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Confusions arise when stable is equated with foundational. Spurred on by
the image of a house’s foundation, we find it tempting to think that
something provides effective support to the extent that it is rigid and
stable. We argue that when considering the role of perception in ground-
ing our concepts, exactly the opposite is true. Our perceptual system
supports our ability to acquire new concepts by being flexibly tuned to
these concepts. Whereas the concepts that we learn are certainly depen-
dent on our perceptual representations, we argue that these perceptual
representations are'also influenced by the learned concepts. In keeping
with one of the central themes of this book, behavioral adaptability is
completely consistent with representationalism. In fact, the most straight-
forward account of our experimental results is that concept learning can
produce changes in perceptual representations, the “vocabulary” of per-
ceptual features used by subsequent tasks.

This chapter reviews theoretical and empirical evidence that perceptual
vocabularies used to describe visual objects are flexibly adapted to the
demands of their user. We extend arguments made elsewhere for adaptive
perceptual representations (Goldstone, Schyns, & Medin, 1997; Schyns,
Goldstone, & Thibaut, 1998) and discuss research from our laboratory
illustrating specific interactions between perceptual and conceptual learn-
ing. We describe computer simulations that provide accounts of these
interactions by using neural network models. These models have detectors
that become increasingly tuned to the set of perceptual features that
support concept learning. The bulk of the chapter is organized around
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mechanisms of human perceptual learning and computer simulations of
these mechanisms.

FIXED AND FLEXIBLE FEATURE SETS

A dominant notion in cognitive science is the idea that cognition involves
operations on a fixed set of hardwired primitive features. The fixed set
of features provides the building blocks for representing objects. This idea
has been highly productive because of its parsimony; a wide variety of
objects can be represented by combining a small number of existing
features in different arrangements. The field of linguistics saw one of the
first feature set theories, in which phonemes are represented by the
presence or absence of fewer than 12 features such as voiced, nasal, and
strident (Jakobson, Fant, & Halle, 1963). Ascending in complexity, Schank
(1972) proposed representing entire situations, such as ordering food in
a restaurant, in terms of a set of 23 primitive concepts such as physical-
transfer, propel, grasp, and ingest. In the field of object recognition, Bieder-
man (1987) proposed a set of 36 geometric shapes such as wedge and
cylinder to be used for representing objects such as telephones and flash-
lights. Wierzbicka (1992) proposed a set of 30 semantic primitives includ-
ing good, want, big, and time to be composed together in structured phrases
to generate all other words. Much of the work in concept learning, in-
cluding the seminal work of Bruner, Goodnow, and Austin (1956), as-
sumes that experimental participants come into the psychology laboratory
already possessing the primitive features that they need to learn how to
categorize objects. For example, participants know, before the categoriza-
tion experiment begins, that a set of objects is to be described in terms of
color, number, and shape. In short, a prevalent assumption in cognitive
science is that cognition consists of combining the elements of a fixed set
of a priori features.

Although appropriate and mandatory for answering many questions,
this “fixed features” approach systematically overlooks situations in
which the concept learner, in addition to learning an association between
a set of features and a category, must also learn what counts as a feature.
Perceptual features that are currently available constrain the concepts that
are acquired (as in traditional concept learning systems), but we argue
that the concepts to be acquired also influence the features that are
developed. Thus, in contrast to theories that posit fixed features, the
alternative pursued here is that the building blocks of cognition are neither
fixed nor finite, but rather adapt to the requirements of the tasks for which
they are employed (Schyns, Goldstone, & Thibaut, 1998; Schyns & Mur-
phy, 1994). As argued by Gibson (1969), the perceptual interpretation of
an entity depends on the observer’s history, training, and acculturation.

8. PERCEPTUAL AND CONCEPTUAL LEARNING 193

These factors, together with psychophysical constraints, mold one’s set
of building blocks. There may be no single, unique set of perceptual
primitives because the building blocks themselves are adaptive.

One of the notorious difficulties with representations based on a limited
set of elements is that it is hard to choose exactly the right set of elements
that suffices to accommodate all future entities that need to be represented.!
On the one hand, if a small set of primitive elements is chosen, then it is
likely that two entities that must be but cannot be distinguished with any
combination of available primitives eventually arise. On the other hand, if
a set of primitives is sufficiently large to construct all entities that might
occur, then it likely includes many elements that lie unused, waiting for
their moment of need to possibly arise (Schyns et al., 1998). By developing
new elements as needed, newly important discriminations can cause the
construction of building blocks that are tailored for the discrimination.

There is substantial neurological evidence for perceptual leaming via
imprinting of specific features in a stimulus. Weinberger (1993) reviewed
evidence that cells in the auditory cortex become tuned to the frequency
of often-repeated tones. Deeper in the cortex, cells in the inferior temporal
area can be tuned by extended experience (over 600,000 trials) to particular
views of three-dimensional (3D) objects (Logothetis, Pauls, & Poggio,
1995). Cells in the inferotemporal cortex can also be selective for particular
faces, and this specificity is at least partially acquired given that it is
especially pronounced for familiar faces (Perrett et al., 1984). There is
neurological evidence that cortical areas involved with early perceptual
processes are flexible, context sensitive, and tuned by training. For exam-
ple, practice in discriminating small motions in different directions sig-
nificantly alters electrical brain potentials that occur within 100 millisec-
onds of the stimulus onset (Fahle & Morgan, 1996). These electrical
changes are centered over the primary visual cortex, which suggests plas-
ticity in early visual processing. Kami and Sagi (1991) found evidence,
based on the specificity of training to eye (interocular transfer does not
occur) and retinal location, that is consistent with early, primary visual
cortex adaptation in simple discrimination tasks. In fact, training in an
auditory selective attention task may produce differential responses as
early as the cochlea—the neural structure that is connected directly to the
eardrum via three small bones (Hillyard & Kutas, 1983). In sum, there is
an impressive amount of converging evidence that experimental training
leads to changes in very early stages of information processing.

'One symptom of the difficulties associated with establishing a single set of features that
suffices for representing a large set of objects might be called “feature creep.” A historical
examination of fixed feature theories often reveals a steady increase in the number of
proposed fixed features. Early work by Schank in representing scenarios, by Wierzbicka in
representing words, and by Biederman in representing objects proposed smaller sets of
primitives than did their later work.
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These theoretical and neurophysiological sources of evidence for ex-
perience producing perceptual changes parallel evidence from expert—
novice differences. In many fields, including radiology (Myles-Worsley,
Johnston, & Simons, 1988), gender discrimination of day-old chicks (Bie-
derman & Shiffrar, 1987), and beer tasting (Peron & Allen, 1988) experts
organize or parse the world differently than do novices. In these fields,
part of what it means to be an expert is to have developed perceptual
tools for analyzing the stimuli in a domain. In what follows, we explore
some potential laboratory analogs of the development of perceptual ex-
pertise, albeit on a much shorter course of training. The experiments are
organized in terms of particular mechanisms of interaction between per-
ception and concept learning: sensitization of existing perceptual dimen-
sions, sensitization of novel perceptual dimensions, perceptual reorgani-
zation, and unitization.

DIMENSION SENSITIZATION

One way in which perception becomes adapted to tasks and environments
is by increasing the attention paid to perceptual dimensions that are
important, by decreasing attention to irrelevant dimensions, or by both.
Attention can be selectively directed toward important stimulus aspects
at several different stages in information processing. Attention may be
applied relatively late in information processing to strategically emphasize
important dimensions (Nosofsky, 1986). Alternatively, attentional shifts
may be perceptual, rather than strategic or judgmental, in nature. One
source of evidence that shifts are not completely voluntary is that atten-
tional highlighting of information occurs even if it is to the detriment of
the observer. When a letter consistently serves as the target in a detection
task and then later becomes a distracter—a stimulus to be ignored—it
still automatically captures attention (Shiffrin & Schneider, 1977). The
converse of this effect, negative priming, also occurs: Targets that were
once distracters are responded to more slowly than never-before-seen
targets (Tipper, 1992). Although most research has investigated the sen-
sitization of relevant dimensions, perceptual learning can also involve the
loss of an ability to discriminate along irrelevant dimensions. For example,
Myles-Worsley et al. (1988) showed that expert radiologists have poorer
recognition memory for x-rays that do not show disease than do less
expert medical professionals. Also, Werker and Tees (1984) showed that
adults have poorer discrimination abilities for certain non-native sounds
than do infants.

In addition to entire dimensions becoming sensitized if relevant, par-
ticularly important regions in a dimension can also be sensitized. The
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largest body of empirical work showing an influence of categories on
perception comes from work on categorical perception. According to this
phenomenon, people are better able to distinguish between physically
different stimuli when the stimuli come from different categories than
when they come from the same category (Harnad, 1987). For example,
Liberman, Harris, Hoffman, and Griffith (1957) generated a continuum
of equally spaced consonant-vowel syllables changing continuously from
/be/ to /de/. At a certain point on this continuum, people rather abruptly
shift from identifying the sound as a /be/ phoneme to identifying it as
a /de/. Moreover, people are better able to discriminate between two
sounds that belong to different phonemic categories such as /be/ and
/de/ than they are able to discriminate between two sounds that belong
in the /be/ category, even when the physical differences between the
pairs of sounds are equated. As such, perceptual sensitivity is at a peak
at the boundary between phonemic categories.

There is an ongoing controversy about whether categorical perception
effects are due to innate or learned categories. On the side of innateness,
Infants as young as 4 months show categorical perception for speech
sounds (Eimas, Siqueland, Jusczyk, & Vigorito, 1971). Furthermore, chin-
chillas show categorical perception effects for speech sounds akin to those
produced by people (Kuhl & Miller, 1978), even though chinchillas pre-
sumably have little exposure to human language. On the side of experi-
ence, categorical perception in humans is modulated by the listener’s
native language and extended training. In general, a sound difference that
crosses the boundary between phonemes in a language is more dis-
criminable to speakers of that language than to speakers of a language
in which the sound difference does not cross a phonemic boundary (Repp
& Liberman, 1987). Laboratory training on the sound categories of a
language can produce categorical perception among speakers of a lan-
guage that does not intrinsically have these categories (Pisoni, Aslin,
Perey, & Hennessy, 1982).

Work in our laboratory has found visual analogs to the trained cate-
gorical perception effects observed with speech. In Goldstone (1994),
participants were first given categorization training involving the sizes
or brightnesses of squares. On each trial of categorization training, a
square appeared on the screen and participants were asked to categorize
it into Category A or B. The “size categorizers” group received feedback
indicating that the squares in the left and right two columns of Fig. 8.1
belonged to Category A and Category B, respectively. The “brightness
categorizers” group received categorization training in which the squares
in the upper and lower two rows of Fig. 8.1 belonged to Category A and
Category B, respectively. The squares were calibrated so that the differ-
ences between adjacent squares were just barely detectable. Subsequent
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to 1.5 hours of categorization training, participants were transferred to a
same/different judgment task in which horizontally or vertically adjacent
squares from Fig. 8.1 were presented or the same square was repeated
twice. Participants were required to respond as to whether the two squares
were exactly identical on both their size and brightness or differed even
slightly on either dimension. When a dimension was relevant for catego-
rization, participants’ same/different judgments along this dimension
were more accurate (based on the d’ measure from signal detection theory)
than those from participants for whom the dimension was irrelevant and
from control participants who did not undergo categorization training.
This trend, found for both categorization groups, is shown in Figs. 8.2
and 8.3. The greatest sensitization of the categorization-relevant dimen-
sion was found along those particular dimension vaiues that were the
boundaries between the learned categories. However, the sensitization of
the relevant dimer.sion also extended to other values along the dimension
even though these other values were originally placed in the same cate-
gory. Thus, entire relevant dimensions are sensitized, but critical regions
in those dimensions are also sensitized. In addition, Fig. 8.3 shows the
one case of acquired equivalence that was found, in which a dimension that
was irrelevant for categorization became desensitized relative to control
participants. Compared with the control group of participants who were
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FIG. 8.1. Stimuli used by Goldstone (1994). Sixteen squares were con-
structed by factorially combining four values of brightness with four values
of size. The letters outside the parentheses show the categorizations of the
squares when size was relevant. The letters in the parentheses show the
categorizations of the squares when brightness was relevant. Adapted from
“Influences of Categorization on Perceptual Discrimination,” by R. L.
Goldstone, 1994, Journal of Experimental Psychology: General, 123, p- 183.
Adapted with permission.
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FIG. 8.2. This figure shows the change in perceptual sensitivity (measured
in d’ units) that is due to size categorization training. A black rectangle
indicates a positive difference when the control groups’ sensitivity is
subtracted from the size categorizers’ sensitivity. A white rectangle indi-
cates a negative difference. The size of the rectangle indicates the absolute
magnitude of the difference. Rectangles are placed between the two squares
that are being discriminated. The greatest sensitization occurs at the
boundary between the two size categories.
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FIG. 8.3. This figure shows the change in perceptual sensitivity (measured
in d’ units) that is due to brightness categorization training. Each rectangle
reflects the difference between the d’ for brightness categorizers and the
control group. The predominantly white, horizontal rectangles reflect a
significant case of acquired equivalence whereby brightness categorizers
are less adept than controls at making size discriminations.
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given no categorization training, the desensitization that occurred for
relevant dimensions was larger and more reliable than the desensitization
that occurred for irrelevant dimensions.

SENSITIZATION OF NOVEL DIMENSIONS

Dimension sensitization following training provides evidence that not only
do our perceptual encodings guide our categorizations, but that our cate-
gorizations also guide our perceptual encodings. However, shifts in dimen-
sional attention do not necessarily require the postulation of new
perceptual vocabulary elements. Existing elements may simply be empha-
sized or de-emphasized. From the same paradigm, we believe that we are
also getting evidence for a second type of perceptual learning involving
dimensionalization—the development of new dimensions. Size and bright-
ness are easily distinguishable and are likely to be psychological dimen-
sions for our participants before categorization training. We replicated the
experiment just reported by using dimensions that people are less likely to
register as dimensions (Goldstone, 1994). We used the brightness and
saturation of colors, two dimensions that are often cited as the classic
examples of integral dimensions (Garner, 1974). Dimensions are considered
integral if it is difficult to attend to one dimension without also attending
to the other dimension. However, after prolonged categorization experi-
ence in which brightness was relevant and saturation was irrelevant (or vice
versa), we found that the relevant dimension became selectively sensitized.
Thus, dimensions that were once fused can become more isolated with the
proper categorization training. This result is consistent with evidence that
color experts (art students and vision scientists) are better able to selectively
attend to dimensions (e.g. hue, chroma, and value) that make up color than
can nonexperts (Burns & Shepp, 1988). A large developmental literature
suggests that people often shift from perceiving stimuli in terms of holistic,
overall aspects to analytically decomposing objects into separate dimen-
sions (Smith, 1989). This trend can be described as the construction of new
perceptual vocabulary elements that are used to build object descriptions.

Sensitization of Entire Novel Dimensions

It has been argued that saturation and brightness, although they are
integral dimensions for most people, are not genuinely arbitrary dimen-
sions (Grau & Kemler-Nelson, 1988). To show the dimensionalization
process for genuinely arbitrary dimensions, we have recently begun to
explore situations where dimensions are generated by morphing between
two pairs of arbitrarily chosen faces. One dimension is created by morph-
ing between the top two faces shown in Fig. 8.4, and a second dimension
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Dimension 1

Dimension 2

FIG. 84. Arbitrary dimengions can be created by generating a series of
morphs between two randomly chosen faces. Dimension 1, running
horizontally, morphs between Faces A and B. Dimension 2, running
vertically, morphs between Faces C and D, Each of the faces in the 4 by 4
array possesses a unique set of coordinates on Dimensions 1 and 2.

is created by morphing between the two faces on the left. Using a tech-
nique described by Steyvers (1999), a four by four matrix of faces can be
created from these two dimensions such that each face is defined one
half by its value on Dimension 1 and one half by its value on Dimension
2. Arbitrary dimensions are thus generated by creating negative con-
tingencies between two faces—the more of Face A that is present in a
particular morphed face, the less of Face B there is, The horizontal di-
mension, Dimension 1, might be called the “The proportion of Face A
relative to Face B” dimension. We refer to the vertical dimension as
Dimension 2.

Just as in the previously described experiments, participants were
initially given a categorization rule to learn that divided the four by four
stimulus array of Fig. 8.4 either vertically or horizontally into equal halves.
On each trial, participants saw a face and categorized it into one of two
categories, with feedback from the computer indicating whether or not
the participant was correct. Whereas Goldstone’s (1994) participants were
transferred to a same/different task, Goldstone and Steyvers’ (1999) par-
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ticipants were transferred to another categorization task. The initial and
transfer categorizations were related to each other by one of the seven
ways shown in Table 8.1. In the representation used in Table 8.1 and Fig.
8.4, the dimension above the line is relevant, and the dimension below
the line is irrelevant. Figure 8.4 would be represented as 1/2; Dimension
1 (morphing from Face A to B) is relevant, and Dimension 2 is irrelevant.
Different faces were used as the anchoring end points for each of the four
dimensions (one through four). Dimensions that were relevant during the
first categorization could continue to be relevant during the second cate-
gorization, could become irrelevant, or could become absent altogether,
and the same was true for irrelevant dimensions. For example, if the
original categorization was 2/3 (Dimension 2 was relevant, and Dimen-
sion 3 was irrelevant) and the subsequent categorization was 1/2, then
the dimension that was originally relevant becomes irrelevant and a new
dimension becomes relevant for the final categorization.

Suggestive evidence of dimensionalization with these materials is that
participants become increasingly adept at attending to one dimension
while ignoring variation on irrelevant dimensions during the initial cate-
gory learning. A more important measure is the categorization accuracy
during the final categorization phase of the experiment, which was iden-
tical for all seven groups and involves the categorization 1/2 (Dimension
1 = relevant, 2 = irrelevant). As such, any systematic differences between
conditions on final categorization performance must be due to differences
in how the initial categorization prepared them for this final categoriza-

TABLE 8.1
Seven Conditions of an Experiment by
Goldstone and Steyvers (in preparation)

Initial Subsequent

Training Transfer Relation Between Training and Transfer
1 Relevant 1 Relevant Relevant and irrelevant dimensions are
2 Irrelevant 2 Irrelevant both preserved.

1 Relevant ” ’ Relevant dimension is preserved.

3 Irrelevant ﬁ

3 Relevant ” ” Irrelevant dimension is preserved.

2 Irrelevant

3 Relevant ” : Irrelevant dimension becomes relevant.
1 Irrelevant

2 Relevant ” ” Relevant dimension becomes irrelevant.
3 Irrelevant

2 Relevant ” ” Irrelevant dimension becomes relevant.

1 Irrelevant Relevant dimension becomes irrelevant.
4 Relevant Control-—completely new dimensions.
3 Irrelevant
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FIG. 8.5. Results from the transfer experiment. Each dimension is repre-
sented by the two faces that function as its end points. The dimension in
the “numerator” was relevant during the initial categorization, and the
dimension in the “denominator” was irrelevant. The bars show the overall
percentage correct when each of seven initial categorization conditions was
transferred to a 1/2 categorization, wherein Dimension 1 was relevant and
2 was irrelevant. The last bar shows the results from the control condition
in which the initial and transfer categorization rules used completely
different dimensions.

tion. The results, in Fig. 8.5, show several types of transfer based on the
initial categorizations. The degree of transfer in a condition is best ap-
praised by comparing it to the 3/4 control condition in which the initial
and final categorizations involve completely different faces and dimen-
sions. The categorization advantage of the first three conditions, 1/2,1/3,
and 3/2, over the control condition suggests that participants learn to
selectively emphasize relevant dimensions and to de-emphasize irrelevant
dimensions. That is, when intial and final categorizations share relevant
or irrelevant dimensions, performance is better than in the control con-
dition. This transfer is impressive because these conditions use completely
new sets of faces in the final categorization. For example, none of the
faces belonging to the 1/2 set is the same as faces from the 3/2 set. The
only similarity between these sets is that Dimension 2 is irrelevant for
both sets, and this similarity has a large beneficial effect on transfer.
The next two conditions of Fig. 8.5 demonstrate negative transfer effects
owing to shared dimensions. Relative to the control condition (3/4), when
irrelevant dimensions become relevant (3/1) and when relevant dimen-
sions become irrelevant (2/3), performance suffers. The latter effect is
particularly strong and is reminiscent of Shiffrin and Schneider’s (1977)
results that when participants are trained to respond to a particular letter
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as a target, performance is quite poor when that letter later becomes a
distracter to be ignored. The results from the 2/1 condition seem surpris-
ing at first. In this condition, the relevant dimension becomes irrelevant
and the irrelevant dimension becomes relevant, and yet performance is
better than for the control condition. Our explanation for the beneficial
transfer from 2/1 to 1/2 categorizations rests on the observation that both
involve the same set of 16 faces. The categorization rules are orthogonal
(separated by 90 degrees), splitting the stimuli horizontally or vertically.
As such, both rules depend on separating the horizontal dimension from
the vertical dimension to selectively attend to only one of these dimen-
sions. Effective performance on the 2/1 categorization requires isolating
Dimension 1 from Dimension 2. Once accomplished, this isolation may be
useful in acquiring the 1/2 categorization because this categorization also
requires the same differentiation of dimensions, albeit for opposite purposes.

This account is supported by additional experiments from our labora-
tory showing that transfer involving 90-degree rotations of a categoriza-
tion boundary results in better final performance than does transfer in-
volving 45-degree rotations. Although the 45-degree rotation might be
expected to produce better performance because dimensions that are
relevant in the final categorization are semirelevant during the initial
categorization, this advantage is apparently overwhelmed by the incom-
patible, cross-cutting dimensionalizations that are required. In contrast,
categorization boundaries that are separated by 90 degrees are compatible
in promoting the same differentiation of one dimension from another.
These results, in conjunction with the results shown in Fig 8.5, suggest
that categorization learning involves not only allocating attention to ex-
isting dimensions, but also in isolating dimensions in the first place. In
fact, it is possible to allocate attention to a dimension only if that dimen-
sion has previously been isolated. In some cases, early childhood experi-
ence or innate perceptual devices suffice to isolate dimensions, and cate-
gory learning requires only attention weighting. However, in situations
involving objects with dimensions that are initially integral for people,
category learning also requires the construction of dimensional repre-
sentations. Once constructed, these representations are employed for
learning subsequent categorizations (for further evidence, see Schyns &
Rodet, 1997).

Sensitization of Regions of Novel Dimensions

In addition to sensitizing entire dimensions, regions in novel dimensions
can become sensitized, giving rise to categorical perception effects. Gold-
stone, Steyvers, and Larimer (1996) generated an arbitrary dimension by
generating two random bezier curves and treating these objects as end
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points on a continuum. The values along the dimension were created by
morphing from one random bezier to the other, similar to how the face
dimensions were created. The stimuli were made by creating 60 linearly
interpolated morphs between two random curves and selecting the 7
central curves as stimuli. During categorization training, participants
learned one of two categorizations based on different cutoff values along
this dimension. For the left-split group, the first three objects in Fig. 8.6
belonged to Category A, and the last four objects belonged to Category
B. For the right-split group, the boundary between Categories A and B
occurred between the fourth and fifth curves. A third control group
learned a comparable categorization, but involving curves that were ir-
relevant for the subsequent task.

After categorization training, participants were transferred to a same/
different judgment task. Participants were shown pairs of highly similar
curves or the identical curve repeated twice and were instructed to say
whether the curves had exactly the same shape or differed in any way.

The data of principal interest, shown in Fig. 8.7a, were participants’
sensitivities at discriminating between pairs of adjacent curves, broken
down as a function of their categorization condition. A d’ measure of
sensitivity was calculated based on participants’ ability to correctly re-
spond “same” and “different.” Specifically, it is a function of the prob-
ability of responding “different” given that the curves were indeed dif-
ferent minus a function of the probability of incorrectly responding
“different” given that the curves were the same. The d’ values increase
as participants’ ability to correctly make discriminations increases.

One result of the experiment is that sensitivity is higher for the left-
and right-split groups than for the group that was trained on an irrelevant
categorization. This effect is consistent with previous work showing that
pre-exposure to stimuli leads to their heightened discriminability (Gibson
& Walk, 1956). More relevant to categorical perception, there was a sig-
nificant difference between the pattern of sensitization for the left- and
right-split groups. Although the effects of the two groups were not sym-
metric, the general effect of categorization training is that discriminability
is relatively high for stimuli that fall near the category boundary. To
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FIG. 8.6. These seven curves were constructed by morphing between
arbitrary curves. The left-split and right-split groups saw the same seven
curves, but the middle curve was categorized differently by the two groups.
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FIG. 8.7. The numbers on the horizontal axis reflect the numbers associated
with the compared curves from Fig. 8.6. Fig. 8.7A shows participants’
sensitivity (measured in d” units) at discriminating between adjacent curves.
Fig. 8.7B plots the same data, but using a derived measure that is the dif-
ference between the right and left categorization groups. In general, the
categorization condition with the categorization boundary closest to the
tested pair had the highest sensitivity at discriminating the pair.
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be interpreted as learned feature detectors and represent the organism’s
acquired perceptual vocabulary. The model consists of three processing
stages, shown in Fig. 8.8. In the first stage, the input images are processed
by a set of Gabor filters. In the second stage, a layer of hidden units learns
to represent the perceptual dimensions along which the continuum of
stimuli falls. The representation of the hidden units is changed by an
unsupervised learning algorithm similar to- Kohonen’s self-organizing
maps (e.g. Kohonen, 1995). In the last stage, a layer of category units
classifies the input image based on the activity in the hidden unit layer.
The weights from the hidden layer to the category units are learned in a
supervised manner (Kruschke, 1992). The critical assumption of the model
is that the input-to-hidden weights are influenced by the hidden-to-cate-
gory weights. By unsupervised learning, the topology of the hidden
detector units comes to reflect the morph-based dimension that underlies
the experimentally created stimuli. By the category level supervision, the
distribution of detectors is biased by the demands of the categorization.

The input patterns to the network are gray-scale, two-dimensional pictures
of curves, and the categorization of the curve is supplied as a teacher
signal for the category units. Twenty-eight curves are created by using the
same technique of morphing between two arbitrary curves used in the
experiment. The first stage of the network preprocesses these pictures by
a set of Gabor filters (Daugman, 1985) with maximal sensitivities to line
segments oriented at 0, 45, 90, or 135 degrees. The receptive fields of the
filters are positioned at overlapping local regions of the image. The Gabor
filters reduce the information contained in the original images to a man-
ageable amount and capture some of the higher order shape invariants
associated with a curve not captured by pixel-based representations.
Figure 8.9 shows an example of the transduction of an image into Gabor

visualize this effect, Fig 8.7B plots a new measure derived from the data
shown in Fig. 8.7A. In this figure, the sensitivity (d") of the left-split group
is subtracted from the sensitivity of the right-split group. Thus, this
measure is positive when the right-split group shows a greater sensitivity
than the left-split group for a pair of curves. Figure 8.7B shows that the
left-split group does relatively well when and only when the pair of tested
curves lies closer to the left boundary than to the right boundary.

A Neural Network Model of Dimensional Sensitization

In developing a computational model for the observed categorical per-
ception effects, we were drawn to neural networks that possess hidden
units that intervene between inputs and outputs and are capable of cre-
ating internal representations. For our purposes, these hidden units can

...éﬂyg 28 curves
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2 Category Units

FIG. 8.8. An overview of the SOS network. The bezier curve images are
passed through Gabor filters, and the resulting response patterns are
presented to a one-dimensional set of detector units. These detectors adapt
toward the filtered inputs, but are also influenced by the categorization of
the inputs. Representative bezier curves, detector units, and connections
are shown in this illustration.
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FIG. 8.9. This figure shows the Gabor filter responses for the bezier curve
at the top. The activity of a filter is indicated by the magnitude of the black
circle. For example, the large circles in the upper-left portion of the
45-degree-angle filter (the lower-right filter) indicate a strong 45-degree-
angle component in the upper-left portion of the bezier curve.

filter responses. As a result of this process, each image is represented by
144 real numbers (36 image locations for each of four orientations).

The next processing stage involves the hidden layer consisting of 14
detector units. An individual detector becomes most active when an image
leads to a Gabor filter activation pattern that matches the weights from
the Gabor filters to the detector. The input-to-detector weight pattern can
also be thought of as locations of the detector node in the space determined
by the Gabor filters. At the start of learning, the detectors represent
random activation patterns of these Gabor filters. By using a competitive
learning rule, the hidden detector units become specialized for activation
patterns caused by particular images or properties of these images. When
a bezier curve is presented, the “winning” detector adjusts its weight
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vector toward the curve’s Gabor filter representation. A detector wins by
having input-to-detector weight values that are closest to the Gabor filter
activation. The extent to which the nonwinning detector nodes update
their weights is restricted by the topology that is imposed on the feature
detectors; we used a one-dimensional lattice such that each detector (ex-
cept at the two end points) has two neighbors. Far neighbors update their
weights less than close neighbors of the winning detector unit. This
imposed topology creates a dimensional representation such that neigh-
boring detectors respond to similar images or images having similar
properties. More globally, the positions of the 14 detectors come to reflect
the arbitrary morph-based dimension.

For the purposes of this chapter, we only want to mention the learning
equation for adjusting the weights from the Gabor filter responses to the
detector units:

DSMQ = MFZQ‘E_.:xaﬁﬁmz - Smﬁv~

where Awget is the weight from the Gabor filter Response i to Detector ;.
L is a constant learning rate. The Function N is dependent on how far
Detector j is from the winning detector; far neighbors to a winning detector
give values close to 0, and close neighbors give values closer to 1, so that
the most learning occurs for close neighbors of the winning unit. The
(al" - wie) factor adapts the detectors’ weights toward the input activa-
tions; if the Gabor response is larger than the weight, then the input-to-
detector weight increases to match it. So far, the description of the network
conforms to a standard self-organizing map. A new factor is introduced
with the term E, which is the total amount of error at the category units.
The category unit activations depend on the weighted activation in the
previous layer of hidden detector units. The category units learn in a
supervised manner so that the errors in predicting category membership
are used to update the weights to these category units. The term E is
introduced in the learning equation of the hidden nodes to influence the
rate of learning; if a stimulus leads to a miscategorization or a relatively
undifferentiated response by the categorization units, the term E is high,
which leads to an increased rate at which the winning detector unit and
its neighbors move toward the current input activation. Stated more
metaphorically, the network sends out an SOS to neighboring detector
nodes to help handle the current miscategorized input. Because undiffer-
entiated categorization responses or miscategorizations occur most fre-
quently at or near the category boundary, the hidden detector units tend
to migrate toward the categorization boundary. As a result, the region
near the boundary is more densely populated by detector nodes.

In two separate runs of the SOS network, we chose two different lo-
cations for the category split, corresponding to left- and right-split groups.
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Figure 8.10 shows the influence of category training on discrimination
sensitivity. The activations for each of the 14 detector nodes are shown
for each of the 28 curves presented to the network. As such, each of the
14 curves in Panel A (left split) and Panel C (right split) shows a response
profile for one detector. The detectors are densely distributed around the
categorization boundary as a result of the classification feedback in the
learning rule for detectors. Importantly, the detectors are arranged
topologically. As we move from left to right along the bank of detectors,
we move along the arbitrary dimension that we experimentally formed.
As such, the network has implicitly represented an abstract and arbitrary
stimulus dimension through the topology of its detectors.

A sensitivity measure for same/different judgments was constructed
by taking the Euclidean distance between the detector unit activation
patterns for the two curves to be judged. Thus, the model tends to respond
“different” to the extent that the two presented input patterns activate
different detectors. As shown in Panels B and D of Fig. 8.10, the peak
sensitivity occurs approximately at the category boundaries. This occurs
because slightly different stimuli that occur near the category boundary
cause quite different activation patterns on the detector units, given the
dense concentration of detectors in this region.

The SOS network models categorical perception effects by creating
relatively dense representations of items at the border between categories.

A B

Detector Node Activations
Sensitivity
O

I T |

4 8 12 16 20 24 28 4 81216202428
Stimulus Number Stimulus Number

FIG. 8.10. The SOS network’s simulation of the results shown in Fig. 8.7.
The category boundaries are shown by dashed, vertical lines. The left panels
show activation profiles for the 14 detector units when the categorization
boundary was on the left (Panel A) or right (Panel C). In both cases, the
categorization boundaries are densely populated with detectors, giving rise
to the increase in sensitivity at the category boundaries shown in Panels B
(left-split) and D (right-split).
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This treatment of categorical perception differs from other neural network
implementations. In Anderson, Silverstein, Ritz, and Jones’ (1977) model,
each category has its own attractor, and the stimuli that fall into one
category are all propelled toward the category’s attractor. In Harnad,
Hanson, and Lubin (1994), the stimuli that fall into one category are
repelled from the categorization boundary. One potential advantage of
our account is that it explains how stimuli falling on the same side of a
category boundary may also become more discriminable after categori-
zation training, if they are sufficiently close to the category boundary.
The results from our experiment suggest that this is the case for our
participants, and this effect has been shown more persuasively by other
researchers (Iverson & Kuhl, 1995). In networks that explain categorical
perception by creating different attractors for different categories, unique
items that are close to the boundary but fall in the same category become
more similar with processing, not more distinctive. In general, developing
detectors that both cover input patterns and are tailored to categorization
requirements is a promising avenue for modeling perceptual learning
phenomena related to categorical perception, stimulus pre-exposure, and
discrimination learning.

THE SEGMENTATION OF OBJECTS INTO PARTS

People organize objects into parts, not simply by carving nature at the
joints, but by carving joints into nature. It is more natural for us to think
of an X as being broken down into a left slash and a right slash than as
being composed of a V and an upside-down V intersecting at a point,
even though both are possible decompositions (McGraw, Rehling, &
Goldstone, 1994). Palmer conducted several studies on the naturalness of
parts in whole objects, exploring factors that make certain parts more
natural than others (Palmer, 1977, 1978). Palmer also developed a quan-
titative part goodness model that used a number of objective factors about
the parts and whole: how close the line segments in a part were to each
other, whether they formed closed objects, whether they had similar
orientations, and whether the line segments of a part were similar to line
segments in other parts. Palmer found that this objective measure of part
naturalness correlated highly with empirical methods for assessing sub-
jective part goodness, such as requesting people to rate the naturalness
of a part or measuring participants’ response times to confirm that a
particular part is contained in the whole.

Pevtzow and Goldstone (1994) were interested in whether the natural-
ness of a part in a whole depends on not just the objective physical
properties that Palmer considered, but also a person’s subjective experi-
ence. In particular, we thought that how natural a part is might depend
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on whether it has been useful for categorization. In the same way that
the world looks like a nail to the person who has a hammer, to the person
who has learned that a particular feature is diagnostic for needed cate-
gorizations, the world may look like it is built from this feature. To test
this conjecture, we gave participants a categorization task, followed by
part/whole judgments. During categorization, participants were shown
distortions of the four objects A, B, C, and D shown in Fig. 8.11. The
objects were distorted by adding a random line segment that was con-
nected to the segments already present. Using an experimental design
that should now be familiar to the reader, we gave participants extended
training with either a vertical or horizontal categorization rule. For par-
ticipants who learned that A and C were in one category and B and D
were in another, the two component parts at the bottom of Fig. 8.11 were
diagnostic. For participants who learned that A and B belonged in one
category and C and D belonged to the other, the components on the right
were diagnostic. During part/whole judgments, participants were shown
a whole and then a part and were asked whether the part was contained
in the whole. As with Palmer’s studies, it is assumed that the faster a
person can correctly confirm the presence of a part, the more natural the
part is. Participants were given both present and absent judgments. Par-
ticipants were given trials with parts that were previously diagnostic or
nondiagnostic and with complements of these category parts. A comple-
ment is what remains in a whole when a category part (one of the
components shown in Fig. 8.11) is removed.

The major result to note from Fig. 8.12 is that participants were faster
to correctly respond “present” when the part was diagnostic than when
it was nondiagnostic. To the extent that one can find response time analogs
of signal detection theory sensitivity and bias, this effect seems to be a
sensitivity difference rather than a bias difference, because absent judg-
ments also tended to be faster for diagnostic than nondiagnostic parts.
Given that a category part that was diagnostic for one group was nondi-
agnostic for the other group, it is not simply the physical stimulus prop-
erties that determine how readily a person can segment an object into a
particular set of parts; segmentation is also influenced by the learned
categorical diagnosticity of the parts. The results for complements were
unexpected; if a part was relevant during categorization, then participants
were relatively slow to respond that the complement was present. One
may have predicted the opposite because the part and its complement
are consistent with the same segmentation of an object. However, the
result is predicted if category parts attract attention to themselves when
they are diagnostic, to the detriment of other parts in the display.

We have begun modeling the result from this experiment by using a
competitive learning network. As with the experiment, the network is
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FIG. 8.11. Materials used by Pevtzow and Goldstone (1994). The four
Objects A, B, C, and D were categorized into two groups. When A and B
were placed in one group and C and D were placed in the other, the parts
on the right were diagnostic. When A and C were placed in one group
and B and D were placed in the other, then the parts on the bottom were
diagnostic. Adapted from “Categorization and the Parsing of Objects,” by
R. Pevtzow and R. L. Goldstone, 1994, in Proceedings of the 16th Annual

Conference of the Cognitive Science Society (Hillsdale, NJ: Lawrence Erlbaum
Associates), p. 719. Copyright 1994. Adapted with permission.
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FIG. 8.12. It was easier to detect the presence or absence of a part in a
whole object when the part was previously diagnostic for a categorization.
The complement (the remaining line segments of the whole once the part
has been removed) of a part was harder to find in a whole when the part
was previously diagnostic for a categorization.
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first given categorization training and then a subsequent segmentation
task, using the same network weights. Similar to the simulation of ac-
quired categorical perception, the network involves three layers: one
representing the input patterns, one representing a bank of learned de-
tectors, and one reflecting the category assignments of the inputs. Both
the weights from the input patterns to the detectors and the weights from
the detectors to categories are learned. The same network is used for
categorizing and segmenting patterns, but the category units have an
impact only during categorization. A schematic illustration of the network
for the two tasks is shown in Fig. 8.13. The categorization task uses a
standard unsupervised competitive learning algorithm (Rumelhart & Zip-
ser, 1985), but includes a top-down influence of category labels incorpo-
rating supervised learning. The network begins with random weights
from a 2D input array to a pair of detector units. When an input pattern
is presented, the unit with the weight vector that is closest to the input
pattern is the winner and selectively adjusts its weights to become even
more specialized toward the input. By this mechanism, the originally
homogenous detectors become differentiated over time, splitting the input
patterns into two categories according to which detector is specialized for
each pattern. Abstractly, the competitive learning algorithm, if supplied
with jazz and classical pieces of music, automatically learns to group the
pieces into these categories without feedback, because the pieces naturally
cluster into these two groups. However, given that we want the detectors
to reflect the experiment-supplied categories, we need to modify the
standard unsupervised algorithm. This is done by including a mechanism
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FIG. 8.13. The categorization and segmentation network used to simulate
the results shown in Fig. 8.10. The same input-to-detector weights are used
for both the categorization and segmentation tasks. During categorization,
an entire pattern is fed in as input at the same time, and one detector
becomes specialized for the pattern. Effectively, detectors arise that sort
the inputs into two categories according to their diagnostic line segments.
During segmentation, a pattern is fed in one pixel at a time, and detectors
learn to become specialized for pixels. Now, detectors sort the parts of one
pattern into two segments.
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such that detectors that are useful for categorizing an input pattern be-
come more likely to win the competition to learn the pattern. The useful-
ness of a detector is assumed to be directly proportional to the weight
from the detector to the presented category, which is provided as a label
associated with an input pattern. The input-to-detector weights do not
have to be set before the weights from detectors to categories are learned.

With this modified competitive learning algorithm, if we present the
same four pictures but with different categorizations, then different de-
tectors develop. Detectors emerge that tend to selectively represent the
diagnostic, shared components of input patterns. If A and B of Fig. 8.11
are assigned to the same category, as are C and D, then detectors tend to
emerge that respond preferentially to the component parts on the right
side of Fig. 8.11. However, if we change the categorization, then detectors
for the lower components are created.

Thus far, the category learning network has been described. The basic
insight is that segmentation tasks can also be modeled by using competi-
tive learning, and thus the two tasks can share the same network weights
and consequently influence each other. Competitive learning for catego-
rization sorts complete, whole input patterns into separate groups. Com-
petitive learning for segmentation takes a single input pattern and sorts
the pieces of the pattern into separate groups. For segmentation, instead
of providing a whole pattern at once, we feed in the pattern one pixel at
a time. Instead of grouping patterns, the network groups pixels together.
With this technique, if the “original pattern” in Fig. 8.14 is presented to
the network, the network might segment it in the fashion shown in the
top decomposition. This figure shows the weights from the 2D input array
to each of two detectors and reflects the specializations of the two detec-
tors. The two segments are complements of each other—if one detector
becomes specialized for a pixel, the other detector does not. This stems
from the basic operation of the competitive learning algorithm by which
the winning detector indirectly inhibits the other detector from learning
to adapt to the input. Unfortunately, this segmentation is psychologically
absurd; nobody would decompose the original figure into these parts. To
create psychologically plausible segmentations, we modify the determi-
nation of winners. Topological constraints on detector creation are incor-
porated by two mechanisms: Input-to-detector weights “leak” to their
neighbors in an amount proportional to a Gaussian function of their
distance, and input-to-detector weights also spread to each other as a
function of their orientation similarity, defined by the inner product of
four Gabor filter responses. The first mechanism produces detectors that
tend to respond to cohesive, contiguous regions of an input. The second
mechanism produces detectors that follow the principle of good continu-
ation, dividing X into two crossing lines rather than two kissing sideways
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FIG. 8.14. When a competitive learning network is supplied the original
pattern, the detectors specialize for different pixels. When the network is
supplemented with perceptual biases to develop spatially coherent, smooth
features, segmentations such as the one shown by the middle pair of
detectors are obtained. When this latter network is run after it has already
acquired a detector for a particular component during categorization
training, then the segmentation shown by the last pair of detectors is
typically found.

Vs, because the two halves of a diagonal line are linked by their common
orientation. Thus, if a detector wins for Pixel X (meaning that the detector
receives the most activation when Pixel X is on), then the detector also
tends to handle pixels that are close to, and have similar orientations to,
Pixel X. With this modification and added dynamics that allow the net-
work to escape local minima,* segmentations such as the middle decom-
position occur. The segmentations now tend to break the object into whole
line segments that are connected to each other. These two mechanisms
are too simplistic to do justice to human perceptual biases on segmenta-
tion, but even in this simplistic form, they lead to segmentations that tend
to obey the Gestalt laws of good continuation and closure. The segmen-
tation network is a process-model alternative to Palmer’s model of seg-
mentation and produces roughly comparable results.

However, the segmentation network has a notable advantage over
Palmer’s model in explaining Pevtzow and Goldstone’s results. The seg-

"Local minima were avoided by adding noise to input-to-detector weights and basing
the magnitude of this noise on the strength of the input-to-detector weight.
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mentation network, because it shares the same input-to-detector weights
that were used for the categorization network, can be influenced by
previous category learning. Detectors that were diagnostic for categori-
zation are more likely used to segment a pattern because they are already
primed. Thus, if a particular shape is diagnostic, the network segments
the whole into this shape most of the time, as shown by the bottom
decomposition in Fig 8.14. In short, category learning can alter the per-
ceived organization of an object. By establishing multisegment features
along a bank of detectors, the segmentation network is biased to parse
objects in terms of these features. This application shows that two separate
cognitive tasks can be viewed as mutually constraining self-organization
processes. Categorization can be understood in terms of the specialization
of perceptual detectors for particular input patterns, where specialization
is influenced by categorization diagnosticity. Object segmentation can be
viewed as specialization of detectors for particular parts in a single input
pattern. Object segmentation can isolate an input pattern’s single parts
that are potentially useful for categorization, and categorization can sug-
gest possible ways of parsing an object that would not otherwise have
been considered.

THE UNITIZATION OF COMPONENTS
FOR CATEGORIZATION

Thus far, we have described the influence of category learning on the
sensitization of pre-existing and novel dimensions and the organization
of objects into dimensions and parts. One final mechanism of perceptual
learning is unitization. In unitization, a single functional unit is created
for a complex pattern, and this functional unit can be identified without
an analytic process of breaking it down into components and identifying
the components. The letter A may originally be perceived by assembling
evidence from independent feature detectors for oriented lines, but with
prolonged practice, a single unitized chunk for the entire A image seems
to emerge (LaBerge, 1973). Czerwinski, Lightfoot, and Shiffrin (1992; Shif-
frin & Lightfoot, 1997) obtained evidence for such a unitization process,
by finding large improvements in the speed and efficiency of detecting
conjunctively defined targets in a feature search task. The current experi-
ments, reported by Goldstone (in press), similarly explore unitization, but
from a complementary perspective. First, our experiments are primarily
concerned with the influence of category learning on unitization, under
the hypothesis that a unit tends to be created if the parts that make up
the unit frequently co-occur and if the unit is useful for determining a
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categorization. Second, we use a new method for analyzing response-time
distributions to assess the presence of unitization.

Whenever the claim for the construction of new units is made, two
objections must be addressed. First, perhaps the unit existed in people’s
vocabulary before categorization training. Our stimuli are designed to
make this explanation unlikely. Each unit to be sensitized is constructed
by connecting 5 randomly chosen curves. With 10 curves that can be
sampled, there are 5'° possible different units. If it can be shown that any
randomly selected unit can be sensitized, then an implausibly large num-
ber of vocabulary items are required under the constraint that all vocabu-
lary items are fixed and a priori. The second objection is that no units
need be formed; instead, people analytically integrate evidence from the
five separate curves to make their categorizations. However, this objection
is untenable if participants, at the end of extended training, are faster at
categorizing the units than expected by the analytic approach. Quantifying
what “faster than expected” means is the main task at hand.

The categorization task was designed so that evidence for five compo-
nents must be received before certain categorization responses are made.
As such, it was a conjunctive categorization task. The stimuli and their
category memberships are shown in Fig. 8.15. Each of the letters refers
to a particular segment of a “doodle.” Each doodle was composed of five
segments, with a semicircle below the segments added to create a closed
figure. To correctly place the doodle labeled ABCDE into Category 1, all
five components, A, B, C, D, and E, must be processed. For example, if
the rightmost component was not attended, then ABCDE could not be
distinguished from ABCDZ, which belongs in Category 2. Not only does
no single component suffice for accurate categorization of ABCDE, but
two-way, three-way, and four-way conjunctions of components also do

Category 1 Category 2

D oABeDz

ABCDE @ ABCYE

™7 ABXDE
™ AWCDE
™ VBCDE

FIG. 8.15. Stimuli used by Goldstone (in press). Each letter represents a
particular stimulus segment, and each stimulus is composed of five
segments. To categorize the item represented by ABCDE as belonging to
Category 1, it is necessary to process information associated with each of
the segments.
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not suffice. For example, the three-way conjunction C and D and E it
possessed by the stimulus ABCDE, but this conjunction does not discrimi-
nate ABCDE from AWCDE or VBCDE. Only the complete five-way con-
junction suffices to accurately categorize ABCDE.

If unitization occurs during categorization, then the stimulus ABCDE
may become treated functionally like a single component with training.
If this occurs, then participants should be able to quickly respond that
this stimulus belongs to Category 1. A pronounced decrease in the time
required to categorize the conjunctively defined stimulus ABCDE is taken
as initial evidence of unitization.

For improvement in the conjunctive task to be taken as evidence for
unitization, two important control conditions are necessary. First, it is
important to show that tasks that do not require unitization do not show
comparable speedups. To this end, a control task was included that allows
participants to categorize the item ABCDE by attending to only a single
component rather than a five-way conjunction. This was done by having
Category 2 contain only one of the five Category 2 doodles shown in Fig.
8.15, randomly selected for each participant. This “One” (component)
condition should not result in the same speedup as the “All” (components)
condition where five components must be attended. If it does, then the
speedup can be attributed to a simple practice effect rather than to uniti-
zation. Second, it is important to show that stimuli that cannot be unitized
also do not show comparable speedups. For this control condition, it was
necessary to attend to a five-way conjunction of components, but the
ordering of the components in the stimulus was randomized. That is,
ABCDE and CEBDA were treated as equivalent. In this “random” con-
dition, a single template cannot serve to categorize the ABCDE stimulus,
and unitization should therefore not be possible.

The results of the experiment were suggestive of unitization. The results
in Fig. 8.16 reflect only the correct responses to the Category 1 doodle
ABCDE because this is the only stimulus that requires the full five-com-
ponent conjunction to be identified. The horizontal axis shows the amount
of practice over a 2-hour experiment. The condition where all components
were necessary for categorization, and where they were combined in a
consistent manner to create a coherent image, showed far greater practice
effects than did the others. This dramatic improvement suggests that the
components are joined to create a single functional unit to serve catego-
rization. Particularly impressive speedups were found when and only
when unitization was possible and advantageous.

Itis possible to get stronger evidence for unitization with this paradigm.
The alternative to the unitization hypothesis is that responses in the All
task are obtained by integrating evidence from five separate judgments
of the type required in the One task. In arguing against this analytic
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FIG. 8.16. Results from Goldstone (in press). The most pronounced im-
provement was observed when all components were required for a
categorization, and the components were always in the same positions.

account, a highly efficient version of the analytic account was devised to
observe whether it still predicted response times that were too slow. The
first advantage given to the analytic model was fully parallel processing;
All responses were made by combining five One responses, but evidence
for these five One responses was assumed to be obtained simultaneously.
Second, the model was given unlimited capacity; identifying one compo-
nent was not slowed by the need to identify another component. In
obtaining predictions from this charitably interpreted analytic model, it
is important to remember that the All task is a conjunctive task. To
categorize ABCDE as a Category 1 item with the required 95% categori-
zation accuracy, all five components must be identified. Second, there is
intrinsic variability in response times, even in the simple task where only
one component must be identified. An analytic model of response times
can be developed that predicts what the All task response-time distribu-
tion should be, based on the One task distribution. After training, a
distribution of response times in the One task can be determined. To
derive the analytic model’s predictions, we can randomly sample five
response times from this distribution. The maximum of these five times,
rather than the average, is selected because no response can be made to
the conjunction until all components have been recognized. We can repeat
this selection process several times to create a distribution of the maxi-
mums, and this yields the predicted response-time distribution for the
All task according to the analytic model. Fortunately, there is an easier
way of obtaining the predicted distribution. The One task response-time
distribution is converted to a cumulative response-time distribution, and
each point on this distribution is raised to the fifth power. If the prob-
ability of one component'’s being recognized in less than 400 milliseconds
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FIG. 817. The cumulative response time distributions for the four
participants taken from the last session. The One and All distributions were
empirically obtained. The One® distribution was obtained by raising each
point along the One distribution to the fifth power and represents the
analytic model’s predicted cumulative distribution for the All task.
Violations of this analytic model occur when the All task’s distribution is
shifted to the left of the analytic model’s distribution. Such violations occur
for the fastest half of response times for all four participants (significantly
so for all participants except C. H.).

is .2, then the probability of all five components’ being recognized in less
than 400 milliseconds is .2 raised to the fifth power, assuming sampling
independence.

A replication of the experiment shown in Fig. 8.16 was conducted that
included the ordered All and One tasks. Only four research assistants
participated as participants, but unlike the 2-hour experiment described
previously, each participant was given eight 2-hour training sessions. The
results, shown in Fig. 8.17, are only for Category 1 responses on the final
day of the experiment. These results indicate violations of the analytic
model. The cumulative response-time distributions show that the One
task was naturally the fastest (most shifted to the left). The analytic
model’s predictions are shown by the curve labeled One®, which is ob-
tained simply by raising each point on the One curve to the fifth power.
For two of the four participants, the actual All distribution was faster
than the analytic models’ predictions for all regions of the distribution.
For all four participants, the fastest 30% of response times for the All task
was faster than predicted by the analytic model, even though all partici-
pants were achieving accuracies greater than 95%. Although the advan-
tage of the All over the One’ distributions may not look impressive, they
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were significant by a Kolmogorov-Smirnoff test of distributions for all
participants except C.H.? Thus, by the end of extended training, responses
to the conjunctively defined ABCDE curve are faster than predicted by
the analytic model, despite its charitable interpretation.

The conclusion we draw from these results is that category learning
probably created new perceptual units. Large practice effects are found
if and only if stimuli were unitizable (the first experiment), and responses
after 14 hours of training were faster to conjunctively defined categories
than predicted by a charitably interpreted analytic model. The results
shown in Fig. 8.17 violate the analytic model only if negative dependencies
or independence is assumed between the five sampled response times
that make up one All judgment. Although it is beyond the scope of this
chapter, we also have evidence for violations of the analytic model for
classes of positive dependencies, using Fourier transformations to decon-
volve shared input-output processes from the One task response-time
distribution (Goldstone, in press; P. L. Smith, 1990).

One question still remains: Exactly how do people become so fast at
categorizing ABCDE in the All task? Two qualitatively different mecha-
nisms can account for the pronounced speedup of the conjunctive cate-
gorization: a genuinely holistic match process to a constructed unit, or
an analytic model that incorporates interactive facilitation among the
component detectors. In a holistic match process, a conjunctive categori-
zation is made by comparing the image of the presented item with an
image that has been stored over prolonged practice. The stored image
may have parts, but these parts are either arbitrarily small or do not play
a functional role in the recognition of the image. There is evidence sup-
porting the gradual development of configural features. Neurophysiologi-
cal findings suggest that some individual neurons represent familiar con-
junctions of features (Perrett & Oram, 1993) and that prolonged training
can produce neurons that respond to configural patterns (Logothetis et
al., 1995). However, the results can also arise if detecting one component
of ABCDE facilitates detection of other components. In either case, the
process is appropriately labeled “unitization” in that the percepts associ-
ated with different components are closely coupled as a result of training.
In fact, an interactive facilitation mechanism can be seen as the mechanism

’One may ask why the violations of the analytic model are restricted to, or at least
maximized at, the fast response times. Most likely, a range of strategies was used for placing
ABCDE into Category 1 in the All task. On some trials, an analytic strategy of combining
evidence from separately detected components may have been used. On other trials,
participants may have detected a single constructed unit. On average, the unit-based trials
will be faster than the analytic trials. If the fast and slow response times tend to be based
on single units and analytic integration, respectively, then we predict violations of the
analytic model to be limited to, or more pronounced for, the fast response times.
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that implements holistic unit detection at a higher functional level of
description.

GENERAL REMARKS ON ADAPTIVE PERCEPTUAL
VOCABULARIES

The general conclusions can be divided into empirical and theoretical
ones. Empirically, evidence was found for several types .om perceptual
learning that accompanies concept learning. Concept _mm@bm can cause
the perceptual sensitization of existing dimensions such as size and vnmr?
ness and can cause sensitization of regions in a dimension, a finding
suggesting that categorical perception can be due to _m.mg.m& nmﬁmm.oﬁmm.
Not only can category learning lead to stretching and shrinking of existing
dimensions, but it can also lead to selective sensitization along novel
dimensions. These new dimensions may be created by breaking a fused
dimension into subdimensions, as was the case with saturation and bright-
ness, or by creating dimensions by morphing between E.ES.E..% end
points, as was the case with the bezier curves and ,cm_.n heads. Finally,
the object segmentation and unitization experiments indicate that concept
learning can lead to the addition of new elements in a Humnmon\m perceptual
vocabulary. These new vocabulary elements change how objects are or-
ganized and can lead to responses that are more efficient than predicted
by analytic models that do not develop new vocabularies. .
The major theoretical contribution of the research has been to mvm.n&
some possible ways in which perceptual and conceptual learning might
interact. In both the neural networks described, feature detectors are
developed that represent the network’s set of acquired vocabulary ele-
ments. The networks begin with homogenous, undifferentiated detectors
that become specialized for different inputs over time. mcn.?mﬂzon.& ﬁ.uo,%
models have mechanisms by which detector-to-category associations
modify the nature of the detectors. It is unnecessary to first am<m@ow
detectors and then build associations between detectors and categories.
These two types of learning can and should go on simultaneously.

Staking Out the Territory

It is worthwhile to step back and ask exactly what is entailed by the n_wg
that perceptual vocabularies adapt to the demands of concept learning.
What we mean by a perceptual vocabulary is the set of functional m.mmgmm
used for describing objects. A functional feature, in turn, _m m.mmbma. as
any object property that can be selectively attended to (for a similar claim,
see Smith, Gasser, & Sandhofer, 1997). An organism shows evidence of
using Feature X to describe an object if there is behavioral evidence that
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X can be considered in isolation from other aspects of the object. Thus, a
feature is a “chunk of object stuff” that has been individuated from the
rest of the object. This definition explicitly denies that psychologically
relevant features are objective properties of the external world. Even if a
physicist can measure the illuminance of an object or a chemist can
measure the tannin content of a Bordeaux wine, these stimulus properties
are not psychological features unless the perceiving organism can isolate
them as well. Tying featurehood to selective attention conforms to many
empirical techniques for investigating features. Garner (1974) considered
two features or dimensions to be separable if categorizations on the basis
of one of the features are not slowed by irrelevant variation on the other.
Treisman (e.g., Treisman & Gelade, 1980) argued that features are regis-
tered separately on different feature maps, which gives rise to efficient and
parallel searches for individual features and the automatic splitting of dif-
ferent features that occupy the same object. Given this characterization of a
feature, the claim for vocabulary creation seems less controversial than
might be thought in view of the prevalence of fixed-vocabulary ap-
proaches. A substantial body of evidence from development (Smith, 1989)
and expertise (Burns & Shepp, 1988) indicates that children and novices
have a harder time selectively attending to stimulus aspects than do adults
and experts. Claiming vocabulary creation does not necessitate that fea-
tures are created de novo or that our perceptual system provides us with
information that was not present in any form in the early stages of sensory
processing. It is unclear whether these are even logically tenable positions.
All that is required is that the organism shows behavioral evidence that
stimulus elements come to be isolated with experience.

In some respects, our claim is similar to those made by theorists of
dynamical systems in which an object is recognized if its processing
follows the same trajectory as an object presented earlier, without requir-
ing any decomposition of the objects into part representations (see, for
example, Thelen & Smith, 1994). Both approaches stress the flexibility and
plasticity of perceptual processing, and argue for powerful top-down and
contextual influences on perception. However, a fundamental difference
between the approaches is that we do posit a set of features that are used
for describing objects. Radical versions of the dynamical systems approach
have argued that objects are not represented by a set of elementary
features at all. Thus, our approach is more closely tied to the traditional
“fixed feature set” approach to cognition than it may initially appear. Our
approach and the fixed feature set approach both assume that objects are
represented in terms of a set of building blocks; the theories simply differ
on whether this set is expandable.

In advocating building block representations over complete fluidity,
we may be criticized on the same grounds of inflexibility that we used
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to criticize fixed feature set theories. In our approach, objects must be
described in terms of a finite vocabulary of features that have been
previously acquired. Still, we believe that the traditional mm.<m.3mmmm. of
building block theories compensate for this inflexibility. By building o,c_.mQ
descriptions from elements, we have a generative method m.O« creating
and accommodating novel objects. The advantages of propositional rep-
resentations are accrued by establishing explicit relations between repre-
sented elements. Systematicities in the appearance, function, and influence
of objects can be accounted for in terms of systematicities _umn.immb ﬁ.rmn
featural representations. Perhaps most important, anonﬁow.bm objects
into features provides an efficient and compressed representational code.
Instead of coding objects in a raw, uncompressed manner, short codes
can be used to token discrete features that can be associated with complex
configurations. If a feature that represents the doodle ABCDE is built,
then the large amount of information present in the rich doodle is com-
pressed into a single feature. In the same way that a large data set can
be reduced to a few major components (in principal component analysis)
or dimensions (in multidimensional scaling), a marked information re-
duction can be achieved by establishing features that underlie m%mnmn.swan
variation among a set of objects. This reduction is mnnogmmmrm.a by a.mn-
tifying stimulus aspects that are highly correlated, m.moFgm (differentiat-
ing) them from other aspects, and grouping (unitizing) them. .

The empirical evidence that people execute such a feature-extraction
process comes from transfer experiments. Features that were useful for
an earlier categorization are more likely to be applied to m._mnmu catego-
rization (see Fig. 8.5), are sensitized for subsequent mmBm\. different judg-
ments (Figs. 8.2 and 8.3), are used as features for decomposing mcvmm@cmbn
whole objects (Fig. 8.12), and can be detected without mﬂm_v&nwzx com-
posing them from smaller components (Fig. 8.17). The sum A.Vm g evi-
dence suggests a feature development process that has a ~ngm.§vwnn

*on perceptual processing. In dynamic models that recognize objects by
pulling the raw object description toward an attractor m.wmnm caused by a
previous episode, there is little reason to expect prominent transfer on
the basis of component, rather than overall, similarities. .

In light of our commitment to (adaptive) building Eo.nw representations
of objects, our approach is perfectly consistent with evidence that people
use particular sets of primitive elements. The geons, textons, or conceptual
primitives of fixed feature set theories may be the end product of a general

‘The influence on perception is lasting in the sense that it persists from training to
transfer. However, it remains to be seen how permanent these influences are. In most cases,
the endurance of a perceptual change is probably positively related to the amount of training
required to produce the change.
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perceptual learning strategy. Recent research in computer science has
shown that sets of primitives, including Gabor filters, and size detectors
can be created by a system provided naturalistic scenes (e.g. Miikkulainen,
Bednar, Choe, & Sirosh, 1997). The advantages of learning, rather than
simply positing, elements are that mechanisms are in place for acquiring
slightly different primitives if the environment is modified, and special-
ized domains in the environment can have tailored sets of primitives
designed for them (Edelman & Intrator, 1997).

Constraints on Computational Models
of Perceptual and Conceptual Learning

We have been advocating systems that develop new perceptual vocabu-
laries instead of relying on a fixed set of features. Some may object to
this on grounds of computational plausibility. The argument is: With such
a flexible system it takes too long to learn any category. Even with a fixed
set of features, there may be a combinatorial explosion of complex rules
involving these features, if we allow rules such as “white and (square or
triangle)” (Bruner et al., 1956; Nosofsky, Palmeri, & McKinley, 1994).
Moreover, the picture is much more grim if we allow the possibility of
creating new features and entering these into Boolean expressions. In this
case, there is a combinatorial explosion of potential features combined
combinatorially with a combinatorial explosion of logical expressions.
Our solution to the difficulties associated with finding good solutions in
such an immense search space is to provide two sources of constraints.
Psychophysical constraints enter in because not anything can be made into
a feature. There is a heavy bias for features to be contiguous and coherent
and to follow Gestalt laws of organization. In the segmentation network
(see Fig. 8.14), these constraints were needed to create psychologically
realistic segmentations. Mechanisms biased the acquired features to in-
volve similarly oriented and positioned segments and served to constrain
the number of features contemplated. Via categorical constraints, there is
a bias to develop features that are diagnostic for relevant categories.

In the described networks, these two constraints act in parallel. There
are problems with the flexibility and efficiency of either serial approach—
starting with the set of candidate features admissible by psychophysical
constraints such as topological coherence and then choosing the ones from
this set that obey the categorical constraints, or vice versa (see also Wis-
niewski & Medin, 1994). In a serial approach that uses psychophysical
constraints as a first filter on the feature selection, features that should
be created if useful for a categorization are excluded. For example, seg-
ments that are separated by a pixel are probably eventually formed given
enough training. These features can be accommodated by weakening the
psychophysical constraint on connectedness, but only at the considerable
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cost of failing to sufficiently limit the search space of features mmbﬁm:&.
Parallel constraints allow the individual constraints to both strongly limit
the search space of features but also to be relaxed if required by other
constraints simultaneously being satisfied.

Finally, one possibility is that people may actually be m:xm poor at
combining separate and distinct features into logical expressions. Creating
categories such as “Large and (square or triangle)” may be BEQ. unnatu-
ral, four decades of concept learning research not withstanding. At the
same time, people seem to be adept at integrating components to create
a single, coherent feature. Humans seem to be much more adept at
creating coherent, useful features than they are at mgﬁﬁm.bmocm_% m:.mba-
ing to several unrelated sources of information. By providing an?wEm.Bm
for the development of novel features, much of the need for mmwan.gbm
through the space of logical rules is removed. In many cases, a single
feature suffices if it can integrate many stimulus aspects.

Building Perceptual Vocabularies: A Reprise

Cognitive science researchers who have proposed vw&nc_.mn fixed sets of
primitives have cleverly designed primitives that are genuinely zmmw..__ for
representing words, objects, and events. Our point is simply that ordinary
people may be almost as clever as these researchers and may come up
with their own sets of tailored elements (Schyns et al., 1998). The advan-
tage, of course, is that the elements can be tuned to the particular cate-
gories that are important. Fixed feature sets, no matter how n_m,\.mn_%
constructed, cannot be perfectly tuned to the individual. Either the fixed
feature sets have specific, special-purpose features, in which case the set
is efficient at representing some things but incapable of representing other
things, or the fixed feature set has a large number of general purpose,
universal features, in which case it can represent everything, but not
efficiently, taking advantage of the systematicities particular to m.mogmn.-.
Instead, if perceptual vocabularies are created, they are at least diagnostic
for the category that they were created to accommodate. Hb sum, concepts
certainly depend on perceptual encodings, but it is not viciously circular
to claim that the perceptual encodings also depend on our concepts. In
fact, our concepts seem to be able to “reach down” and influence the very
features that compose the concepts.
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The Proper Treatment of Symbols
in a Connectionist Architecture
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PHYSICAL SYMBOL SYSTEMS

A foundational principle of modemn cognitive science is the physical
symbol system hypothesis, which states simply that human cognition is
the product of a physical symbol system (PSS). A symbol is a pattern that
denotes something else; a symbol system is a set of symbols that can be
composed into more complex structures by a set of relations. The term
physical conveys that a symbol system can and must be realized in some
physical way to create intelligence. The physical basis may be the circuits
of an electronic computer, the neural substrate of a thinking biological
organism, or in principle anything else that can implement a Turing
machine-like computing device. Classical presentations of the PSS hy-
pothesis include Newell and Simon (1976) and Newell (1980); more recent
discussions include Newell (1990) and Vera and Simon (1993, 1994).
The PSS hypothesis, which implies that structured mental repre-
sentations are central to human intelligence, was for some time uncon-
troversial, accepted by most cognitive scientists as an axiom of the field
scarcely in need of either theoretical analysis or direct empirical support.
In the mid-1980s, however, the hypothesis came under sharp attack from
some proponents of connectionist models of cognition, particularly the
advocates of models in the style of “parallel distributed processing,” or
PDP (Rumelhart, McClelland, & the PDP Research Group, 1986; more
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