarios as instances
of what they have previously learned.  Perceptually
grounded simulations provide the kind of experiences
learners need to develop these new ways of seeing and
interpreting.  Accordingly, we encourage instructional
designers and teachers to resist the tendency to put
perception and deep understanding in opposition. 
Superficial appearances can indeed be misleading, but
not all perceptions are superficial. Perceptual and
interactive models offer promise in promoting grounded
understanding and transfer that go beyond those
achievable with formalisms because they change how
learners naturally see their world.
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