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Abstract 
Traditional models of perceptual learning usually assume that 
learning occurs through changes of weights to fixed primitive 
features or dimensions. A new model for perceptual learning 
is presented which relies on simple and physiologically 
plausible mechanisms. The model suggests how flexible 
features can be dynamically derived from input characteristics 
in the course of learning and how diagnostic shape 
representations could be formed due to conceptual influences. 

Keywords: perceptual learning, neural networks, 
categorization, concept learning. 

Introduction 
Perceptual learning refers to performance improvement in 

different sensory tasks as a result of practice, training, or 
simple exposure. In the domain of visual perception, these 
tasks range from simple detection and discrimination of 
geometric shapes to more complex tasks like face 
recognition and object categorization. One important 
question concerns the nature of the processes that lead to 
perceptual learning. Evidence has been provided for a wide 
range of changes – from input based representation 
modifications to influences of expectation, attention, or task. 
Because of the highly complex and intertwined interactions 
of different processes, a deliberate blurring of the boundary 
between concepts and percepts has been proposed 
(Goldstone & Barsalou, 1998). There is a need for theories 
and models that account for conceptual influences on 
perceptual learning.  

Computational modeling is often used to simulate 
perceptual learning processes (e.g., Mozer, Zemel, 
Behrmann, & Williams, 1992; Petrov, Dosher, & Lu, 2005; 
Poggio, Fahle, & Edelman, 1992). Modeling places 
important constraints on explanations about perceptual 
learning and pushes theoretical accounts to be more 
quantitative and concrete. Testable behavioral predictions 
are often derived from simulations. Models of perceptual 
learning, however, rarely try to account for performance in 

different tasks at the same time. They should be able to 
operate in the absence as well as in the presence of reward 
feedback. In addition, many of the models rely on a finite 
number of fixed representations (primitives) as the 
elementary building blocks for composing concepts. Such 
accounts fall short of capturing the richness of visual pattern 
learning phenomena. There is experimental evidence 
suggesting that perceivers not only learn to selectively 
weight existing dimensions, but also learn to isolate 
dimensions that were originally psychologically fused 
together (Goldstone & Steyvers, 2001), and reorganize 
visual inputs into new units (Behrmann, Zemel, & Mozer, 
1998; Goldstone, 2000).  

In the present article, a neural network model is described 
which relies on the physiologically plausible learning 
mechanisms of competitive and Hebbian learning. The 
model focuses on simulating results from task-dependent 
perceptual learning, which may involve both a higher-level 
conceptual influence and a lower-level perceptual 
reorganization. Studies with adults show that perceptual 
learning is influenced by the feedback presented to learners 
(Shiu & Pashler, 1992) but can also take place without 
feedback (Watanabe, Náñez, & Sasaki, 2001). Experimental 
data from infants show also that perceptual learning can 
occur without feedback (Quinn, Schyns, & Goldstone, 
2006). Accordingly both supervised and unsupervised 
learning should be incorporated into a full model of 
environmentally induced perceptual plasticity. The model 
for perceptual learning presented below is able to simulate 
both influences. 

Several simulations are reported that correspond to 
empirical results from behavioral studies. Finally, 
conclusions are put forward about the way statistics from 
visual patterns can lead to the building of flexible primitive 
features and how higher-level conceptual tasks can 
influence the formation of complex shape representations.             



The Model where L is the learning rate for the winning unit (0.1 for all 
simulations), M is the learning rate for the losing unit – it is 
set to 0.001 for all simulations. ,
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j kI  is the activation of the 

retina pixel j from receptive field d when input k is 
presented, and  is the weight between pixel j from 
receptive field d and competitive unit i. The stimuli are 
presented as activation patterns on the retina, where each 
pixel is either 1 (active) or 0. Activation of competitive 
units is normalized so that the winning unit’s activation is 1 
and all the losing units from the cluster sharing the same 
receptive field are inhibited to have zero activation. The 
horizontal Hebbian weights learn according to the Hebbian 
rule:  
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The model for perceptual learning consists of two main 
layers and an artificial input retina (Figure 1). The first layer 
is based on the competitive learning paradigm (Rumelhart & 
Zipser, 1985). However units compete only for a small part 
of the input⎯that is, each unit has a receptive field and 
competes only with other units with the same receptive 
field. In the current implementation of the model there is no 
overlap between receptive fields. Competing units are 
organized in inhibitory clusters⎯two units with the same 
receptive field cannot be active at the same time. Only the 
winner for this receptive field is active. A competitive unit 
is connected with horizontal Hebbian weights to all units 
from the other inhibitory clusters. The horizontal Hebbian 
connections link the parts of an input pattern in terms of 
coactivation of the competitive units that are specialized to 
those parts. The activation of a competitive unit is computed 
in two time-steps according to the following equations: 
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where , ( )d

i kA t  is the activation of unit i from cluster d in 

moment t when input pattern k is presented, ,
d
j kI  is the 

activation of input pixel j from receptive field d for pattern 
k,  is the weight of the connection between unit i and 

pixel j, 

,
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, ( )p
l kA t  is the activation in moment t of competitive 

unit l from cluster p for pattern k,  is the weight of the 
horizontal connection between unit i from cluster d and unit 
l from cluster p, n is the number of pixels in receptive field 
d, s is the number of competitive units from cluster p, and c 
is the number of clusters. In the following simulations, s is 
the same for all clusters, that is, the number of competitive 
units in the different clusters is constant. The parameter η is 
set to 0.1 and represents the smaller contribution of the 
horizontal connections compared to the bottom-up 
activation. The winner from each cluster is determined as 
the most active unit inside the cluster. The output units have 
sigmoid activation functions. 
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Learning for the connections between an input receptive 
field and the competitive units from the corresponding 
inhibitory cluster follows the classical formula: 
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where α is the learning rate, d
iA is the activation of unit i 

from cluster d, p
lA  is the activation of unit l from cluster p, 

and D is the decay rate of the weights. 
The competitive layer is fully connected to the output 

layer with Hebbian weights that learn according to the same 
rule as the horizontal connections, with the exception that 
they have different decay and learning rates. All Hebbian 
weights were set to zero in the beginning of a simulation.  

 
 

 

 
 

Figure 1: The model for perceptual learning. Only some of 
the connections are shown for visualization purposes. See 
the text for full details. 
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The network learns after each pattern. The competitive layer 
corresponds to lower-level cells with small receptive fields 
that cover only small parts of an input, while the output 
units correspond to more complex structures that are 
thought to participate in higher-level cognitive tasks 

Simulations and Results 
Two types of simulations are possible with the described 
model. The first type corresponds to learning without 
feedback. In this operational mode, the output layer is 
activated at random since no teacher signal is available. In 
other words, this is unsupervised learning of the competitive 
layer, based only on the characteristics of the input space. 
When feedback is available, a particular pattern of 
activation appears on the output layer as a teacher signal. 
This signal represents the influence of higher-level 
conceptual processes on learning.  

Unsupervised Learning 
The unsupervised learning of the competitive layer alone 
was simulated with stimuli close to those used in Quinn and 
Schyns (2003) and Quinn et al. (2006). Using an 
unsupervised model to simulate empirical results from 
infants seems like a natural correspondence given that 
infants in the first few months of life do not receive 
instruction on how to organize their visual experiences. A 
series of experiments were conducted to determine whether 
infants, like adults, can perceive visual patterns in terms of 
parts extracted through category learning rather than parts 
that would be derived from adherence to gestalt 
organizational principles.  

 

 

When 3- to 4-month-olds were presented with visual 
patterns consisting of overlapping circle and polygon shapes 
(Figure 2A), the infants tended to interpret these forms in 
terms of a polygon and circle, consistent with a good 
continuation principle. This was evidenced by infants being 
more surprised (looking longer) by a subsequently presented 
pacman shape (Figure 2C) than a circle (Figure 2D).  
However, when a separate group of 3- to 4-month-olds was 
first presented with a series of patterns containing the three-
quarter “pacman” shapes (Figure 2B), and then 
subsequently with the patterns shown in Figure 2A, the 
infants interpreted the ambiguous patterns in Figure 2A as 
containing a pacman instead of a circle, as evidenced by 
their greater looking times for the circle than the pacman. 
These experimental results strongly suggest that 
unsupervised learning is capable of overriding gestalt laws 
of organization such as good continuation if the prior 
learning history supports an alternative organization. 

The model can provide a computational account for these 
empirical findings. The competitive layer is capable of 
extracting elements and statistical dependencies from the 
input structure even if no feedback is available. Thus the 
gestalt law of continuity was simulated with presentation of 
simple forms at different positions on the retina. Ten such 
patterns (three vertical lines, three horizontal lines, and four 
circles) were presented in random order for 2000 cycles. 
This pre-training phase simulated the infant’s perceptual 
experience prior to arrival at the laboratory and conceivably 
corresponds with the experiences of young infants as they 
encounter visual patterns in the environment. We were 
interested in the ability of the model to acquire perceptual 
constraints from commonly occurring patterns instead of 
explicitly building in the good continuation principle. This 
could also be interpreted as the evolved representation of 
naturally occurring statistics in visual patterns (Olshausen & 
Field, 1996). 

 The input retina consisted of 225 pixels organized in a 
15x15 square matrix. There were 9 non-overlapping square 
5x5 receptive fields with 8 units in an inhibitory cluster 
competing over each of the receptive fields, which makes 
for a total of 72 nodes in the competitive layer. The learning 
rate of the horizontal Hebbian weights was 0.05 and the 
decay rate was set to 0.009. After the pre-training phase, 
some of the competitive units specialized for parts of lines, 
while others specialized for arcs of a circle. Then an 
ambiguous pattern (Figure 3A) was presented. This portion 
of network training and testing corresponded to the first 
familiarization test phase in the study with infants, when 
similar patterns each consisting of an overlapping circle and 
a polygon were presented which led to the segmentation of 
the circle and the polygon by infants. The ambiguous 
pattern given to the model activated four “arc” and two 
“line” nodes from the competitive layer, thus forming a 
good, continuous circle and some parts of a polygon which 
was consistent with the infants’ behavior.  The activation 
pattern over the competitive layer is visualized in Figure 3B 
with the following algorithm – each pixel represents the  
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Figure 2: Stimuli from Quinn and colleagues, 2006. 



 
 
 

Figure 3: Unsupervised learning simulation 
 

weight between this pixel and the competitive unit 
multiplied by the competitive unit’s activation. This 
visualization is intended to show that the competitive units 
were not activated accidentally but represented both the 
structure of the presented pattern and a learned continuity 
principle for a circle shape. The polygon shape triggered 
only the activation of two separate line segments, because 
the network had never been exposed to any polygon shape 
and thus did not have the chance to acquire any polygon 
representation during its pre-training. This result shows that 
the network does not simply imitate the presented pattern 
but is affected by its previous knowledge about perceptual 
grouping that has been stored in the horizontal connections.  

The same network was fed for 200 cycles with two 
patterns containing pacman shapes (Figure 3C, 3D) and 
again was presented with the ambiguous pattern 3E. This 
corresponded to the two-part procedure in which the infants 
were first presented with pacman shapes and subsequently 
with circle shapes (2B followed by 2A). Once again the 
model behavior was very similar to what the experimental 
results suggested. This time the pacman shape was strongly 
active and some polygon segmentation appeared but was 
less active than the pacman (Figure 3F). The pacman shape 
actually was represented by three competitive units 
specialized for arcs and one specialized for an angle. The 
“arc” units were initially connected to the fourth arc unit 
which completed the active circle from Figure 3B; however, 
after the patterns containing the pacman shapes were 
repeatedly shown to the network, the angle unit became 

more active than the arc unit over the same receptive field, 
which led to the angle unit winning for this receptive field. 
This could be interpreted as a spontaneous formation of a 
virtual pacman shape detector that is constructed from 
smaller low-level representations of three arcs and one angle 
segment.  

B A Supervised Learning 
Supervised learning is often used in studies of adult 
perceptual learning and can influence the course of learning. 
Previous experiments (Pevtzow & Goldstone, 1994) have 
suggested that observers seem to develop perceptual 
detectors for stimulus elements that are diagnostic of task-
critical categorization while they learn to categorize simple 
patterns. The same patterns, when they receive different 
categorizations, result in different psychological features 
being constructed.  The nature of the detectors depends not 
only on the input patterns as in the previous simulation, but 
on the categorization task as well. As an example, the 
ambiguous scene in Figure 3A was more likely to be 
segmented into a circle and polygon when the circle was 
previously relevant for categorization, and more likely to be 
segmented into a pacman when the pacman was relevant. 

D C 

The experimental results from Pevtzow and Goldstone 
(1994) have been simulated with a model similar to the one 
presented here (Goldstone, 2000). The previous model 
however relied on built-in perceptual constraints and input 
patterns competing to be accommodated by a competitive 
unit. The present model adds plausible Hebbian learning to 
the competitive learning mechanism used in Goldstone 
(2000). The present model also uses more local competition 
for small parts of an input inside a receptive field instead of 
competition for the whole input. This leads to a somewhat 
different interpretation of a detector – in the present model a 
detector is composed of several smaller competitive units 
from different receptive fields that form together a coherent 
shape detector over the whole input retina.  

E F 

In the following simulations the formation of such 
detectors was influenced not only by the input properties as 
in the unsupervised learning but also by a conceptual 
teacher signal that led to the formation of categorization-
relevant detectors at the output layer of the network. A 
teacher signal was directly presented as a pattern of 
activation on the output layer during the supervised training. 
This was done for simplicity since the influence of higher-
level categorization or judgment structures can be simulated 
in different ways – one possible mechanism that was used 
by Goldstone (2000) was top-down influence from a 
categorization layer to the detector layer. 

A 256 square 16x16 pixel retina was used; competitive 
units’ receptive fields were square 8x8 non-overlapping 
matrices, which yielded a total of four receptive fields. Each 
inhibitory cluster consisted of 4 units competing with one 
another. The output layer had two units. Learning rate for 
the output Hebbian weights was set to 0.1 and the decay rate 
was 0.04. The horizontal Hebbian connections had the same 
learning and decay rates as in the previous simulation.  



 
 

Figure 4: Inputs for the categorization task simulation 
 

Four input patterns were presented to the network (Figure 
4). First, feedback was given to the network that 4A and 4B 
belong to one category (1, 0) and 4C, 4D belong to another 
(0, 1). With this horizontal categorization rule, 50 cycles 
were run with the four input patterns presented in a random 
order during each cycle. The mean squared error of the 
output units displayed a rapid decrease (Figure 5B). The 
network learned to distinguish 4A and 4B as members of 
one category from 4C and 4D belonging to another. That is, 
when 4A or 4B were presented, output unit 1 was active and 
unit 2 was not. On the contrary, when 4C or 4D were 
presented, output unit 2 was active and unit 1 was off. The 
two output units can be considered detectors for the two 
categories. The learned weights of the connections between 
the competitive layer and each of the two output units are 
shown on Figure 5A. Only two of the competitive units had 
positive weights to output unit 1 and the other two had 
positive weights to output unit 2. Thus the output units had 
learned to ignore the responses of those lower-level nodes 
that were not relevant for categorization and combined 
together those parts which were relevant, forming diagnostic 
shape detectors (Figure 5C, 5D). The formation of the 
detectors was not influenced by the number of lower-level 
competitive units that participated in the shape 
representation. The result was the same with smaller 4x4 
receptive fields. This change led only to the same diagnostic 
shape detectors being composed of four instead of two 
competitive units. The competitive units participating in a 
detector’s representation were specialized for small input 
patterns contained within their receptive fields. The global 
representation activated by the whole input pattern, 
however, was a continuous shape honoring the Gestalt 
principle of Good Continuation. 

In a second simulation, a vertical categorization rule was 
applied to a network with identical parameters. This time 
patterns 4A and 4C were from the same category (1, 0) 
while patterns 4B and 4D were from the other (0, 1).  

 
 
 

Figure 5: Panel A – weights between the competitive layer 
and the two output nodes. Panel B – mean square error for 
the output nodes. Panel C – the pixel-to-unit weights for the 
two competitive units with positive weights to output unit 1. 
Panel D – the pixel-to-unit weights for the two competitive 
units with positive weights to output unit 2. 

 
The results from the second simulation are compared to the 
outcomes of the first simulation in Figure 6. For 
visualization purposes the output layer weights are 
multiplied by the competitive layer weights, which represent 
the participation of each pixel in the diagnostic shape 
detectors that were formed at the output layer. The same 
patterns led to the formation of different detectors when the 
vertical categorization rule was applied. This result was very 
stable over simulations and replicated the type of results 
reported by Pevtzow and Goldstone (1994).  

 
 

 
Figure 6: Detectors built according to a horizontal and 
vertical categorization rule.  
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Inspection of all specialized competitive units showed that 
there was no difference in their representation after the 
vertical and horizontal rule simulations. This means that the 
general structure of the input space was captured every time 
by the competitive units. Correct categorization was due to 
the formation of a diagnostic shape detector at the output 
layer.  

General Discussion 
The model shows a reliable ability to replicate at least two 
empirical results with minimal changes in parameters. Both 
unsupervised and supervised learning is possible. A general 
conclusion from the simulation results is that there are 
automatic low-level changes that capture the structure of 
visual stimuli irrespective of the given task. However when 
feedback is available, a more complex shape representation 
is constructed at a higher-level to accommodate the task 
requirements.  

Another interesting conclusion comes from the 
unsupervised behavior of the network. The simple and 
plausible mechanism of competitive learning, reinforced by 
the horizontal Hebbian connections, is able to extract 
perceptual categories that are statistically present in the 
input space. This strongly supports empirical findings that 
Gestalt principles of perceptual organization can at times be 
overruled by category learning. The model also suggests a 
way in which even certain Gestalt principles like continuity 
can be learned, rather than built-in, as a consequence of 
experience with a learning environment that includes visual 
patterned stimulation (Quinn & Bhatt, 2005; Spelke, 1982).  

The presented simulations have shown that it is 
computationally possible to account for both supervised and 
unsupervised perceptual learning without using built-in 
primitive features at the level that is eventually diagnostic 
for categorization. This was achieved by a fairly simple 
structure and by plausible mechanisms. The suggested 
model for perceptual learning is a first step toward a more 
global approach to learning that intends to bring together 
concepts and perception.  
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