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How do students reason about statistical 
sampling with computer simulations? 
An integrative review from a grounded 
cognition perspective
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Abstract 

Interactive computer simulations are commonly used as pedagogical tools to support students’ statistical reasoning. 
This paper examines whether and how these simulations enable their intended effects. We begin by contrasting two 
theoretical frameworks—dual processes and grounded cognition—in the context of people’s conceptions about sta-
tistical sampling, setting the stage for the potential benefits of simulations in learning such conceptions. Then, we 
continue with reviewing the educational literature on statistical sampling simulations. Our review tentatively sug-
gests benefits of the simulations for building statistical habits of mind. However, challenges seem to persist when more 
specific concepts and skills are investigated. With and without simulations, students have difficulty forming an aggre-
gate view of data, interpreting sampling distributions, showing a process-based understanding of the law of large 
numbers, making statistical inferences, and context-independent reasoning. We propose that grounded cognition 
offers a framework for understanding these findings, highlighting the bidirectional relationship between perception 
and conception, perceptual design features, and guided perceptual routines for supporting students’ meaning mak-
ing from simulations. Finally, we propose testable instructional strategies for using simulations in statistics education.

Significance 

Interactive computer simulations are popularly used to teach statistical sampling and inference. A substantial body 
of classroom-based design research has emerged over the last two decades on this topic, paralleling the interest 
of cognitive psychologists in statistical reasoning. This review bridges the gap by synthesizing diverse literature, 
from laboratory-based cognitive research to classroom-based design research, to investigate people’s reasoning 
about statistical sampling with interactive computer simulations. We organize the commonly occurring findings 
from these studies under a grounded cognition framework. Using this framework, we also identify instructional 
design strategies that future empirical researchers can test and statistics and data science practitioners can adopt. 
First, we highlight the importance of repeated exposure to simulations in a way that fosters creating percep-
tion–action routines aligned with mathematical principles. Second, we argue that intuitive representations ground 
students’ meaning making from simulations, and idealized representations help generalize learning. Third, we recom-
mend that visual routines be guided during activities with simulations. Fourth, we note the separate affordances 
of simulations and verbal materials. Lastly, we propose that statistical processes depicted in the simulations should 
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Introduction

People have strong intuitions about random sam-
pling; these intuitions are wrong in fundamental 
respects; these intuitions are shared by naive sub-
jects and trained scientists; and they are applied 
with unfortunate consequences in the course of sci-
entific inquiry [...] Apparently, acquaintance with 
formal logic and with probability theory does not 
extinguish erroneous intuitions. What, then, can be 
done? (Tversky & Kahneman, 1971, p5–p9)
A conceptual grasp of the ideas [about statistical 
inference] is almost pictorial, based on picturing 
the sampling distribution [...] No amount of formal 
mathematics can replace this pictorial vision, and 
no amount of mathematical derivation will help 
most of our students see the vision. (Cobb & Moore, 
1997, p. 897)

Statistical inference, defined as drawing probabilistic 
conclusions about a process or population based on sam-
ple data (Ben-Zvi et al., 2012), is a fundamental focus in 
introductory statistics education. The ability to perform 
statistical inference from a sample requires students 
to flexibly reason about core statistics concepts such as 
central tendency, variability, chance, and distributions. 
Computer-based simulations have been popularly used 
in introductory statistics curricula to foster a deeper, 
flexible, and integrated comprehension of these con-
cepts (e.g., Lock et al., 2020; Son et al., 2021; Tintle et al., 
2020). Interacting with these dynamic visual models (aka 
simulations), students engage in the practice of mak-
ing inferences based on samples through inquiry-based 
investigations. For example, students may use the simu-
lations to model data-generating processes, construct 
sampling distributions from random samples taken from 
an infinite process, chance devices, or a finite popula-
tion, run randomization tests, or bootstrap samples 
(Pfannkuch et al., 2018). Throughout this paper, we will 
refer to these various simulation types as statistical sam-
pling simulations.

While one of the core affordances of statistical sam-
pling simulations is their effectiveness in teaching statis-
tical inference through empirical distributions without 
relying on theoretical probability distributions (Ross-
man & Chance, 2014), our particular focus here is their 
perceptual and interactive affordances. Statistics edu-
cation researchers have highlighted the benefits of such 

affordances, noting that simulations allow students to 
see the effects of changing input parameters (Pfannkuch 
et al., 2018; Ridgway, 2016) and improve students’ inter-
pretative skills by providing quick and continuous feed-
back on their predictions (Carver, 2011). It has also been 
noted that simulations make abstract key concepts, such 
as chance and randomness, visible (Gehrke et  al., 2021) 
and tap into learners’ perceptual systems whose com-
putations are relatively effortless, automatic, and fast 
(Moore, 1998). In parallel, cognitive theory suggests that 
our perceptual systems, tuned over millions of years of 
evolution and accounting for a sizable portion of our 
brain activity, are powerful inner tools for understanding 
cultural innovations, such as formal scientific theories 
and constructs that have much briefer history (Goldstone 
et al., 2017).

The current work
Given their prevalence in curricula, the following ques-
tions about statistical simulations motivate our inves-
tigation of them in the current paper. First, while the 
above arguments might sound compelling, it is impor-
tant to identify whether empirical evidence supports the 
assumption that simulations are particularly beneficial 
for meaningful learning about statistical sampling and 
inference. Second, many options are available for visual 
representations of data and sampling processes; there-
fore, it is important to distinguish promising design 
choices from less beneficial ones to support students’ 
learning. Third, it is unclear how simulations are best 
situated within larger instructional contexts, and the 
chosen approach might dramatically influence learning 
experiences with the simulations. Pfannkuch et al. (2018) 
have noted that there is much to learn about how stu-
dents reason through interacting with statistical models 
and how they integrate ideas about sample data, proba-
bilistic models, context, and inference in technology-
enhanced learning environments. To help meet this need, 
this review aims to investigate students’ reasoning about 
statistical sampling through computer simulations and 
identify the instructional conditions that may best sup-
port them.

The review consists of two main sections. The first 
section lays a groundwork through a selected literature 
review on how people spontaneously reason about the 
statistical sampling concepts targeted by the simula-
tions. We initially interpret these findings through the 

be reified as foundations for more advanced concepts and practices. Overall, the paper contributes to the learning 
theories and instructional design in the context of simulation-based learning in statistics.
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lens of dual-process theories, discuss the limitations of 
dual-process-based pedagogies, and then introduce a 
grounded cognition framework as an alternative, propos-
ing that simulations can enhance this reasoning. In the 
second section, adopting the grounded cognition frame-
work, we systematically review empirical research stud-
ies that include instructional interventions with sampling 
simulations. Finally, we identify testable pedagogical con-
siderations based on what we have learned through our 
review.

Part A: What conceptions do people have 
about statistical sampling?
It is important to understand the common conceptual 
challenges people face when they spontaneously reason 
about statistical sampling so as to appreciate why edu-
cators needed to develop special interventions such as 
computer simulations in the first place to target these 
concepts. To this end, this section reviews people’s con-
ceptions of statistical sampling through a selected body 
of literature. Based on the emerging patterns, we group 
the findings under two subsections, namely conceptions 
about probability and randomness and conceptions about 
sample size. It should be noted that this grouping does 
not imply mutual exclusivity. In fact, concepts across the 
two sections are often closely related to each other.

Conceptions about probability and randomness
Children as young as eleven years old display some con-
ception of sampling even without any prior instruction 
(Meletiou-Mavrotheris & Paparistodemou, 2015). These 
conceptions seem to stem from their daily life experi-
ences and rarely comply with statistically normative 
notions. Children’s initial notion of a sample is that it is 
part of a larger and homogeneous entity, such as a cheese 
sample in the supermarket. This intuitive notion, how-
ever, does not transfer to conceptualizations of statistical 
sampling in which the entities from which samples drawn 
are heterogeneous, that is, display variation among the 
members of a population (Ben-Zvi et al., 2015). The gap 
between children’s conceptualization of sampling from a 
homogeneous and heterogeneous entity brings difficul-
ties in their appreciation of why large random samples 
are needed in statistical inference. Indeed, children often 
mistrust simple random sampling to make reliable sta-
tistical inferences because they have no control over the 
sample composition with random selection (Schwartz 
et al., 1998) and they are concerned that it might lead to 
extreme outcomes that misrepresent the underlying pop-
ulation (Meletiou-Mavrotheris & Paparistodemou, 2015).

Schwartz et  al. (1998) observed that children’s mis-
trust of random sampling is more prominent in cases 
where the outcome of interest covaries with another 

observed attribute. For example, in the context of sur-
veying people’s opinions, not only the outcome of inter-
est (opinion) but also other characteristics of the person 
(such as age, sex, and race) vary from one observation 
to another. In these cases, children have been found to 
prefer non-random, stratified methods to ensure they 
appropriately sample all combinations of traits of the 
population. While statisticians sometimes recommend 
stratified sampling, children’s sampling preferences 
deviate from this recommendation because they prefer 
to select their own strata rather than representatively 
sampling from empirically identified strata. They try 
to ensure that “all kinds of people would be included” 
(p. 256). Thus, children show sensitivity to the notion 
of fairness and inclusion in the sampling process, often 
in statistically non-normative ways (Meletiou-Mav-
rotheris & Paparistodemou, 2015). A later study by de 
Vetten et al. (2018) suggests that adults also show simi-
lar types of distrust of simple random sampling.

Adults’ conceptions about random sampling were 
examined in early work in cognitive psychology. Kah-
neman and Tversky’s (1972) work showed that people 
believe that sampling outcomes should reflect the prop-
erties of the random process that generated them, that 
is, a random sample should look irregular. For exam-
ple, in the experiment of tossing a fair coin (H = Heads, 
T = Tails) people judge systematic patterns in the order 
of certain outcomes (e.g., HTHTHTHT, TTHHTTHH) 
relatively less likely to occur than a specific outcome 
that looks more irregular (such as HHTTHTTH). The 
authors posited that this belief is the result of a heu-
ristic people use to judge the probabilities of an event 
or sample, which they called representativeness heu-
ristics. Under the representativeness heuristics, people 
determine the probability of an event or sample by the 
degree to which it looks similar to the essential char-
acteristics that generated the parent population (Tver-
sky & Kahneman, 1971). In follow-up work, Bar-Hillel 
(1980) extended this work by showing that people use 
several cues to judge the representativeness of a sam-
ple, such as the number of identical observations and 
sidedness (e.g., whether an observation is less than or 
greater than the mean). Accordingly, in the context of 
a normally distributed population of heights, a sample 
consisting of three identical or close observations is 
judged less likely than just about any other sample, and 
samples in which the data points are on both sides of 
the population mean are judged to be more likely than 
samples with all points on one side when their prob-
abilities are equated.
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Later studies found different kinds of biases besides 
representativeness.1 One is the equiprobability bias, the 
belief that any result of a random event is equally prob-
able because “it is a matter of chance” (Lecoutre, 1992, 
p. 557). As a result of equiprobability bias, for example, 
people believe that getting a sum of 11 is as likely as get-
ting 12 when two fair dice are thrown (note that 11 is 
twice as likely because it is a combination of two different 
outcomes [5,6] and [6,5]). Another one is the outcome 
approach, introduced by Konold (1989). People with an 
outcome approach use a single event, instead of a series 
of events, as the unit of analysis. They compute the most 
likely result for the single unit and then extrapolate it to 
a distribution of outcomes (Konold, 1989; Schwartz et al., 
1998). For example, when asked about the most likely 
distribution of six rolls of a dice with one white and five 
black sides, people using the outcome approach respond 
with six black outcomes, contrary to what a representa-
tive heuristics approach would predict.

It may be worth noting that recent classroom stud-
ies have corroborated these biases across different age 
groups and cultures. More specifically, the representa-
tiveness heuristic and outcome approach have been 
documented among high school students, and even 
with undergraduate students with strong quantitative 
backgrounds, and preservice mathematics teachers in 
Ghana, Serbia, Belgium, and the USA (Heyveart et  al., 
2019; Hokor et al., 2021; Kaplar et al., 2021, Khazanov & 
Prado, 2010). Similarly, the equiprobability bias was doc-
umented in the same studies and additional ones, includ-
ing fourth-grade children and high school students in 
Spain, South Korea, and Australia (Batenero et al., 2020; 
English & Watson, 2016; Park & Lee, 2019). The ubiquity 
of the results suggests that human biases in the reasoning 
of statistical sampling transcend the boundaries of psy-
chologists’ research labs, specific countries’ borders, cul-
tures, and decades.

Conceptions about sample size
People have an intuitive sense of the law of large numbers 
(also called the “size-confidence intuition” by Sedlmeier, 
1999). That is, people (correctly) believe that large sam-
ples generally allow for more accurate estimates of a 
population’s parameters than small samples. For example, 
when asked “A certain town is served by two hospitals. 
In the larger hospital, about 45 babies are born each day, 

and in the smaller hospital, about 15 babies are born each 
day. Which hospital do you think is more likely to find on 
one day that more than 60% percent of the babies born 
were boys?”,2 77% of respondents were found to be able to 
answer the question correctly. However, then the word-
ing of the question was converted from a single sample to 
a sampling distribution prompt, such that “For a period 
of 1 year, each hospital recorded the days on which more 
than 60% of the babies born were boys. Which hospital 
do you think recorded more such days?”,3 the correct 
responses dropped to the chance level of 33% (Sedlmeier 
& Gigerenzer, 1997). The results suggest that humans 
spontaneously appreciate the impact of sample size on 
the mean of an individual sample, but not on the variance 
of sampling distributions (see Fig. 1, Step 3).

Size-confidence intuitions seem to also disappear when 
reasoning about the effect of sample size on statistical 
power. Kahneman and Tversky (1972) found that even 
trained statisticians mostly judged that it was equally 
likely for small and large samples to have outcomes more/
less extreme than a specified critical value (see Fig.  1, 
Note 2). Consequently, they expected that the statistical 
significance reached through a large sample should also 
be replicated with a small sample.

To summarize, the literature indicates that people 
apply normative statistical rules in some situations, but 
they systematically deviate from them in other situations. 
A key question is the operational mechanisms of the heu-
ristics that people apply: When do people, for example, 
choose an outcome approach over representativeness 
and vice versa, or use the normative statistical rules they 
were trained with over any heuristic? Konold et al. (1993) 
demonstrated that subtle changes in wording, such as 
asking for the most likely versus the least likely outcome 
in a coin flip, can lead participants to switch between an 
outcome approach and representativeness heuristics (see 
Fig. 2, Top Panel). Similarly, Schwartz et al. (1998) found 
that children accepted random sampling in the context of 
drawing marbles but not in the context of an opinion sur-
vey. The problem-solving approach that is taken seems 
triggered by the specific context or the framing of a prob-
lem rather than its underlying probabilistic structure (see 
Fig.  2, Middle Panel). These context-dependent shifts 
may not seem inconsistent to the participant, as each 
situation activates a distinct cognitive schema. However, 
the inconsistency becomes apparent when viewed from 
the underlying normative principles of probability and 
statistics. Schwartz et  al. (1998) proposed that novices’ 

2  The correct answer is the smaller hospital.
3  Note that there are 365 samples for each hospital. The collection of pro-
portion of boys for each sample (day) forms an empirical sampling distribu-
tion. The correct answer is still the small hospital (Sedlmeier, 1999).

1  The works we cited by Kahneman and Tversky and their follow-ups do not 
distinguish between intuitive judgments versus heuristics, and we also used 
the two terms interchangeably here. However, Evans (2012) distinguishes 
between them because intuitive judgments are based on feelings and a wide 
range of typically unconscious contextual cues, whereas heuristic judgments 
are simple rules based on few cues and partial information.
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understanding of statistics is rather fragmented and 
context-sensitive, drawing upon analogies with familiar 
scenarios akin to statistical reasoning. Consequently, the 
alignment of context-sensitive reasoning with normative 
principles depends on the extent to which the situation’s 
representation happens to be aligned with the formal 
rules. The evidence reviewed also suggests that even 
professional statisticians can be swayed by piecemeal 
and context-dependent reasoning, leading them to stray 
from the normative principles they were trained to apply. 
Dual-process theories, which we introduce in the next 

part, can account for this piecemeal and context-sensitive 
reasoning phenomenon through the general structure of 
human cognitive architecture.

Dual‑process accounts of reasoning about statistical 
sampling
Dual-process theories postulate that humans pos-
sess two separate learning mechanisms. The first is an 
associative mechanism produced by neural networks, 
and the second is a rule-based system that involves the 
manipulation of internal symbolic structures (McLeod 

Fig. 1  Statistical sampling
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et  al., 1998). Dual-process accounts of cognition postu-
late that humans have evolved a slow, deliberate, rule-
based, and domain-general reasoning system (System 2) 
which co-exists with an older, autonomous, fast, intui-
tive, and associative set of sub-systems (System 1) (Evans, 
2003, 2008, 2012; Kahneman & Frederick, 2005; Sloman, 
1996). According to these accounts, System 1 encodes 
the underlying statistical structure of the environment 
and executes computations based on the current task’s 
similarity to the prior experiences, whereas System 2 
learns without reliance on situation-specific experience. 

Logical, causal-mechanical reasoning and abstract hypo-
thetical thinking are attributed to System 2, which is pos-
tulated to be uniquely human and evolutionarily more 
recent system.

According to Kahneman and Frederick (2005), when 
a statistical sampling problem is embedded in a verbal 
scenario, the contextual features of the scenario trigger 
objects to be mentally represented. System 1 operates 
on these objects in a similar fashion to how perceptual 
systems operate on real objects in an automatic and par-
allel manner. System 2 monitors the quality of System 

Fig. 2  Examples of system 1 processes in reasoning. Note. Top and middle panels: Dual-process theories highlight the context sensitivity 
of people’s reasoning, which may result in inconsistent responses to structurally similar but superficially dissimilar problems—The figures are 
inspired by Konold et al. (1993) and Schwartz et al. (1998). Bottom panel: The proposal from grounded cognition theory is that people’s perception 
of contexts can be trained to be aligned with the underlying task structure—The computer simulations called ants and food and pattern learning, 
which are governed by the same competitive specialization principle (Goldstone et al., 2010). The sketch is redrawn from an actual participant’s 
sketch documented in Goldstone et al.’s study. In the bottom case, many learners successfully make the connection between the superficially 
dissimilar simulations by naturally interpreting the pattern learning situation using the same dynamic, spatial scheme that they acquired during ants 
and food. Critically, the participants are often unaware they are making the connection, indicating the intuitive and automatic nature of the process 
associated with System 1 thinking
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1’s representations and may endorse, correct, inhibit, or 
override them. If both systems fail, errors and biases will 
occur.

Kahneman and Frederick (2005) propose that a com-
putationally difficult question is often unconsciously sub-
stituted with a perceptually similar and simpler analog, 
which they called, the attribute-substitution model of 
heuristic judgment. For example, when asked, “If a sphere 
were dropped into an open cube such that it just fits, 
what proportion of the volume of the cube would the 
sphere occupy?” (p. 270), people respond as if they were 
asked “If a circle were drawn inside a square, what pro-
portion of the area of the square does the circle occupy?” 
(p. 270). In this case, the target attribute in the judgment 
(that is, the volumetric relationship between the cube 
and sphere) is replaced by the heuristic attribute (that 
is, the ratio between areas of the circle and the square), a 
relevant perceptual impression that allows simpler com-
putation. Critically, the respondents are not aware of hav-
ing made the substitution.

The attribute-substitution model of heuristic judgment 
can also explain why people’s intuition of the law of large 
numbers vanishes in the context of computationally dif-
ficult problems such as the sampling distribution of sta-
tistics.4 For example, Sedlmeier and Gigerenzer (1997) 
found that when asked to construct sampling distribution 
graphs, adult subjects’ drawings were indistinguishable 
from a single sample graph. In another study, Well et al. 
(1990) found that when participants were given tasks 
about distribution of sample statistics (see Fig.  1, Step 
3), they recalled the contents of the task as an individual 
sample task. Furthermore, errors in estimating variabil-
ity in sampling distributions (see Fig. 1, Note 2) seem to 
be resistant to training (Chance et  al., 2004; van Dijke-
Droogers et al., 2021a). The attribute-substitution model 
of heuristic judgment can account for the results from 
these findings—the respondents replace the target attrib-
ute (distribution of sample statistics), which is difficult to 
calculate, with the heuristic attribute (distribution of a 
single sample), without being aware of this substitution.5

Pedagogical implications of dual‑process theories and their 
limitations
Nonnormative biases in sampling tasks can be reduced 
or eliminated by making the statistical nature of the task 
explicit so that the corrective functions of System 2 pro-
cesses are evoked (Kahneman & Frederick, 2005). Some 
empirically successful examples of this approach include 
asking participants to think like statisticians (Schwarz 
et al., 1991), drawing samples from an urn to emphasize 
randomness (Sedlmeier, 1999), or increasing the acces-
sibility of rules (Macchi, 1995; Stanovich & West, 2002). 
Another way is stating the questions with relative fre-
quency formats (e.g., 1 in 10) instead of their equivalent 
probabilities and percentages (e.g., 0.10, 10%) (Cosmides 
& Tooby, 1996; Gigerenzer & Hoffrage, 1995).6

The broader literature on scientific and mathematical 
expertise corroborates the idea that System 2’s correc-
tive operations have a critical role in reaching normative 
solutions. As humans develop expertise in science and 
mathematics, they show an activation shift from poste-
rior brain areas associated with perceptual processing to 
inhibitory frontal areas (more specifically, dorsal lateral 
prefrontal cortex and anterior cingulate cortex) (Fer-
rer et al., 2009; Houdé & Borst, 2014; Mareschal, 2016). 
This neuroimaging evidence has resulted in pedagogical 
approaches that train students’ System 2 to inhibit Sys-
tem 1’s automatic responses. One such approach is “pre-
frontal pedagogy” in which students are taught to take 
a moment of waiting time before responding (Houdé & 
Borst, 2014). Another is teaching students to “privilege 
science over intuition” (Shtulman & Legare, 2020). These 
pedagogical interventions have been found to improve 
reasoning in some science classes (for reviews, see, 
Houdé & Borst, 2014; Shtulman & Legare, 2020).

A word of caution is that the promises of System 2 
training for statistics education may be more limited 
in scope than it is for other scientific disciplines. Mod-
ern statistics curricula eventually aim for students to be 
able to build statistical “habits of mind” (Ridgway, 2022, 
p. 3) in civic context for productive involvement in civil 
society, that is, spontaneously bring statistical knowl-
edge into mind when they encounter data claims about 
the economy, migration, health, wealth, and the environ-
ment (Engel, 2017; Ridgway, 2016). When confronted in 
daily life, we may assume that these contexts will often 
not include explicit cues that will point out the statis-
tical nature of the information, so there is the risk that 

4  Grasping sampling distributions of statistics requires turning a statistical 
process (taking statistics of samples) into a mathematical object that can be 
reasoned with, and it is hard to transition from a one-time process (e.g., tak-
ing a single sample mean) to an abstract entity (a sampling distribution of 
means) created by repeatedly applying the process (Cobb, 2007).
5  Note that this explanation accounts for people’s incorrect predictions that 
a sampling distributions’ standard deviation will not change with sample 
size. The incorrect prediction that it will get larger with larger sample sizes 
can be accounted for by the belief that everything gets larger with bigger 
sample sizes (Watkins et al., 2014).

6  cf. review, Evans (2008) for the counterargument from the evolutionary 
perspective which attributes the advantage of frequency format to System 
1 operations. Accordingly, humans have evolved a cognitive module for pro-
cessing frequency information in the environment without requiring a dif-
ficult calculation.
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people will be more susceptible to non-statistical reason-
ing when thinking about these societal problems. Indeed, 
research indicates that students do not transfer statistical 
reasoning skills to social events (Meletiou-Mavrotheris, 
2007). The probabilistic nature of social events is not as 
explicit to students; therefore, their prior beliefs and con-
textual knowledge dominate their reasoning, which can 
result in deterministic judgments and prejudices.

Therefore, it is essential that learners develop the abil-
ity to perceive future situations through the lens of the 
principles and concepts they acquired during their for-
mal education. This necessitates shifting the focus from 
the distinctions between System 1 and System 2 toward 
the interplay between the systems and, in fact, dissolving 
the sharp division between the two. For the remainder of 
this article, we will claim that this perspective is not only 
pedagogically optimistic but also psychologically plausi-
ble. The next section introduces this perspective under 
the grounded cognition framework. Based on this frame-
work, we will argue that perceptually grounded pedago-
gies, such as interactive computer simulations, hold the 
potential for learners to form mental models that spon-
taneously enable new ways of viewing and understand-
ing situations (see Fig. 2, bottom panel). This perspective 
also aligns with psychological theories such as ecological 
rationality, which emphasize the importance of provid-
ing individuals with appropriate representations and 
learning experiences to foster sound statistical intui-
tions (Gigerenzer, 2023), and conceptual ecology in edu-
cation, highlighting the continuum from early intuitive 
understanding to more advanced stages of understanding 
(diSessa, 2002).

Introduction to the grounded cognition perspective and its 
pedagogical promises

Much of thinking turns out to be seeing if seeing is 
properly understood. (Kellman & Massey, 2013, p. 
120).

As opposed to the standard separation drawn between 
lower-level (perceptual, implicit, associative) and higher-
level (abstract, logical, rule-based) cognitive processes, 
the grounded cognition perspective proposes that per-
ception, action, environment, and amodal symbols all 
work together to create cognition (Barsalou, 2008). This 
perspective suggests a reciprocal tuning between per-
ception and abstract rule-based reasoning, in which 
rule-based reasoning often has perceptual origins and 
perceptual systems contain mechanisms typically asso-
ciated with abstract cognition (Goldstone & Barsalou, 
1998). Converging with this notion, the later evidence 
from dual-process literature suggests that intuitive sys-
tems are capable of reaching normative probabilistic and 

logical problem solutions—an ability typically attributed 
to System 2. This is evidenced by the respondents’ non-
verbal cues indicating doubt and conflict when verbal-
izing normatively incorrect responses (Bago & de Neys, 
2017; Gangemi et al., 2015; Simon et al., 2015). Further-
more, experts’ successful decision-making often relies 
on intuitive rather than reflective thinking, and incorrect 
deliberate reasoning can sometimes regrettably override 
correct intuitions (for reviews, see, Evans 2008; 2012).

Highly skilled performance is often achieved by trans-
forming effortful System 2 activities to effortless System 
1 activities (Kahneman & Frederick, 2005). For example, 
rather than explicitly recalling and deploying algebraic 
order of precedence rules to correctly calculate 2 + 3 X 5 
as 17 rather than 25, people often solve math problems 
by developing automatic attentional routines to attend 
the “X” operator before “+” (Landy & Goldstone, 2007). 
With time and practice, associative and perceptual pro-
cesses come to be able to reach the same correct solu-
tions as those achieved by deliberate and sequential 
processes (Sloman, 1996). One advantage of converting 
rule-based processes into improved routines for per-
ceiving and attending to a situation is that cognitively 
expensive executive resources are thereby freed up and 
available for other aspects of a problem that have not yet 
become fluently processed (Zelazo, 2015).

The grounded cognition perspective is reminiscent 
of the distributed cognition perspective (Clark, 2017; 
Hutchins, 2000), in which cognition is extended to 
include the tools that we as humans recruit, building 
cognitive systems that include us as just one component. 
However, in the case of converting from System 2 to Sys-
tem 1 processes, the cognition is still being done inside 
one person’s brain, so instead of talking about off-loading 
processes from the brain onto the world, as we do when 
calculators and calendar reminders take over tasks that 
we once did ourselves, we could talk about in-loading, 
in which tasks are taken over by automated devices that 
we create inside our own brains (Goldstone, 2019). While 
these devices, once created, can be deployed quickly and 
without requiring executive resources, training them typ-
ically requires System 2 resources. In fact, executive func-
tion resources play a crucial role in acquiring what will 
become automatic and fluent skills in reading (Altemeier 
et al., 2006) and math (Purpura et al., 2017). One of the 
primary functions of System 2 is to make itself unneces-
sary by training System 1 to do the right thing according 
to System 2’s rules (Goldstone et al., 2015).

Understanding cognition as grounded in perception 
and action has informed pedagogical practices in sci-
ence and mathematics. Broadly, this line of research 
has focused on the links between representations that 
require sensory encoding and abstract, formalized 
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symbol systems (for reviews, see Nathan, 2020; Weis-
berg & Newcombe, 2017). More specifically, the studies 
showed that sensorimotor actions support insights into 
abstract concepts in geometry (Nathan & Walkington, 
2017) and science (Hayes & Kraemer, 2017), and help 
coordinate multiple concepts in statistics (Son et  al., 
2017). The studies also have shown that top-down pro-
cesses guide perceptual routines, which, in turn, influ-
ence graph interpretation (Michal & Franconeri, 2017). 
Computer-based simulations, anchoring visuospatial 
and dynamic aspects of the scientific and mathematical 
principles, have been shown to help students acquire the 
ability to perceive future analogous situations in light of 
their sensory and bodily experiences with the simulations 
(Day & Goldstone, 2011; Goldstone & Wilensky, 2008). 
Importantly, this influence seems to operate below the 
participants’ explicit awareness, suggesting the System 
1-like nature of the mental models grounded in spatial 
and dynamic representations.

In an independent vein of research, statistics educa-
tors over the past two decades have been developing 
computer-based simulation pedagogies. Different from 
the simulation studies grounded in psychological theo-
ries, this direction is largely driven by the educational 
challenges encountered in teaching and learning statis-
tics. The aims of these pedagogies include clarifying the 
core logic of inference, enhancing statistical intuition 
(Tintle et  al., 2015), providing simpler-to-grasp models 
through randomization tests (Cobb, 2007), enabling an 
understanding of probability calculations without relying 
on complex mathematics (Bargagliotti et al., 2020; Ross-
man & Chance, 2014), and a concrete demonstration of 
sampling variability (Bargagliotti et al., 2020). To provide 
reciprocal understanding in both domains, this paper 
synthesizes the grounded cognition framework and sim-
ulation-based instruction in statistics education research. 
In the following section, we conduct a systematic review 
of statistics education literature focusing on sampling 
simulations through the lens of grounded cognition.

Part B: How do students reason about statistical 
sampling with computer simulations?
In the previous section, we discussed the canonical dual-
process theories, which suggest that humans often rely 
on intuitive, associative, and perceptual processes that 
are often misleading when reasoning about statistical 
sampling. We proposed an alternative view: Perceptual 
systems can productively be involved in abstract, con-
ceptual, and rule-based reasoning. Cultural tools such as 
computer simulations may enable us to perceive forms 
that evolution did not initially equip us to process.

In the current section, we review the educational lit-
erature that focuses on improving students’ reasoning 

about statistical sampling and inference through inter-
active computer simulations. In these studies, a class-
room is typically exposed to a particular treatment 
that involves interacting with simulations in a statistics 
course, and students’ learning is assessed during or after 
the intervention.

Literature search
We conducted a systematic literature search in relevant 
research databases (last update: December 24th, 2022). 
First, we used the databases of the Web of Science and 
ERIC Education Resources Information Center. We ini-
tially used the following search terms (“sampling” AND 
“simulation”) on Web of Science (initial hit number: 
49,323), which we limited by filtering the topic to “Educa-
tion and Educational Research.” On ERIC, we added the 
keyword “AND education” for the return of more educa-
tionally relevant hits (initial hit number: 127). We then 
expanded our search in Google Scholar (initial hit num-
ber: 589,000). We used the following inclusion criteria:

1.	 Articles written in the last two decades (2002–2022).
2.	 Articles reporting empirical studies with computer 

simulations that teach statistical sampling.
3.	 Peer-reviewed papers (journal articles or conference 

proceedings).
4.	 Articles written in English.

We reviewed the titles and abstracts of all papers in 
Web of Science and ERIC. Additionally, we sampled the 
first 385 papers that were ordered by their relevance in 
Google Scholar, following the literature sampling sugges-
tions by Onwuegbuzie and Frels (2016). As a result of this 
process, 20 papers were identified. From the reading of 
referenced work in these papers, we identified 13 more 
papers that met the inclusion criteria. Thus, in total, we 
included 33 unique papers in our review.

We did not impose any constraints on the inclusion 
criteria based on the empirical methods the studies used 
(see Table 1). As a result, 28 studies were either pre-post-
test comparisons within a single group or observational 
qualitative studies that probed students’ understanding 4 
other studies included an additional no-simulation com-
parison group. A single study used a quasi-experimental 
design to compare two simulation activities. Notably, 
none of the studies included controlled experiments.

Information retrieval
For each paper, we coded information about authors, 
publication date, the simulation software that was 
used, research methods, sample size, setting, instruc-
tional activities that simulations were situated in, learn-
ing measures, and learning outcomes. (We included 
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outcomes from both qualitative and quantitative meas-
ures.) We sorted learning outcomes according to two 
dimensions: positive learning outcomes and conceptual 
challenges (see Table 1).

Findings
We report the themes that consistently appeared across 
multiple studies (see Table 1, Columns “Positive learning 
outcomes” and “Conceptual challenges”). For each theme, 
we first summarize the studies, followed by details we 
view as important regarding simulation design and learn-
ing activities. We conclude each section with our overall 
interpretation of the evidence.

Benefits of simulations for general statistical reasoning 
abilities and skills
Several studies reported positive learning outcomes in 
relation to general statistical reasoning abilities and skills. 
The reported evidence was better performance in items 
that target general statistical reasoning when compared 
to non-simulation groups (Chandrakantha, 2014, 2018; 
van Dijke-Droogers et  al., 2021a), improvement from 
pre-to-post-test (Arnold et  al., 2017, Konold & Kazak, 
2008; Lehrer, 2017; McDaniel & Green, 2012); and quali-
tative observations of increased adoption of statistical 
norms, habits, and the use of probabilistic language (Bra-
ham et  al., 2013; Makar et  al., 2011; McLean & Doerr, 
2015; van Dijke-Droogers et al., 2021b).

An important learning objective in basic statistical edu-
cation is developing habits of mind, defined as the abil-
ity to spontaneously bring statistical knowledge to bear 
when one encounters critical claims about data (Ridgway, 
2022). Sampling simulations have been found to help 
learners develop appropriate statistical norms and habits 
(Makar et  al., 2011; McLean & Doerr, 2015; van Dijke-
Droogers et al., 2021b). Rather than the specific simula-
tion software per se, the studies collectively emphasize 
the role of the accompanying pedagogical activities. In 
one study, Makar et  al. (2011) attributed benefits to the 
inquiry activities, discussion, checklists, and continued 
exposure to data through simulations. They found that 
checklists that accompany data investigations directed 
students’ attention to the centers, spreads, and outliers of 
graphs, which allowed them to view the center as a mean-
ingful representation of the group while also considering 
the role of variability. Students developed more sophis-
ticated inferences across repeated trials which improved 
their conceptual sophistication. In another study, van 
Dijke-Droogers et  al. (2021b) found that compared to 
the comparison group, students who were taught with 
simulations more often drew conclusions based on data 
with reference to statistical information and probabilis-
tic reasoning and less often based on personal intuition 

and bias. The authors attributed the outcomes to the 
inquiry activities in which Tinkerplot simulations were 
embedded.

An important feature of simulations is their affordance 
for allowing observation of sampling variability over 
time. In a study with sampling simulations, Ben-Zvi et al. 
(2012) found that students at the beginning of instruc-
tion tended to be extreme in their interpretations of data. 
That is, they were either claiming to know something 
for sure or that nothing could be inferred from the data. 
However, over time, with engagement with simulations, 
they increasingly saw evidence for or against particular 
statements, which resulted in them developing a proba-
bilistic language to specify their level of confidence, such 
as “the chances are … really small” or “it seems that…”. 
With prompting by researchers, they further quanti-
fied such confidence levels. Similarly, Konold and Kazak 
(2008) and Lehrer (2017) observed that, through multiple 
repetitions, students develop a better sense of sampling 
variability by observing what remains similar from sam-
ple to sample. Thus, students co-develop perception and 
conception of the idea of data as consisting of signal and 
noise as they explore data through multiple iterations.

To summarize, previous research suggests that sam-
pling simulations can improve informal statistical infer-
ence skills by developing habits of mind and improving 
conceptual understanding of sampling variability over 
repeated trials (see Fig. 3). Inquiry activities accompany-
ing the simulations have been found helpful in eliciting 
such benefits, with a few features specifically highlighted. 
First, continued exposure to data results in increasingly 
more sophisticated interpretations. Second, observation 
of central tendency and variability across samples helps 
learners to develop interpretations of data as signal and 
noise. Third, guidance of inquiry through interpretive 
checklists seems to be a potentially effective way of focus-
ing students’ exploration of important aspects of graphs.

Local versus global view of data
Studies conducted with elementary and middle school 
children show that students have a case-oriented view 
(such as focusing on individual data points or single fre-
quencies) rather than an aggregate view (such as focusing 
on an aggregation of data, relative frequencies, or overall 
distribution shape) (Ben-Zvi et al., 2012; Konold & Kazak, 
2008; Pratt et al., 2008). For example, a student might pay 
attention to the minor deviations between consecutive 
samples taken from the same population, missing the 
important invariant that the means of those samples are 
very similar. In simulation activities, this local empha-
sis makes it difficult for students to appreciate that large 
samples are overall better estimators than small samples 
because they observe that there is still some variability 
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from one large sample to another. In other words, the 
invariance of statistics such as the mean is overridden by 
the tendency to perceive local change (Konold & Kazak, 
2008). This perceptual bias was consistent across differ-
ent types of diagrams, namely pie charts, pictogram bars, 
and histograms (Ben-Zvi et  al., 2012; Konold & Kazak, 
2008; Pratt et al., 2008).

In one study (Pratt et al., 2008), after investigating sim-
ulated data, middle school children concluded that tak-
ing large samples was inappropriate because even large 
samples did not perfectly match the population. In a 
similar study setup, Konold and Kazak (2008) found that 
students judged smaller samples to be better estimators, 
focusing on the likelihood of getting a perfect match to 
the expected value rather than the overall error around 
the expected value. In these cases, the focus on local 
changes in large sample simulations seems to have over-
ridden students’ size-confidence intuition and invoked 
the growing possibilities heuristic instead. Growing pos-
sibilities refer to the belief that more opportunities exist 
to deviate from the population parameters with larger 
samples as there are more unique observations (Findley 
& Lyford, 2019). By this line of reasoning, children believe 
that every data point in a large sample could deviate sub-
stantially from the population mean, and if even one data 
point is off, then the sample distribution is invalid.

To alleviate the problem of overfocusing on the local 
properties of data at the expense of the global view, 

Bakker (2004) devised a “growing a sample” activity to 
improve students’ aggregate perspective on data. In this 
activity, middle school students graphed their predic-
tion of children’s weights with varying sample sizes—
from 10 children to a class, followed by three classes, 
and finally, the city’s entire child population. In the 
initial phases of the activity, students created simple 
dot plots to represent individual weights, which tran-
sitioned into graphs with continuous shapes, such as 
histograms or density plots, in the final stage represent-
ing the entire population. After each prediction phase, 
the students would compare their graphs with those of 
actual data samples of equivalent size provided by their 
teacher. The author designed this activity to gradually 
shift the students’ attention from the individual data 
points to the overall data distribution (see Fig. 4).

This activity was designed to foster a distributional 
rather than a case-oriented view of the data. Bakker 
observed a noteworthy linguistic transition in stu-
dent discussions during this process: during the ini-
tial cycle with the smallest sample size, students used 
adjectival predicates such as “together,” “apart,” and 
“spread out” to refer to trends in data (e.g., “The dots 
are more spread out”); however, as cycles progressed, 
they tended to replace these terms with nouns such 
as “spread” and “average.” (e.g., The spread is larger), 
which suggests that students’ language use also became 
aggregate-oriented.

Fig. 3  Building habits of mind. Note. The figure illustrates how sampling simulations can cultivate habits of mind. Here, by recalling the dynamic 
boxplot animation that models sampling distribution, the student considers the uncertainty resulting from the sampling variability when they view 
a single sample. The figure was redrawn from Arnold et al. (2017). The colorful boxplot is a screenshot from https://​www.​stat.​auckl​and.​ac.​nz/​~wild/​
WPRH/

https://www.stat.auckland.ac.nz/~wild/WPRH/
https://www.stat.auckland.ac.nz/~wild/WPRH/
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The author argues that such a linguistic shift is crucial 
for forming object-like concepts for statistical reasoning 
so that these objects can become something that stu-
dents can reason with. However, it is important to note 
that Bakker’s findings, drawn from qualitative observa-
tion of class activities, do not assert a causal, or even cor-
relational, relationship between this linguistic shift and a 
more developed aggregate view. Indeed, Bakker himself 
noted, “Of course, this does not always imply that if stu-
dents use these nouns that they are thinking of the right 
concept (p. 73)”.

Nevertheless, it is well-documented elsewhere that 
perceptual chunks provide a basis for experts’ problem-
solving (Chase & Simon, 1973; Koedinger & Anderson, 
1990). From this perspective, transformations from pred-
icates to nouns may reflect a broader learning strategy 
in which information is packaged into larger chunks to 
form and process higher-level units. Generative activi-
ties that guide such transitions, whether visual (e.g., from 
dot plots to histograms) or verbal (e.g., from predicates to 
nouns), can ground aggregate views on data for grasping 
richly structured concepts.

Conceptions about the variability of the sampling 
distributions
Several studies indicate that students often fail to appre-
ciate that variability decreases in sampling distributions 
as the sample size gets larger even after they observe it 
in the simulated distributions (Findley & Lyford, 2019; 
Konold & Kazak, 2008; Lehrer et  al., 2014, van Dijke-
Droogers et al., 2021b). Students continue to believe the 
variability in the sampling distribution of means does not 

change with the sample size, or that it gets larger with 
increases in sample size. An important problem seems to 
be that students fail to grasp that the sampling distribu-
tion is a distribution of sample statistics, not an individ-
ual sample. This problem is exacerbated because both a 
single sample and a sampling distribution are often visu-
alized as a histogram, and so their visual similarity can 
promote conceptual confusion between them (Gok & 
Goldstone, 2022).

Saldanha and Thompson (2002) note that a poorly 
performing student may have a shaky grasp of the sam-
pling distribution’s interpretation and replace it with an 
interpretation that is simpler, such as a single sample. van 
Dijke-Droogers et  al. (2021b) report similar challenges 
in a study with top-performing students in the Nether-
lands. In this study, the authors designed an activity that 
involved experimenting with physical chance devices and 
computer simulations. At the end of the activities, stu-
dents still showed cross-level confusion. For example, 
when judging the probability of a sample mean below a 
certain threshold, students referred to a single sample 
graph instead of the sampling distribution of the means 
graph. When asked about the probability that an indi-
vidual observation was below a certain threshold, they 
referred to the sampling distribution graph instead of the 
population graph.

A promising pedagogical approach to prevent such 
confusion is to distinguish sampling distribution graphs 
from sample and population graphs visually. van Dijke-
Droogers et  al. (2021a) found that visual differentia-
tion between sample and sampling distributions helped 
students interpret sampling distributions accurately. In 

Fig. 4  Growing a sample activity. Note. The progression of the activity involves students increasingly drawing and observing larger data sets. The 
goal of the activity is to gradually shift from a case-oriented to a distributional view of the data. The figures are redrawn and adapted from Ben-zvi 
et al. (2012) and Bakker (2004)
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another study, Jacob and Doerr (2014) introduced a simu-
lation activity that focused on distinguishing population, 
sample, and sampling distribution graphs. Post-activity, 
students were successfully able to predict how sampling 
distributions with different sample sizes would appear for 
a given population. Dynamic boxplot visualizations seem 
to be another promising way to depict sampling distribu-
tions for emphasizing their variability and its relation to 
statistical inference (Pfannkuch et al., 2015). Overall, the 
concrete and dynamic nature of these graphs may ground 
students’ conceptual understanding.

The confusion about variability in sampling distribu-
tions, however, seems to go beyond a simple problem of 
misidentification. Some studies find that students may 
still have difficulty predicting the shape of the sampling 
distribution graphs even when correctly identifying that 
the graph represents a distribution of sample statistics 
(Lehrer et  al., 2014; Saldanha & Thompson, 2007; Van-
hoof et  al., 2007). As discussed in the previous section 
(Refer to 2.3.), these findings can be accounted for by 
the attribute-substitution model of heuristic judgment: 
When confronted with a computationally difficult prob-
lem, students may unconsciously and instantly substitute 
a simpler analog of the problem.

Intuitions about the law of large number: n (absolute sample 
size) versus n/N (proportional sample size)
The absolute sample size determines how closely a sam-
ple mean will match the population mean because the 
error in the sample estimate is inversely related to the 
sample size. However, several studies have indicated that 
students believe that it is not the absolute size of the sam-
ple (n) but its proportion to the population size (n/N) 
that predicts how closely a sample mean will approxi-
mate the population mean (Braham et al., 2013; de Vetten 
et al., 2018; Maxara & Biehler, 2006; Meletiou-Mavroth-
eris & Paparistodemou, 2015; Pfannkuch et  al., 2015). 
Because of this belief, students often attempt to investi-
gate a certain portion of a population during simulation 
activities. Even students relatively strong in statistics hold 
this belief.

A basic intuition for this conception seems to be that 
a smaller sample is a much poorer representation of a 
population than a large sample because of its respective 
proportion to the population size is small. A think-aloud 
protocol in Pfaankuch et  al.’s study further reveals the 
reasoning process: “As the population gets larger, a small 
sample won’t reflect exactly what the data is, because in a 
population of a million, there will probably be more than 
30 extreme values, and so if you’re taking a sample of 30 
[you] could get all those 30 extreme values, which could 
completely sort of skew your data” (p. 353). The quote 
reveals that the student does not appreciate that as the 

number of extreme values increases in a larger popula-
tion, so does the number of other values.

To target this conception, Smith (2004) developed a 
classroom activity with simulations in which students 
first varied n/N (the ratio of sample-to-population size) 
and kept n (the absolute sample size) constant, and then, 
vice versa. Pre- and post-tests gauged students’ reason-
ing through True/False responses to the statements “You 
need to obtain a sample that is at least 10% of the popula-
tion to get a reliable estimate of the population param-
eter” (False) and “for large population sizes, the size of 
the population is irrelevant to the reliability of the sample 
estimate; what matters is the absolute size of the sample.” 
(True). Students’ choices of correct statements from the 
pre- to post-test improved dramatically (from 7 to 53% 
for the first item and 0–86% for the second item).

Several studies reference this study as a successful 
intervention in addressing this challenging concept (e.g., 
Ben-zvi et  al., 2015; Garfield et  al., 2008). However, we 
are skeptical that Smith’s evaluation items have captured 
students’ conceptual understanding. It is not surprising 
that if students observe a phenomenon, then they will be 
able to report back what they have just seen. However, 
this does not mean that students have gained a mecha-
nistic understanding of the processes involved, such 
that sampled data above the mean balances other sam-
pled data below the mean, and it becomes vanishingly 
unlikely as the sample size increases that all the random 
data sampled from a population will be above or below 
mean. Moreover, the long-term retention of these rules 
is also doubtful. Research indicates that even when feed-
back initially modifies students’ intuitive concepts, which 
may contradict normative rules, the original thinking 
patterns tend to resurface within a short period (Butler 
et al., 2011). We conclude that research has yet to identify 
convincing pedagogical approaches to address students’ 
intuitions about the absolute versus proportional size of 
the samples.

Challenges with inference from a single sample
Consider a question such as “Given the population dis-
tribution, how likely is it to observe that a sample of 10 
data points has a mean of 50?”. The sampling distribution 
is directly relevant to such questions. In this case, the 
sampling distribution of means would show the results of 
randomly collecting sets of 10 data points and determin-
ing their means. If a low percentage of these means (e.g., 
5%) has a value as deviant from the population mean 
as the observed single sample, then one can reasonably 
infer that it was taken from a population that systemati-
cally diverges from the population in question. While this 
logic is not overly complex and is foundational for statis-
tical inference, the statistics education community has 
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yet to find a way to convey it to students of introductory 
statistics reliably.

For hypothesis testing with simulations, students are 
often tasked with constructing hypothetical probabilis-
tic models from which they can draw multiple samples 
to form a sampling distribution of statistics. Then, they 
determine the unusualness of certain empirical data of 
interest against this hypothetical population or model 
(see Fig.  1). Studies found that students are not able to 
draw statistical inferences from a single sample when 
they are asked to do so (Arnold et al., 2017; Braham et al., 
2013; de Vetten et al., 2018; Eliason & Jones, 2020; Jacob 
& Doerr, 2014; Saldanha & Thompson, 2002; van Dijke-
Droogers et  al., 2021b). A persistent obstacle seems to 
be that the inferential importance of the sampling distri-
bution is not sufficiently impressed on students who are 
inclined to make more direct comparisons between the 
observed data and the hypothesized population.

According to Saldanha and Thompson (2002), students 
use representativeness heuristics instead of construct-
ing an internal image of the sampling distribution while 
performing statistical inference. In another study with 
simulations, van Dijke-Droogers et al. (2021a) taught stu-
dents to construct sampling distributions, compare sam-
pling distributions with different sizes, and determine the 
extreme values in the sampling distributions. Following 
this instruction, when asked to make inferences about the 
population distribution, students made inferences about 
the population distribution based on only a single sample 
with a small size without considering the sampling vari-
ability. Additionally, when they were asked to determine 
the probability of the sample mean falling below a spe-
cific value, they did not refer to the sampling distribu-
tion graph available on the screen but instead referred to 
the distribution of a simulated sample. Similarly, Braham 
et  al. (2013) found that even though students had just 
explored the sampling distribution graphs and elaborated 
on their meanings, they were not ready to perform statis-
tical inference based on a single sample. Students claimed 
one cannot draw inferences from only one single sample. 
In both studies, the students needed to be explicitly cued 
to use the sampling distribution graph for making the 
inference. Sampling distribution simulations can, indeed, 
create the misconception that one needs to literally take 
multiple empirical samples to perform valid statistical 
inference (Watkins et al., 2014). While simulations might 
aid with the process of taking multiple samples, they may 
be less helpful in encapsulation of the process to a sin-
gle entity, which is a crucial step for statistical inference 
(Eliason & Jones, 2020).

Over the last decade, bootstrapping and randomiza-
tion tests have been recommended as contemporary 
methods to introduce statistical inference concepts (e.g., 

Chance et al., 2016). Given that understanding the simu-
lated distribution of statistics in randomization tests also 
demands a similar level of higher-order thinking as in 
sampling distributions, students might likely encounter 
similar conceptual difficulties. Indeed, empirical evidence 
suggests that persistent challenges remain such that stu-
dents conflate the hypothetical nature of the simulated 
samples and an actual empirical sample (Brown, 2021). 
A specific area of confusion arises in bootstrapping; stu-
dents regard the original sample as the entire population 
and thus sample only a part of it instead of performing 
resampling with replacement using the original sam-
ple size (McLean & Doerr, 2015). Overall, we conclude 
that research has yet to identify promising pedagogical 
approaches to facilitate students’ understanding of sam-
pling distributions of statistics and their ability to sponta-
neously use simulations for statistical inference.

Context’s influence on reasoning
Prior research suggests that students are sensitive to the 
context in which sample size problems are presented 
whether they are trained with simulations (Abrahamson 
et  al., 2006; Maxara & Biehler, 2006) or not (Findley & 
Lyford, 2019).

In one study, Maxara and Biehler (2006) tested under-
graduate mathematics education students’ reasoning to 
assess their long-term understanding of the empirical 
law of large numbers and sampling distributions before 
and after receiving a simulation-intensive introduction to 
statistics course. The authors interviewed students with 
various story problems with a similar statistical struc-
ture. Even though each problem required normatively 
similar solutions, students’ responses showed little con-
sistency across different questions. For example, for the 
maternity ward task (Saldanha & Thompson, 2002), they 
frequently used the law of large numbers justification, 
whereas they invoked the growing possibilities heuris-
tic on an analogous scenario about reaching a passing 
grade on an exam with just guessing (e.g., “I have more 
opportunity to guess correctly with more questions.”). 
On two other analogous questions about the chances of 
winning a game in a casino and predicting elections from 
a survey, the students were explicitly cued for analogies 
between the two (“Can you see analogies between the 
tasks?”). Even though this cueing helped students apply 
the correct solution from one task to the other, it did not 
improve the quality of their explanations of the correct 
answer. Overall, the authors reached two conclusions. 
First, students’ contextual familiarity may either facilitate 
or sidetrack their statistical reasoning on story problems. 
Second, problems constructed regarding statistics (such 
as survey tasks) are easier to solve than probabilities 
(such as slot machines).
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Findley and Lyford’s (2019) study support Maxara and 
Biehler’s conclusion that contextual familiarity influences 
students’ reasoning about story problems. However, it 
challenges the conclusion that probabilistically presented 
contexts are necessarily more difficult. Findley and 
Lyford asked students to draw graphs across two differ-
ent story problems, one constructed as the distribution 
of a range of average pennies in circulation by their pro-
duction years and the other as the averages of multiple 
dice rolling. In both tasks, students constructed the dis-
tribution of averages for a sample size of 2 and then 10. 
More students responded to the dice task correctly than 
the penny task. On the dice task, they correctly predicted 
that the average should cluster closely around the mid-
dle of the range with a larger sample size. However, for 
the penny task, they incorrectly expected that a larger 
sample should produce a wider range of averages (grow-
ing possibilities heuristics). The authors concluded that 
students’ daily life knowledge of dice freed them to focus 
their reasoning on the average that these samples would 
produce while the unfamiliar context of the penny task 
caused them to dissipate their focus and led to a less use-
ful reasoning path.

After a review of these two studies, it is difficult to 
make predictions regarding how the specific aspects of 
story problems will influence students’ reasoning because 
researchers compared stories that differed along various 
dimensions from each other without isolating particular 
aspects. Nevertheless, it seems that students’ piecemeal 
contextual knowledge may suppress the information 
conveyed by the statistical models with which they are 
trained.

As a promising approach, van Dijke-Droogers et  al. 
(2021a) found that using the same simulation software to 
model various scenarios can support extracting context-
independent structures of the tasks. The authors found 
that this approach shifted students’ understanding from 
context-specific interpretations toward more abstract, 
higher-level statistical reasoning. However, it has yet to 
be shown if students can demonstrate broader transfer 
effects without the presence of the simulations.

Discussion: a grounded cognition perspective to sampling 
simulations
In the second section, we reviewed educational studies 
that teach students statistical sampling with computer 
simulations. The findings suggested tentative benefits of 
computer simulations in terms of building general sta-
tistical reasoning, skills, and habits of mind over time. 
When fundamental concepts were more specifically 
investigated, however, distinguishable patterns were pre-
sent which point to persistent challenges. Among those, 
first, was students’ focus on the local changes in graphs at 

the expense of global patterns which hindered their con-
ceptualization of the law of large numbers. Second, when 
the activities moved from lower-level (e.g., single sam-
ple distributions) to higher-order graphs (e.g., the col-
lection of statistics), students were at risk of losing their 
grasp of what the graphs represent. Third, students often 
showed a lack of a process-based understanding (that 
is, understanding how) of the principles (e.g., the law of 
large numbers). Fourth, when left to their own devices, 
students were not able to apply what they had learned in 
conducting simulations to make inferences about a sin-
gle sample. Fifth, students’ problem–solution approaches 
showed inconsistency across different contexts that could 
have been organized under the same statistical principle. 
A quick judgment of the summary of these results may 
lead us to conclude that students, with and after simula-
tions, display patterns of reasoning in ways that would 
be expected without any training. That is, they are eas-
ily swayed by piecemeal contextual knowledge without 
a causal mechanical understanding of probabilistic pro-
cesses, and simulations sometimes even cause additional 
misconceptions because of learners’ incorrect interpreta-
tions of graphs.

It should be noted that the educational psychology 
research community seems to broadly agree that causal 
claims about whether an instructional intervention has 
benefits on learning should be based on randomized 
experiments (e.g., Brady et al., 2023; Grosz, 2023; Mayer, 
2023). Correlational and qualitative studies, on the other 
hand, can provide grounds for generating hypotheses to 
be tested in future experimental research (Brady et  al., 
2023). To this end, we interpret our review’s results in 
light of a broader grounded cognition perspective.

Bidirectional relationships between perception and cognition
Grounded cognition posits a bidirectional relationship 
between lower-level perception and higher-level concep-
tual thought. In one direction, perceptual features that 
co-occur in the environment are linked through asso-
ciative learning, forming concepts through indirect asso-
ciations once the direct associations become automatic 
(Sagi & Tanne, 1994). This perspective helps explain our 
findings that repeated exposure to simulations enhances 
students’ overall understanding of statistics concepts (see 
“Benefits of simulations for general statistical reasoning 
abilities and skills” section). In the other direction, per-
ceptual processing is strategically adapted to support 
cognition (Goldstone & Barsalou, 1998). For example, to 
achieve conceptual goals, irrelevant perceptual features 
of objects are de-emphasized, while relevant features are 
accentuated (Goldstone, 2019). Such a mechanism could 
be involved in our findings that children, not having yet 
formed normative conceptual goals in statistics, tend to 
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focus on local data aspects at the expense of recognizing 
global trends critical for data investigations (see “Local 
versus global view of data” section).

An important pedagogical implication of this bidi-
rectional link between perception and conception is 
to enable students’ repeated exposure to simulations 
with activities targeting normative conceptual goals in 
mind. Such a perspective expands the role of simula-
tions beyond mere introductory demonstration tools for 
beginners. Instead, it suggests that simulations are better 
situated as tools to think with as students increasingly 
build more sophisticated concepts. For example, as they 
advance their understanding of statistical concepts, stu-
dents may more easily gain a more distributional view 
of sample data and an object-oriented understanding of 
sampling distribution graphs. Studies suggest that as peo-
ple gain expertise, they become more skillful at extracting 
relevant information and recognizing complex patterns 
from objects (Kellman & Massey, 2013; Yu et al., 2018a, 
2018b). However, adaptation of perception is slow, as 
befits perception’s early position in information process-
ing (Goldstone, 2019). It is appropriate that perceptual 
processes change conservatively given that their outputs 
serve as the inputs for all downstream processes in the 
flow of information processing. Based on this notion, an 
open empirical question emerges: Whether prolonged 
exposure and experience can mitigate the reported 
challenges.

Additionally, quasi-experimental studies have provided 
some evidence that the benefits of sampling simulations 
go beyond the specific learning scenarios in which they 
were situated. This includes the development of general 
statistical habits and norms (van Dijke-Droogers et  al., 
2021b) and a broader understanding of statistical con-
cepts (Hancock & Rummerfield, 2020). Research in other 
scientific fields has shown that dynamic and spatial simu-
lations help learners implicitly construct mental mod-
els, which they can flexibly and spontaneously apply to 
future, superficially dissimilar tasks (Day & Goldstone, 
2011). These findings collectively suggest tentative ben-
efits of simulations in facilitating the transfer of learning, 
though more direct evidence is needed, especially in the 
context of statistical sampling.

Grounded simulation designs
Controlled laboratory experiments have provided evi-
dence that people can easily discern statistical sum-
maries of objects that vary along a particular visual or 
spatial dimension. This ability extends across a diverse 
range of dimensions and objects. For example, people 
can estimate the average emotional expression in a col-
lection of face images ranging from happy to sad (Elias 
et al., 2017; Haberman & Whitney, 2009). Similarly, they 

can determine the average luminance of dots, the size of 
squares (Rodriguez-Cintron et  al., 2019), circles (Chong 
& Treisman, 2005; Lau & Brady, 2018), and strawberries 
(Yang et al., 2018). This ability also applies to estimating 
the length of lines (Bauer, 2017), the orientation of lolli-
pops (Yang et al., 2018), and even to more abstract attrib-
utes, such as the lifelikeness of objects (Leib et al., 2015) 
(see Fig.  5). These objects are clustered onscreen and 
centered around a focal point. The participants are then 
asked to estimate a statistical summary, such as the aver-
age, variance, or centroid of the objects that differ along 
one dimension. They may be asked to position a slider to 
reflect their visual estimation or verbally compare two 
sets of objects, such as which one has a larger or smaller 
mean or variance.

Notably, these estimations, referred to as ensemble 
perception, are made without any explicit calculation 
or detailed encoding of each individual item displayed 
(for a review, see, Cui & Liu, 2021). The global statistical 
impressions are formed rapidly and early in vision. Sen-
sory neurons quickly adjust to the statistical properties of 
the visual input, and from just a few glances, people can 
create a general representation of a scene (Chong & Tre-
isman, 2003). This suggests that our sensory system can 
extract essential statistical information from our environ-
ments without conscious effort.

Fig. 5  Sample stimuli from the ensemble perception literature. 
Note. Examples of object groups from which people were found 
to efficiently discern statistical summaries without explicit 
enumeration: mean and variance of the size of strawberries (Yang 
et al., 2018), mean and variance of the orientation of lollypops (Yang 
et al., 2018), the centroid of squares (Rodriguez-Cintron et al., 2019), 
and the mean size of dots (Chong & Treisman, 2005). The figures are 
redrawn from their original sources
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Given the evidence on the close relationship between 
perception and conception and robust findings from 
ensemble perception literature, it may seem contradic-
tory that our reviewed findings hint that students strug-
gle to interpret the statistical nature of pedagogical 
simulations even with deliberate efforts of the educators. 
Cui and Liu (2021) offer an explanation for this discon-
nect. First, particular graphs used in statistics education, 
such as histograms, introduce perceptual difficulties. 
For example, what the axes represent is often counter-
intuitive (Kaplan et  al., 2014; Lee & Meletiou-Mavroth-
eris, 2003), and students sometimes treat a histogram’s 
bars as distinct objects (Newman & Scholl, 2012). Sec-
ond, educational tasks typically bear additional cognitive 
demands, such as transforming the estimated visual sum-
maries into numerical values. This suggests that students 
face challenges at two levels: perceptual understanding of 
the graphical representations and cognitively transform-
ing that information into numerical values.

Adopting a grounded cognition approach may enhance 
the effectiveness of simulations at both levels. That is, 
simulations can be designed to combine abstract con-
cepts and statistical sampling mechanisms with con-
crete and familiar referents akin to daily experiences 

to facilitate students’ meaning making. Indeed, several 
of the reviewed studies already take advantage of this 
notion (see Fig.  6). For example, by default, Tinkerplots 
and Fathom, the most frequently used software programs 
for teaching statistical reasoning, use dot plots instead 
of histograms. In addition, Tinkerplot uses animation to 
transition between display types, explicitly cueing the 
relationship between different representations. Moreo-
ver, animations that depict random selection processes 
are found in software like the Rossman and Chance 
applet, Tinkerplots, and the Virtual Rice Lab. Neverthe-
less, these could be further grounded to better mirror the 
tangible experiences and contexts familiar to students.

For example, in a study by Yu et  al., (2018a, 2018b), 
the researchers designed an animation that illustrated 
two machines in a factory producing balls under differ-
ent settings. Going beyond identical-looking dots in a dot 
plot and bars in a standard histogram, the authors used 
tokens that resembled the actual objects (balls) repre-
senting each observation. For the axes, no numeric tags 
were used to indicate the value of the variables. Instead, 
the Y axis represented the actual height reached by the 
bouncing balls, and the individual differences between 
the balls were represented by systematic variation of 

Fig. 6  Grounding examples in the sampling simulations. Note. Some practical examples of grounding are animations that depict the random 
selection process and the transition from iconically depicted situations to dot plots to histograms. The screenshots are from the Rossman 
and Chance applet (top panel) and TinkerPlots (bottom panel)
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their colors on the X axis. Thus, the data measurements 
were directly shown on a naturally corresponding visual 
dimension, which avoided the necessity to calculate the 
variables’ values explicitly or to map the dimensions rep-
resented by the axes effortfully.

In a recent controlled experiment, we tested the prom-
ises of this grounded approach for the design of sam-
pling simulations (Gok et  al., 2024). We used tokens to 
represent the individual data points to ease the represen-
tational competence required for grasping histograms. 
We physically distinguished the tokens for collected 
statistics from singular observations to avoid confu-
sion. Additionally, we animated the aggregation process 
of averaging when constructing the collection of means 
so that students could construct a spatial representation 
corresponding to the informal notion that “low and high 
scores are more likely to cancel each other out with larger 
samples.” Compared to a standard histogram simulation, 
our initial results suggest that grounding with concrete 
simulation helped students better understand the situ-
ation during their inquiry activities, but it did not show 
more advantageous transfer effects at the post-test.

It has been shown elsewhere that concrete represen-
tations can limit the transfer of knowledge to situations 
having different concrete manifestations (Goldstone & 
Sakamoto, 2003). Applying these results to sampling, 
students who learn sampling processes through tangible 
materials or token-based graphs might not be expected 
to apply their knowledge when encountering generic 
histograms in a textbook later. However, this possibil-
ity does not mean that concrete representations should 
be avoided for better generalization of learning. A more 
promising approach, referred to as concreteness fading, is 
to start with concrete representations and gradually fade 
them to more abstract ones so that students can benefit 
from a grounded approach while generalizing what they 
have learned (Fyfe et al., 2014).

Consistent with the concreteness fading approach, 
another route for the grounded cognition approach in 
pedagogical simulations is to employ tangible objects 
before students transition to computer simulations. 
Examples of such objects have included marbles for 
drawing samples from a box (Abrahamson, 2014, van 
Dijke-Drookers et  al., 2021b), different-colored candies 
to demonstrate sampling distributions (Hancock & Rum-
merfield, 2020), a video demonstration of an instructor 
manually shuffling data on paper to teach the randomi-
zation test function in R (Zhang et  al., 2022), and data 
cards in a population bag (Arnold et al., 2017). Although 
many studies did not evaluate the particular impact of 
these tangibles on learning, Hancock and Rummerhield’s 
quasi-experiment revealed that the group that engaged 
with tangible activities before computer simulations had 

significantly higher improvement in their exam scores 
compared to the group that engaged with only com-
puter simulations. Notably, the improvement was not for 
the items that specifically gauged sampling distribution 
knowledge but in the overall understanding of statisti-
cal concepts. Zhang et al.’s (2022) controlled experiment 
yielded similar results. Students who watched a hands-
on video before using R simulations demonstrated better 
understanding than those who used R simulations alone. 
These results underscore the educational benefits of con-
crete precursors, whether through observation or direct 
experience.

Guiding simulation explorations: the roles of visual routines 
and reification
While we have recognized grounded simulation design as 
a promising avenue for future direction, guiding students’ 
perceptual engagement with graphs is likely at least as 
important. Evidence suggests a strong link between per-
ceptual patterns and graph interpretations. For instance, 
when analyzing histograms to estimate the mean, stu-
dents who employ an incorrect strategy show a tendency 
for horizontal eye movements, indicating they treat each 
bar as a separate case, whereas students using a correct 
strategy exhibit vertical gaze patterns (Lyford & Boels, 
2022). A local perspective on the data correlates with 
more fixations on individual points, whereas those with a 
global perspective demonstrate longer movements across 
the histogram (Schreiter & Vogel, 2023). In addition, 
experts allocate more time to textual elements provid-
ing context, such as titles, legends, and axis labels, which 
novices tend to overlook (Harsh et al., 2019).

Complementing this relationship between graph per-
ception and interpretation, two reviewed findings high-
lighted the importance of checklists for improving 
students’ interpretation of simulations. These checklists 
range from intangible norms, like structured inquiry pro-
cesses (Makar et al., 2011), to tangible guidance materials 
that help interpret variability patterns in graphs (Arnold 
et  al., 2017, see Fig.  7). Simulations are perceptually 

Fig. 7  Checklist example. Note. Checklists guide visual routines 
while students interpret simulations. The figure is redrawn 
from Arnold et al. (2017)
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ambiguous. They are typically complex and have numer-
ous components which could be attended to or grouped 
into structures. Whether through physical tools or estab-
lished norms and practices, checklists graft interpretive 
organization onto a rich simulation’s blooming and buzz-
ing confusion.

Correspondingly, Yu et  al., (2018a, 2018b) found that 
inquiry through grounded simulations improved learn-
ing outcomes when paired with analytical feedback that 
explained pattern changes but not with simple right-or-
wrong feedback. These results are congruent with our 
understanding of the visual system’s functioning, where 
rapid and intuitive visual processing effectively picks up 
basic statistics but falls short of a more sophisticated 
understanding of graphs, such as the relationships among 
the values or the comparison between different groups, 
which requires the visual system to isolate relevant parts 
of the graph across time slowly and serially (Xiong et al., 
2022). The visual system relies on ’visual routines’—a 
series of operations like focusing attention, indexing, and 
activation spreading—to extract complex properties and 
relations from visuals (Ullman, 1987). These routines, 
crucial for extracting sophisticated data relations, often 
require guidance to form effective perceptual habits for 
graph analysis (Goldstone & Wilensky, 2008). Teach-
ing students these visual routines, with relevant eye 
movement guidance, can enhance learning from graphs 
(Michal & Franconeri, 2017; Michal et al., 2016). Verbal 
instruction can change the values of a graph that people 
attend over time (Michal et al., 2016). Visual attention is 
more efficiently allocated to targets when they are explic-
itly labeled (Lupyan, 2017), and labels can even help 
objects be seen that would otherwise be missed (Lupyan 
& Ward, 2013). Such labels also possess object-like prop-
erties that aid in compressing information and represent-
ing rich associative connections while filtering complex 
and ambiguous perceptual experiences in the service of 
conceptual goals (Son et al., 2010).

Similarly, statistical notions also adopt object-like 
properties. Abstract notions typically begin as actions 
and processes, gradually condense, and finally, the 
learner conceives of the notion as an object. This stage, 
referred to as reification (Sfard, 1991), is an ontological 
shift where a complex pattern or set of relations is viewed 
as an object in its own right. Reification allows grasp-
ing large amounts of data from several processes at one 
glance (Eliason & Jones, 2020; Font et  al., 2013; Sfard, 
1992). An important finding from the reviewed studies 
was that simulations may help foster an understanding of 
statistical processes, such as how sampling distributions 
are constructed by taking means of all samples from the 
population. However, simulations fell short in promot-
ing the reification of these processes, such as viewing the 

sampling distribution as a theoretical and abstract object. 
Yet, reification is the building block for more advanced 
mathematical constructs and processes, such as calculat-
ing the likelihood of observing certain values or making 
inferences from a single sample based on the sampling 
distribution.

An argument in the reviewed literature has been that 
expressing statistical notions as objects in language (e.g., 
referring to “the spread” instead of saying “the dots are 
spread out”) indicates reification of the notion (Bakker, 
2004). Eliason and Jones (2020) argued for the benefits 
of explicit instruction regarding theoretical sampling dis-
tributions for reification. We propose that visual routines 
could also be instrumental in promoting such reification, 
enabling students to visualize statistical concepts as tan-
gible objects with discernible attributes and properties. 
Sophisticated visual processes such as figure-ground 
separation, marking, following, and annotating, typi-
cally employed in object perception, can be adapted for 
abstract concepts, transforming these notions into visual 
objects within students’ understanding.

Summary: pedagogical proposals for future empirical testing
Finally, we outline the pedagogical insights that have 
emerged from the review. Note that the following points 
are not proposed as definitive guidelines. Rather, they 
are dimensions we regard as meriting close attention in 
future empirical research and instructional design (see 
our own efforts in Fig.  8). We call for future controlled 
experiments to refine these insights through incremental 
testing along these dimensions.

•	 Students build habits of mind through repeated 
exposure to simulations.

Percepts and concepts are interlinked and shaped in a 
mutual, recurrent, and bidirectional manner. Students’ 
past experiences guide their interpretations of the simu-
lations, and they iteratively refine their interpretative 
skills based on these observations. The frequency with 
which students are provided opportunities to engage 
with simulations is a crucial pedagogical dimension. Sim-
ulations serve not merely as an entry point for novices 
but as potentially effective tools to think with as students’ 
progress in their statistical training.

•	 Familiar, intuitive, dynamic representations ground 
students’ meaning making from simulations. Ideal-
ized representations generalize learning.

Traditional statistics diagrams are often confusing 
for novices as the meaning of their physical and spatial 
properties mismatch with students’ prior experiences 
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with these properties. These simulations can initially be 
grounded in familiar tangibles, token-based graphs that 
visually resemble the data they represent, animations that 
translate statistical processes into dynamic spatial rep-
resentations, and visual cues that mirror the underlying 
conceptual similarities and distinctions. These grounded 
simulations should gradually transition to more ideal-
ized forms for fostering transfer of learning to different 
situations and facilitating adept use of standard statistical 
tools.

•	 Visual routines need to be guided during inquiries 
using simulations.

Statistical simulations inherently possess percep-
tual ambiguities, making it challenging for novices to 
direct their attention to diagnostic elements. This can 
lead students to develop ineffective perceptual habits. 
Previous research indicates labels, verbal instructions, 

checklists, and visual cues may be effective methods for 
directing students’ attention. Another solution may be a 
more socially grounded approach, where students view 
simulations with their teachers. The gestures and cues 
provided by the teacher can guide students’ routines.

•	 Simulations and verbal materials have separate 
affordances.

Due to the implicit nature of perceptual learning pro-
cesses, students may often be unable to verbalize their 
learning from the simulations. Linguistic materials 
and verbal instructions can turn intuitive and implicit 
learning gained from the simulations into explicit and 
verbalizable ideas.

•	 Statistical processes depicted in the simulations 
should be reified as foundations of more advanced 
concepts and practices.

Fig. 8  An empirical investigation of our proposals. Note. The figure showcases an application of our proposals, as investigated in our ongoing 
empirical studies. A The default option of the simulation is a token-based graph so as to ease the representational competence required 
to understand the distribution. B The graph is transformed into an idealized form to facilitate a more generalized comprehension of the graphs. 
C The collected means are represented with icons different from those representing singular observations to avoid confusion. Additionally, 
the averaging process is visualized, creating a spatial understanding that mirrors the concept of the mean as a balance point. D The sampling 
distribution graph is idealized as a stable object (reified), and the rejection region is marked for guiding perceptual routines to the graph’s important 
properties crucial for conducting statistical inference
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Merely exposing students to statistical processes 
through simulations does not guarantee their reifica-
tion of these processes. Yet, reification is crucial for 
building blocks of more advanced concepts and prac-
tices. After engaging in inquiry activities using simu-
lations, the investigated processes should be reified 
through explicit instruction on theoretical principles 
and guidance on visual routines that allow grasping 
complex processes at one glance.

Conclusion
Many view statistics as a discipline that is not intui-
tively graspable. Students in statistics classes are fre-
quently advised to set aside their intuitions to avoid 
mistakes and adhere to the mathematical proofs they 
were taught instead. This perspective is memorably 
expressed by John Von Neumann: “In mathematics, you 
don’t understand things. You just get used to them." 
Historically, humans’ intuitive and experiential learning 
systems were believed to interfere with the complex, 
abstract, and rule-based system of thinking required in 
fields like science and mathematics. These two systems 
have been thought to produce incompatible solutions 
to problems.

In this review paper, we explored the promises of 
an alternative view that emphasizes the interaction 
between Systems 1 and 2. We proposed that percep-
tion–action routines are built to support formal reason-
ing, and formal reasoning is simultaneously built out 
of trained perception–action routines. This perspec-
tive repeatedly appeared to us as illuminating when we 
reviewed the educational literature on statistical sam-
pling simulations. We do not claim this perspective will 
always reach desirable solutions and acknowledge that 
it does not exhaust what the reviewed papers have to 
offer. However, we hope this grounded cognition per-
spective will be an important theoretical addition to 
inform the pedagogical methods for teaching difficult 
concepts such as statistical inference.
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