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We have observed that when people engage in algebraic reasoning, 
they often perceptually and spatially transform algebraic notations 
directly rather than first converting the notation to an internal, non-
spatial representation.  We describe empirical evidence for spatial 
transformations, such as spatially compact grouping, transposition, 
spatially overlaid intermediate results, cancelling out, swapping, and 
splitting. This research has led us to understand domain models in 
mathematics as the deployment of trained and strategically crafted 
perceptual-motor processes working on grounded and strategically 
crafted notations.  This approach to domain modeling has also 
motivated us to develop and assess an algebra tutoring system 
focused on helping students train their perception and action systems 
to coordinate with each other and formal mathematics.  Overall, our 
laboratory and classroom investigations emphasize the interplay 
between explicit mathematical understandings and implicit perception-
action training as having a high potential payoff for making learning 
more efficient, robust, and broadly applicable. 
 
INTRODUCTION 
 
For the last several years our group has been involved in a project that can be construed in 
terms of exploring the relation of formal knowledge and perception.  At first sight, formal 
cognition as seen in scientific and mathematical reasoning involves developing deep 
construals of phenomena that run counter to untutored perception.  In fact, Quine (1977) 
considered a hallmark of advanced scientific thought to be that it no longer requires notions 
of overall perceptual similarity as the basis for its categories.  The background rationale for 



this claim is that unanalyzed perceptual similarities may lead one astray.  For example, 
marsupial wolves may closely resemble placental wolves, but they are evolutionarily rather 
distant cousins.  In general, as a scientist or child (Carey, 2009) develops more complete, 
systematic knowledge about the reasons something has a property, then overall perceptual 
similarity becomes decreasingly relevant for generalizations. 
 
While there is certainly justification for opposing principled understanding with superficial 
perception, we have been exploring the converse strategy of trying to ground scientific and 
mathematical reasoning in perceptual processing (see also Kellman, Massey, & Son, 2010).  
One reason for thinking that perception and formal thinking can be brought closer together 
is that we can train our perceptual processes to do the right thing, formally speaking.  
Perception and visual attention are highly educable processes.  We can train our perception 
to process stimuli in an efficient manner for tasks that are important to us.  An advantage of 
linking high-level processes to perception is that we can co-opt our neurologically large 
and phylogenically early perceptual areas – areas that are the result of millions of years of 
evolutionary research and development.  Finally, there are suggestive correlations across 
individuals between perceptual and conceptual abilities (Goldstone & Barsalou, 1998).  For 
example, schizophrenics have difficulty inhibiting both inappropriate thoughts and 
irrelevant attributes.  Autistics often suffer from overly selective attentional processes, 
including hypersensitivity to sensory stimulation and overly narrow language 
generalization. 
 
Based on these considerations, we have developed a hypothesis we call RUPAS (Rigged 
Up Perception-Action Systems) (Goldstone, de Leeuw, & Landy, 2015), which states that 
an important way to efficiently perform sophisticated cognitive tasks is to convert 
originally demanding, strategically-controlled operations into learned, automatically 
executed perception and action processes.  These tasks can be understood as on par with 
the “visual routines” proposed by Shimon Ullman (1984) to account for how people extract 
information from a visual scene using processes such as shifting attentional focus, indexing 
items, tracing boundaries, and spreading activation from a point to the boundary of an area.  
In this chapter, we apply this general theoretical approach of exploring ways in which our 
sophisticated, formal reasoning abilities are grounded in perception and action to the 
specific knowledge domain of algebra.  Algebra is one of the clearest case of symbolic 
reasoning in all human cognition (Anderson, 2007).  Showing that perceptual factors 
influence even algebraic reasoning provides prima facie support for the premise that 
perception-action grounding cannot be ignored for almost any cognitive task. 
 
RELATED RESEARCH 
 
To study the influence of perceptual grouping on mathematics, we gave undergraduate 
participants a task to judge whether an algebraic equality was necessarily true (Landy & 
Goldstone, 2007a).  We were interested in whether perceptual and form-based groupings 
would be able to override participants’ general knowledge of the order of precedence rules 
in algebra, according to which multiplications are executed before additions.  We tested 
this by having perceptual grouping factors either consistent or inconsistent with order of 
precedence.  For example, if shown the stimuli in the top row of Figure 1, participants 



would be asked to judge whether f + z * t + b is necessarily equal to t + b * f + z.  In fact, 
this is not a valid equality.  However, in the incongruent version of the physical spacing 
manipulation, the narrow spacing around the “+” signs might encourage participants to 
group the f and z together to form a “f + z” unit, as well as forming a “t + b” unit.  If 
participants then match up these units on the left and right sides of the equation, they will 
find the same two units on the right side, leading them to respond “valid.”  As predicted, 
participants make 38% more errors on trials like this in which the formally determined 
order of operations is incongruent rather than congruent with the perceptual grouping 
suggested by the surround lines and circles.  Other methods for manipulating perceptual 
groupings, like varying the connectedness of dots surrounding the mathematical expression 
(middle row) and proximity in alphabet (bottom row) also affect validity judgments.  
Participants continued to show large influences of grouping on equation verification even 
though they received trial-by-trial feedback.  Feedback reduced, but did not eliminate the 
influence of these perceptual cues. This suggests that sensitivity to grouping is automatic or 
at least resistant to strategic, feedback-dependent control processes. 
 
Other research (Landy & Goldstone, 2010) indicates that people are heavily influenced by 
groupings based on perceptual properties when performing not only algebra but simple 
arithmetic as well.  Despite being reminded of, and verbally subscribing to, standard order 
of precedence rules, our college student participants are much more likely to calculate an 
incorrect solution value of 25 for “2+3  *  5  = ?” than “2  +  3*5 = ?,” presumably because 
the narrow spacing around the “+” in the former case biases people to calculate 2+3 before 
they multiply by 5. 
 
People not only respond to the perceptual cues contained within symbolic representations, 
but they also add perceptual cues when they construct their own symbolic representations.   
Landy and Goldstone (2010) asked participants to write symbolic mathematical 
expressions for equations expressed in English such as “nine plus twelve equals nine plus 
three times four.”  Figure 2 shows an example of one participant’s symbolic expression.  
From these expressions, we measured the physical space around the different operators.  
On average, the physical spacing was largest around “=”, consistent with its role as the 
highest level structural grouping for the equation.  The physical spacing was larger around 
the “+” than around the “x” in equations that had both of these operators.  Our account of 
this result is that people produce notations that their own perceptual systems are well 
prepared to process.  One noteworthy aspect of this empirical result is that people are 
creating perceptual cues that help them do the formally right thing even when this activity 
is not modeled for them by textbooks.  Our corpus analysis reveals that most mathematics 
textbooks depict equal spacing around multiplications and additions.  So, even though 
books do not use physical spacing to help students form useful perceptual groups in this 
instance, students still engage in this practice. And this practice is actually a good indicator 
of mathematical skill. In fact, students who place wider physical spacing around lower, 
compared to higher, precedence operators also tend to produce the correct answer to math 
and logic problems (Landy & Goldstone, 2010).  In this manner, we create notations that 
are processed aptly by our perceptual systems, and this is one of the reasons why 
perceptual systems should often be trusted rather than trumped. 
 



Rigged Up Perception Systems 
 
The preceding examples illustrate ways in which we rely on perceptual processes to 
process symbolic notations.  The lingering worry is that, as is the case with placental and 
marsupial wolves, or gold and pyrite (fools gold), appearances may be misleading.  If 
mathematicians rely on superficial perceptual cues to decide how to process mathematical 
notation, won’t they often be led astray?   
 
One answer, described in the previous section, is that notations are not fixed and inflexible, 
but rather can be flexibly tuned to humans’ perceptual systems because they are, after all, 
crafted by humans.  This tuning occurs within an individual’s lifetime, as with the case of 
physical spacing in students’ written mathematical expressions, and also occurs on historic 
time scales.  Much of the history of mathematical notation is one of changing over time to 
better fit human perceptual systems (Cajori, 1928).  For example, the historic shift from 
representing “3 times the variable b plus 5” as “3×b+5,” to later representing it as “3•b+5,” 
and more recently as “3b+5,” represents a consistent shift toward decreasing the spacing 
between operands that should be combined together earlier.  Both individually and 
culturally speaking, we craft notations so that “superficial” perceptual cues are actually 
reliably indicators of correct reasoning, co-opting our perceptual systems to serve our 
cognitive needs. 
 
As we tune our mathematical notations to fit our perceptual systems, we also tune our 
perceptual and attentional systems to fit math.  People train their visual-attention processes 
to give higher priority to notational operators that have higher precedence.  The operator 
for multiplication, “×,” attracts attention more so than does the notational symbol for the 
lower precedence addition operator, “+.” People who know algebra show earlier and longer 
eye fixations to “×”s than “+”s in the context of math problems (Landy, Jones, & 
Goldstone, 2008).  Even when participants do not have to solve mathematical problems, 
their attention is automatically drawn toward the “×”s.  When simply asked to determine 
what the center operator is for expressions like “4 × 3 + 5 × 2,” participants’ attention is 
diverted to the peripheral “×,”s as indicated by their inaccurate responses compared to “4 + 
3 + 5 + 2” trials (Goldstone, Landy, & Son, 2010).  The distracting influence of the 
peripheral operators is asymmetric as shown by the result that responding “×” to “4 + 3 × 5 
+ 2” is significantly easier than responding “+” in “4 × 3 + 5 × 2.”  That is, the operator for 
multiplication wins over the operator for addition in the competition for attention.  This is 
not simply due to specific perceptual properties of “×” and “+” because similar 
asymmetries are found when participants are trained with novel operators with orders of 
precedence that are counterbalanced.  The results suggest that a person’s attention becomes 
automatically deployed to where it should be deployed to get them to act in accordance 
with the formal order of precedence in mathematics. 
 
Rigged Up Action Systems 
 
Mathematical symbol systems would not be very valuable if the only thing we could do 
with symbols was to perceive them.  In fact, we also transform symbols, deriving new 
implications and relations that lay dormant in their original form.  What are the processes 



that are responsible for these transformations? One possibility is that symbolic 
transformations are executed internally using abstract representations.  This account is 
tempting because notations like “2 × b  = 14” seem to be straightforwardly translatable into 
hierarchical mental representations like  “= ( × (2, b), 14).”  From this representation, 
propositional transformation rules like “= ( × (a, b), c)  ⇒  = ( b, ÷ (c,a))”  can be applied to 
solve for b.  This kind of propositional transformation rule is powerful because of its 
generality and ability to operate on arbitrary inputs without any influence of their original 
spatial and perceptual properties (Newell & Simon, 1976). 
 
However, as we have already seen, humans are indeed influenced by the spatial and 
perceptual properties of notations. Accordingly, the alternative account of symbolic 
transformation that we have pursued is to keep the symbolic form in its original spatial 
format, and apply simulated spatial transformations to this world of notations.  For the 2 × 
b  = 14 problem, one candidate transformation is spatial transposition, in which the 2 is 
moved from the left side of the equality to the right side, where upon it is moved to the 
denominator of a 14/2 quotient.  This spatial movement might be executed literally, for 
instance using number tiles if they are at the reasoner’s disposal.  More often, they are 
executed in the reasoner’s mind.  Although this transposition operation is highly intuitive, 
expressed in language when we talk of solving the equation by “moving the 2 from one side 
to the other,” it is noteworthy that this kind of spatial transformation does not appear in 
most leading models of algebra (e.g. Anderson, 2007). 
 
Displays like the one shown in Figure 3 were devised to measure if and when participants 
adopt a spatial transposition strategy for solving simple algebraic equations.  Equations 
were superimposed on top of a vertically oriented grating that continuously moved to either 
the left or right.  The movement of the grating was either compatible or incompatible with 
the movement of numbers implicated by a transposition strategy.  For the equation “4 * Y 
+ 8 = 24” shown in Figure 3, a rightward motion of the grating would be compatible with 
transposition because, in order to isolate Y on the left side, the 4 and 8 must be moved to 
the right side.  However, for the equation “24 = 4 * Y + 8,” a rightward motion would be 
incompatible.  Participants solved the equations more accurately when the grating motion 
was compatible with transposition. 
 
The influence of background motion on algebraic solutions is consistent with a “visual 
routines” (Ullman, 1984) approach to mathematical cognition.  According to this notion, 
people engage in dynamic, visual-spatial routines to perform perceptual computations.  Of 
particular relevance to the perceptual learning aspect of this transposition routine, we also 
found that participants who have taken advanced mathematics courses such as calculus are 
more affected by the compatibility of the background motion than students with less math 
experience.  Accordingly, we conclude that the imagined motion strategy is a smart 
strategy that students come to adopt through experience with formal notations, rather than a 
strategy that students initially use while learning, and then abandon as their sophistication 
increases.  Learned perceptual routines are not at odds with strong mathematical reasoning.  
They are often the means by which strong mathematical reasoning becomes possible.  It is 
a smart strategy to take advantage of the scaffolding provided by space, using it as a canvas 
on which to project transforming motions. 



 
Another result consistent result with increasing use of space in notation with increasing 
mathematical sophistication is that older children rely more on physical spacing as a cue to 
perceptual organization than do younger children.  Braithwaite, Goldstone, van der Maas, 
and Landy (2016) analyzed a corpus of 65,856 8-12 year old Dutch children’s solutions to 
simple math problems in which physical spacing was manipulated to be either congruent or 
incongruent with the formally defined order of operations.  For example, the physical 
spacing in “2+7  ×  5” is incongruent with the rule that multiplications are executed before 
additions, whereas “2  +  7×5” is congruent.  Incorrect answers like 70, the answer that 
would be produced if the problem was incorrectly organized as (2+7) ×5, were much more 
common with the incongruent spacing.  The fact that the difference in accuracy between 
incongruently and congruently spaced problems increased with age and math experience is 
not expected under the notion (e.g. Vygotsky, 1962) that mathematical development 
involves a shift from informal mechanisms to formal rules and axioms.  Instead, the study 
shows that reliance on informal mechanisms can sometimes systematically increase with 
age. 
 
Figure 4 shows other common actions related to mathematical reasoning.  Each of them is a 
physical and spatial action that nonetheless can be made to align perfectly with formally 
valid operations.  For example, if properly constrained, the operation of spatially swapping 
factors is formally sanctioned by the commutative property of multiplication.  Likewise, 
the intuitive act of cancelling out the two 3s in the bottom problem of Figure 4 can be 
formally sanctioned by a multiple step axiomatic derivation: (3×X)/(3×Y) ⇒ (3/3)×(X/Y) 
⇒1×(X/Y) ⇒ X/Y.  Future empirical work will be necessary to determine how often these 
actions are performed by mathematical reasoners and how effective they are.  Our 
preliminary observations indicate that spatial actions like swapping A×B for B×A, splitting 
the a in a×(5+7) to form 5a + 7a, moving the 3 from the left side to the right side of the 
equality in X+3=8, simplifying 4×7 by projecting 28 on top of the original term, and 
canceling out the 3s in 3x/3y are commonplace and often times deployed effectively. While 
it is plausible and intuitive that mathematical reasoning should shift towards abstraction as 
it develops, our initial observations of mathematicians “in the wild” suggest that they are at 
least as likely to employ these kinds of spatially concrete transformations as are less 
sophisticated reasoners.  Sophisticated reasoners still use concrete actions – they just apply 
them more efficiently and felicitously. 
 
 
DISCUSSION 
 
On the basis of our laboratory investigations of rigged up perception and action routines for 
mathematical reasoning, we have implemented algebra tutoring software systems with a 
specific aim in mind: to help students rig up their perception and action systems for 
effectively processing algebraic notation and thinking mathematically.  Currently, the most 
actively developed version of the system, named Graspable Math 
(http://graspablemath.com), allows students to interact in real-time with math notations 
using perception-action processes.  The system is a natural outgrowth of our empirical 
findings suggesting that people come to be proficient reasoners in science and mathematics 



not by ignoring perception, but by educating it (Goldstone, Deleeuw, & Landy; 2015; 
Goldstone, Landy, & Son, 2010; Landy, Allen, & Zednik, 2014).  Our intention is to 
construct a virtual sandbox for students to explore how algebra operates, and to develop 
both intuitions and algorithms for performing mathematics (Ottmar, Landy, Goldstone, & 
Weitnauer, 2015; Ottmar, Landy, Weitnauer, & Goldstone, 2015). 
 
One core design commitment of Graspable Math is that students must be able to intuitively 
see linkages between various components of mathematics.  Figure 5 shows a screen shot 
from the system as a student work through the process of solving for two unknowns, x and 
y.  The screen shots do not adequately show the real-time interactive experience and so we 
encourage readers to visit the project web page.  The most immediate, intuitive linking is 
from one algebraic expression to the next via spatial transformations of the kind shown in 
Figure 4.  Near the bottom right hand corner of Figure 5, one can see that the user is 
picking up the -1 (shown in red), in the middle of the process, perhaps, of transforming the 
expression from y=-1+4x into y=4x - 1 or y+1=4x.  The commutativity of addition is being 
shown effectively by the instantaneous reactions of the  system; as the user moves the -1 to 
the right of 4x, the 4x moves over to give room to -1.  If the -1 crosses the equal sign, it 
transforms immediately into a +1. This shows the user a deep mathematical relation: if 
some Y is equal to a function of some X, then X is also equal to the inverse of that function 
applied to Y. Graspable Math foregrounds the spatial foundations of valid algebraic 
reasoning. 
 
Some teachers resist approaches that include spatial transpositions, viewing them to be 
illegitimate algebraic transformations.  They object, “You shouldn’t teach students that 
they can just move the 2 of y-2=5 to the right side while changing its sign.  Students should 
go through the axiomatically justified steps of adding 2 to both sides of the equation, 
yielding y-2+2=5+2, and then simplifying to y=5+2.”  To this objection, we respond that 
the teacher’s preferred solution is one justifiable transformation pathway, but mathematics 
is rich enough to permit multiple axiomatizations of algebra, and the spatial 
transformations shown in Figure 4 provide an axiomatization that can also be shown to be 
formally valid.  The traditional axiom of addition states: if two quantities are equal and an 
equal amount is added to each, they are still equal.  The alternative, spatial axiomatization 
has three noteworthy advantages.  First, it is a much more psychologically intuitive 
axiomatization because it has been designed to be efficiently processed by human 
perception-action systems.  Second, it is more efficient, requiring one instead of three 
transformations.  Given that there is non-negligible “fail rate” (e.g. a student getting the 
wrong result, or giving up entirely) for each transformation, streamlining algebraic 
transformations is a valuable enterprise.  Finally, the transposition operation makes 
intuitive the general mathematical pattern 𝑌 = 𝐹 𝑋 ≡ 𝐹&' 𝑌 =	X that is almost 
completely hidden in the traditional, additive axiom of addition. 
 
Another kind of linkage that Graspable Math allows users to see and create is between 
algebraic notation and other representations.  Figure 5 shows a line graph corresponding to 
the two equations on each of its sides, where each equation is expressed as a line.  The 
graph-algebra linkage is dynamic and interactive.  As users scroll through different values 
for the constants in the algebraic notation, they see how those values affect the slope and 



intercept of the lines.  Alternatively, if a user manipulates the slope or intercept of the line 
within the graph, the yoked symbolic numbers will automatically adjust.  This kind of 
bidirectional linkage allows each representation to contribute, where it shines most, to the 
user’s understanding of the underlying mathematics.  Relations between lines are highly 
salient in the graph format.  In particular, the intersection point between the lines is 
conspicuous, and can provide an impetus for students to try to understand what is unique 
about that point.  A fuller answer to that graph-inspired question is provided by the linked 
notation.  In particular, by substituting what Y is equal to from one equation into the Y 
term for the other leads to the center equation shown below the graph in Figure 5.  This 
center equation, expressed solely in terms of X because the Ys have been eliminated, can 
then be solved for X, which provides a symbolic tie-in to the point on the X-axis where the 
two lines intersect.  An important part of our philosophy for Graspable Math is that neither 
the graph nor the algebraic notation is primary or privileged.  Both can provide an 
improved understanding of the other, and when placed in correspondence, allow an 
understanding that transcends what either can provide on its own.  For example, a student 
who first solves for X and Y algebraically may find themselves wondering what this 
solution looks like on the graph.  If she plots the point corresponding to the solution of the 
two-equation system shown in Figure 5, {-2,-9}, then she augments her understanding of 
this solution to (literally) see it as the single point that lies on both of the lines 
corresponding to the two equations. 
 
A third kind of linkage, depicted in green in Figure 5, is between the different steps of a 
derivation.  Graspable Math uses interactive animations to show the spatial transformations 
that connect adjacent steps in a derivation, but often times it is useful for mathematical 
reasoners to see the overall correspondences between elements of a long derivation.  In 
converting the equation of a line from the point-slope form of y-7=3(x-2) to slope-intercept 
form of y=3x+1, it is illuminating to see why and how the intercept depends on both the 
point and the slope of the original form, but the slope does not.  Graphically speaking, if a 
line needs to hit a particular point {2,7}, then as the slope of the line becomes increasingly 
shallow, it will have to hit the Y-intercept at increasingly high points.  Algebraically 
speaking, the intercept is seen to depend on the y-coordinate of the point {2,7} in a directly 
proportional way, but is seen to depend on the x-coordinate in a multiplicative manner with 
the slope.  Together, these twin lenses onto linear systems take advantage of the superior 
spatial relation highlighting of the graph representation and the superior highlighting of 
quantity dependencies of the algebraic representation. 
 
We have engaged in a considerable amount of testing of Graspable Math in classroom and 
informal learning contexts.  Students are generally highly enthusiastic and engaged when 
interacting with the system.  Achieving these high levels of engagement is, in itself, a 
major achievement in educational design given that most students find algebra to be one of 
the least liked topics in all of their K-12 school experience!  Moreover, on tests of transfer 
of mathematical reasoning to new problems presented in a paper-and-pencil format, 
Graspable Math has been shown to have educational benefits compared to standard 
practices for teaching the same content (Ottmar, Landy, Goldstone, & Weitnauer, 2015).   
 



One lingering concern may be whether students could become dependent on the spatial 
transformations that Graspable Math foregrounds, overgeneralizing them inappropriately. 
For instance, when deploying Graspable Math in educational contexts, instructor-coaches 
should be aware of the potential for students to acquire “mal rules” – procedural 
transformations that are not formally valid (Sleeman, 1984).  For example, because 
cancelling out terms is so aesthetically and kinesthetically agreeable for many students, 
there is some tendency to overgeneralize from those situations where spatial cancelling is 
valid (e.g. crossing out the 3s in 3x/3y) to those where it is not (e.g. (3+x)/(3+y)).  One 
might draw the conclusion from these infelicitous perception-action generalizations that 
these seductively intuitive but dangerous perception-action routines should be avoided.  
Relying on formal and explicit rules may be safer (Kirshner & Awtry, 2004).  However, we 
have had success by instead training perception-action routines to become more nuanced in 
their triggering conditions and deployment.  One way to train this subtlety is by placing the 
forms 3x/3y and (3+x)/(3+y) side by side, showing that the cancelling transformation can 
apply to one but not other, and then showing what the allowed spatial transformations of 
the latter form is: (3/(3+y)) + (x/(3+y)).  The side by side juxtaposition of situations in 
which canceling 3s is and is not valid is a powerful pedagogical strategy for highlighting 
critical differences between the forms (Gentner, Loewenstein, & Hung, 2007; Weitnauer, 
Carvalho, Goldstone, & Ritter, 2014). 
 
RECOMMENDATIONS AND FUTURE RESEARCH 
 
When thinking about a content domain, there is a tendency to focus on the facts, explicit 
strategies, and formal models that underlie the domain.  While these are certainly important 
components, it is easy to neglect the more implicit “feels” that an expert develops for a 
domain (Goodwin, 1994).  These feels are often underappreciated precisely because they 
are implicit and hard to put into words.  Even for the apparently abstract and formal content 
domain of algebra, proficient practitioners develop feels that have a surprisingly large 
impact on what they are able to accomplish.  These feels develop at both input and output 
ends of information processing.  On the input end, mathematicians develop strong 
dispositions to perceptually organize and re-organize mathematical objects in ways that 
help them see patterns that are important to them.  On the output end, mathematicians 
develop action routines that help them transform math in revealing ways.  Moreover, the 
input and output sides are inextricably linked because what we perceive influences the 
actions we generate, and our actions transform the world to make fruitful perceptions more 
likely (Landy & Goldstone, 2007). Indeed, the most transformative cultural artifacts are 
those that, like algebraic notation, transform complex conceptual problems into simple 
perceptual and spatial tasks—the kinds of tasks that we, as a species, have evolved to 
perform rapidly and reliably (Hutchins, 1995). 
 
Given this perspective, our foremost recommendation going forward is to consider ways to 
incorporate perception-action procedures into models of domain knowledge.  For education 
purposes, it is beneficial for coaches, trainers, teachers, and students to think about ways of 
adapting how to see and how to act.  Although this kind of knowledge can be considered to 
be procedural, it is quite different from traditional procedural knowledge that is modeled 
after following recipes, rules or algorithms.  In algebra, it is one thing to explicitly know 



that the distributive property of multiplication over addition can be used to transform 
3(X+Y) into 3X+3Y and another thing to reliably enact the spatial action routine that splits 
the 3 into the proper number of terms within the parenthesis and constructs the formally 
valid written expression.  Perception and action procedures will likely involve different 
effective training techniques than knowledge that involves either declarative knowledge or 
recipe following (Koedinger, Booth, & Klahr, 2013).  Compared to more explicit 
knowledge, embodied and grounded perception-action routines seem to benefit from 
prolonged and spaced practice, tight agent-to-environment coupling, scaffolded training 
support, and training that emphasizes active construction over passive study of solved 
problems. 
 
Although explicit knowledge and perception-action procedures should be distinguished for 
purposes of optimizing their acquisition and use, it would be a mistake to treat the two 
kinds of knowledge as operating independently, in parallel.  In fact, our second 
recommendation is to understand understanding itself as the interplay between explicit 
knowledge and implicit perception-action training.  It may be tempting to try tackling the 
tasks of training explicit and implicit knowledge separately.  Much of modern 
neuroimaging encourages treating different brain regions as modules whose activity levels 
can be assessed separately.  This leads naturally to an approach toward training that stresses 
the importance of increasing or decreasing the activity of particular modules, much as one 
would use bicep curls in weightlifting to strengthen the biceps in a targeted, muscle-
specific way.  We propose an alternative vision: successful training will involve the 
coordination of modules rather than their independent strengthening (Schwartz & 
Goldstone, 2016).  Proficient mathematicians think strategically about ways of training 
over time their perception-action systems to do the Right Thing, formally speaking.  They 
also think creativity and laboriously about ways to coordinate between algebraic, geometric, 
topological, spatial, definitional, and model-based understandings of a situation.  If our 
goal is to promote learning outcomes that are efficient, robust, and broadly applicable, then 
there are great potential payoffs to developing learning contexts that allow our explicit and 
implicit understandings to mutually inform one another. 
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Figure 1.  Samples from three experiments reported by Landy and Goldstone (2007).  Participants 
were asked to verify whether an equation is necessarily true.  Grouping suggested by factors such as 
physical spacing, connectedness of contextual geometric forms, and proximity in the alphabet, could 
be either congruent or incongruent with the order of precedence of arithmetical operators (e.g. 
multiplications are calculated before additions).  The physical manipulations shown all bias 
participants to perceptually group the symbolic expressions.  When formed perceptual groups are 
congruent with formal order of precedence then validity judgments are much more accurate than 
when they are incongruent. 



 
 

 
  

  

Equality Sum 

Product 

Figure 2.  An example of a participants’ drawn symbolic representation of an equation expressed in 
an English sentence, taken from Landy and Goldstone (2010).  The physical spacing around the “=”, 
“+”, and “X” was measured and compared.  Notice how in the drawn equation, the widest spacing is 
found around the “=” and “+” sign, while the spacing around the “x” is much smaller.   

“Write the equation for: nine plus twelve equals nine plus three times four” 
 



 
 

 

 

 

  

Compatible motion Incompatible motion 

Figure 3.  As participants solved for the variable in equations like the above, a vertically 
oriented grating continuously moved either to the left or to the right.  Although irrelevant 
for the task, when the movement of the grating was compatible with the movements of the 
numbers required by spatial transposition, participants were more accurate. 



 

 

 

 

 

  

Initial State Transformed StateSpatial Transformation

3 = # − 6 ×(7 + *)Swapping 3 = (7 + *)× # − 6

Splitting * = ,×(5 + 7) * = 5, + 7,

Transposing # + 3 = 8 # = 8 − 3

Simplifying * = 3 + 4	×	7 * = 3 + 28

Cancelling 2 = 3#
3* 2 = #

*
Figure 4.  Examples of physical transformations within notational space.  Operations like 
swapping factors, splitting a variable to make identical copies, transposing a term from one 
side of an equation to the other, simplifying by replacing one expression with another, and 
canceling factors in a numerator and denominator are commonly observed in mathematical 
reasoners, and are often employed in a cognitively efficient and valid fashion. 



 

 

 

Figure 5.  A screen shot from Graspable Math (http://graspablemath.com).  Three kinds of 
linkages between representations are shown.  First, interactive animations, such as the 
moving red - 1 in the lower right corner, provide intuitive, dynamic, and spatial linkages 
between successive steps in an algebraic derivation.  Second, the green pipelines show how 
symbolic elements are related to each other across several steps of a derivation.  Third, the 
linear equations on the left and right sides are dynamically linked to the graph in the 
middle.  Manipulating the graph’s lines instantaneously affects the symbolic quantities in 
the equations, and vice versa. 


