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Diverse evidence shows that perceptually integral dimensions, such as those composing color, are
represented holistically. However, the nature of these holistic representations is poorly understood.
Extant theories, such as those founded on multidimensional scaling or general recognition theory, model
integral stimulus spaces using a Cartesian coordinate system, just as with spaces defined by separable
dimensions. This approach entails a rich geometrical structure that has never been questioned but may
not be psychologically meaningful for integral dimensions. In particular, Cartesian models carry a notion
of orthogonality of component dimensions, such that if 1 dimension is diagnostic for a classification or
discrimination task, another can be selected as uniquely irrelevant. This article advances an alternative
model in which integral dimensions are characterized as topological spaces. The Cartesian and topolog-
ical models are tested in a series of experiments using the perceptual-learning phenomenon of dimension
differentiation, whereby discrimination training with integral-dimension stimuli can induce an analytic
representation of those stimuli. Under the present task design, the 2 models make contrasting predictions
regarding the analytic representation that will be learned. Results consistently support the Cartesian
model. These findings indicate that perceptual representations of integral dimensions are surprisingly
structured, despite their holistic, unanalyzed nature.
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Much of perceptual processing can be characterized as iden-
tifying or imposing useful structure on sensory input (e.g.,
Schyns, Goldstone, & Thibaut, 1998). One way this is achieved
is by decomposing rich, multidimensional sensations into sep-
arate psychological dimensions. For example, we readily per-
ceive the shapes, sizes, and colors of objects around us. How-
ever, there are limits to this perceptual decomposition. A classic
example is color space, which has three mathematical degrees
of freedom but which can be perceptually decomposed into
representations of individual dimensions only imperfectly and
with cognitive effort (Garner & Felfoldy, 1970). Stimulus
spaces with these properties—physically multidimensional, but
psychologically difficult to analyze—are known as integral
dimensions. A large body of research indicates that integral
stimuli are primarily processed holistically, as unitary percepts
rather than as conjunctions of values on component dimensions
(Attneave, 1950; Shepard, 1964; for a review, see Kemler
Nelson, 1993). However, despite a long history of research,

basic aspects of the holistic representations of integral dimen-
sions are still poorly understood. The goal of this study was to
explore the structure of these representations.

There is a long history, founded in the tradition of multidimen-
sional scaling (MDS; Torgerson, 1958) and continued in general
recognition theory (Ashby & Townsend, 1986), of modeling multi-
dimensional stimuli as points in a space endowed with a Cartesian
coordinate system. Various cognitive tasks are taken to involve learn-
ing and decision processes within that space. This standard Cartesian
model turns out to imply a rich geometrical structure that may not be
psychologically meaningful for integral dimensions. As an alternative,
we consider a topological model of integral dimensions, in which
similarity is defined in a local sense, but beyond that there is essen-
tially no structure contained in the representation. This model is
motivated by the claim that an integral space is best viewed as a single
psychological dimension (i.e., information channel), even though
mathematically it has multiple degrees of freedom (Lockhead, 1972).
From this perspective, an integral stimulus space might be expected
have little internal structure.

A principal difference between the Cartesian and topological
models, which we explore here, concerns the relationships among
component dimensions within the integral stimulus space. By
component dimension, we mean any (mathematically) unidimen-
sional component of the space, such as hue, saturation, or bright-
ness within the integral space of color. According to the Cartesian
model, there is a well-defined angle between any two component
dimensions, and in particular there is a well-defined notion of
whether two component dimensions are orthogonal (i.e., perpen-
dicular). According to the topological model, these properties are
not psychologically meaningful.
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This question of orthogonality has important implications for
learning with integral-dimension stimuli. Of particular interest
here is the phenomenon of dimension differentiation, whereby
observers learn to perceptually decompose an originally integral
stimulus space into component dimensions. Using a training-
transfer paradigm with (mathematically) two-dimensional stimulus
sets, Goldstone and Steyvers (2001) showed that experimental
participants learn not just the primary dimension that is diagnostic
during training, but also a complementary dimension that captures
the remaining variation in the stimuli. These and subsequent au-
thors (e.g., de Beeck, Wagemans, & Vogels, 2003) have assumed
that the complementary dimension is determined as being orthog-
onal to the primary dimension. This assumption seems so obvious
that it has received no scrutiny and, in fact, barely any explicit
recognition. However, if the topological model is correct, then
integral dimensions do not have the geometrical structure neces-
sary to determine orthogonality, and hence the complementary
dimension must by determined by some other principle.

One natural alternative hypothesis is that the complementary di-
mension is determined as being statistically uncorrelated with the
primary dimension, under the distribution of stimuli present in the
task. Such a mechanism makes sense from the standpoint of infor-
mation theory and has precedent in neural coding theory and vision
research (Barlow & Foldiak, 1989; Simoncelli & Olshausen, 2001)
because uncorrelated signals have no redundancy and hence maxi-
mize representational capacity. Thus, the question is whether the
effect of dimension differentiation is to decompose integral dimen-
sions into component dimensions that are statistically independent
(independence hypothesis) or that are orthogonal according to some
preexisting geometry (orthogonal hypothesis). The independence hy-
pothesis is compatible with both the topological and Cartesian mod-
els, whereas the orthogonal hypothesis is only sensible within the
Cartesian model. Therefore, evidence for the orthogonal hypothesis
would rule out the topological model and provide the first empirical
support that psychological representations of integral dimensions have
the geometrical structure implied by the Cartesian model.

The present experiments investigate the determinants of the
complementary dimension learned in dimension differentiation by
manipulating stimulus distributions to distinguish the orthogonal
and independence hypotheses. All three experiments support the
orthogonal hypothesis and, hence, the Cartesian model. We argue that
this is a surprising finding despite the fact that it coincides with
traditional modeling approaches. The geometrical structure assumed
by the Cartesian model previously lacked logical or empirical support
and was (we believe) implicitly assumed only because the alternative
topological characterization had not been considered. Nevertheless,
the Cartesian geometry appears to be psychologically real; hence,
integral dimensions have a significant amount of perceptual structure
despite their holistic, unanalyzed nature.

Cartesian Versus Topological Models of Integral
Dimensions

With a stimulus space composed of psychologically separable
dimensions, the Cartesian representation has strong logical support
(see Figure 1). Because each constituent dimension has a single
degree of freedom and a natural ordering, it is isomorphic to a subset
of the real number line (e.g., the set of possible brightnesses can be
mapped to an ordered set of numbers). Because each stimulus in the

combined stimulus space can be represented by its values on the
constituent dimensions (e.g., values for size and for brightness),
the combined space is isomorphic to the Cartesian product of the
individual dimensions. In the case of two dimensions, the result is the
Cartesian plane.

In modeling integral dimensions, it is common to assume a
Cartesian coordinate system just as with separable dimensions
(e.g., Ashby & Townsend, 1986; Shepard, 1962). Generalizations
of the Cartesian approach that do not assume orthogonality be-
tween axes still assume that the angle between the axes is an
important psychological property of the representation (Carroll &
Chang, 1972; Tucker, 1972). However, the logical justification for
Cartesian representations breaks down for integral stimuli because
their representations are not compositional. Consequently, we are
left with only the left half of Figure 1, with the dotted line standing
for an untested assumption.

One challenge in developing an alternative to the Cartesian
model is that it is difficult to envision a continuous stimulus space,
and nearly impossible to depict one graphically, without implicitly
building in a geometry. Fortunately, mathematical tools exist for
this type of problem, and for present purposes, they are not too
conceptually complex. We take as a starting point Lockhead’s
(1972) suggestion that integral dimensions are best thought of as a
single psychological dimension that happens to have multiple
degrees of freedom (i.e., stimuli are arranged locally as in a plane
or higher dimensional space rather than a line). Garner (1974)
expressed a similar view: “Psychologically, if dimensions are
integral, they are not really perceived as dimensions at all . . . and
do not reflect the immediate perceptual experience of the subject”
(p. 119). This view is supported by classic findings showing that
processing is usually determined by similarity in the joint space rather

Figure 1. Illustration of logic behind Cartesian representation of sep-
arable dimensions. Upper left shows a set of stimuli varying in size and
brightness. Because these are perceptually separable dimensions (e.g.,
L. B. Smith & Kemler, 1978), the stimulus space can be decomposed
into separate representations of each (upper right). The component
dimensions each have a single degree of freedom and a natural ordering,
so they are both isomorphic to a subset of the real number line (lower
right). This correspondence implies a correspondence between the
perceptual representation of the joint stimulus space and the Cartesian
plane (lower left).
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than similarity along component dimensions (Garner, 1974), and by
evidence that manipulations affecting discriminability along one com-
ponent dimension have a concomitant effect on the whole space
(Goldstone, 1994b; Hinson, Cannon, & Tennison, 1998).

The natural mathematical characterization of a stimulus space
that has no structure except for local similarity is that of a topo-
logical space (see, e.g., Bredon, 1995, for an introduction).1 The
starting point for defining a topological space is a set, in this case
the set of all possible stimulus values. Mathematically, a set is
completely unstructured, in the same sense as a nominal variable
in measurement theory—each stimulus is given a label, and no
relationships are assumed among different labels. The structure in
a topological space comes from a topology defined on the set,
which is a specification of all open neighborhoods (see Figure 2).
An open neighborhood is a subset of elements in the space (i.e., a
set of stimuli in the present context) that can be thought of
intuitively as being similar to each other or as constituting a local
region of the space. Open neighborhoods are easy to understand in
a metric space (i.e., a space with a well-defined distance between
any two points). In a metric space, the open neighborhoods are
generated by all sets of the form {y: d(x, y) � ε}, that is, sets
containing all elements within an arbitrary positive distance (ε) of
a given element (x). Thus, the open neighborhoods of an element
provide information about which other elements are arbitrarily
close to it. In a topological space, there is no distance metric,
so there is no well-defined notion of similarity at a large scale, but
the topology (i.e., the open neighborhoods) can be thought of
intuitively as conferring a notion of local similarity. (Global prop-
erties that are often of interest in topology, such as connectedness
and orientability, emerge from this local similarity structure.)

To understand better the structure that is and is not present in
a topological representation, it is illustrative to ask the same
question of a Cartesian representation. Consider the stimulus
spaces depicted in Figures 3A and 3B. The arrangement of
stimuli in these two figures is the same; only the scaling is
changed. Thus, the two figures could be taken as depicting
exactly the same psychological representation, differing only in
how the researcher chose to draw the diagram. Next, consider
the orientation of the stimulus space. Under the dominant MDS

model of integral dimensions, similarity between stimuli is
determined by their Euclidean distance in the Cartesian space
(Garner, 1974; Shepard, 1964; Torgerson, 1951). It is well
understood that the Euclidean metric is unaffected by rotating
the stimulus set relative to the coordinate system. This property
is taken to have important psychological implications, specifi-
cally that “axes are arbitrary, and one set is as good as any
other” (Ballesteros, 1989, p. 238).2 Consequently, a diagram
such as that in Figure 3C depicts exactly the same psychological
representation as does Figure 3A. In contrast to findings with

1 More technically, we assume the structure of a differentiable manifold,
which is a topological space augmented with a notion of smoothness of
paths or curves through the space. This smoothness assumption is not
critical, but it simplifies the empirical analysis below.

2 Although there is evidence that certain axes of integral dimensions
can be processed differently (e.g., Grau & Kemler Nelson, 1988),
Kemler Nelson (1993) argues that these privileged-axis effects are due
to analytic representations that are secondary to the holistic (integral)
representations under investigation here. We return to the relationship
between privileged axes and the present findings at the conclusion of
this article.

Figure 2. Illustration of a topological space. Points indicate example
elements of the space, which correspond to stimulus values in the
present model. Shaded regions indicate example open neighborhoods of
those elements. In general, there are an infinite number of both elements
and open neighborhoods (not shown). The structure of the topological
space is determined by a specification of all of its open neighborhoods.

Figure 3. Illustration of the distinction between psychological com-
mitments and incidental properties of models of perceptual representa-
tion. Each figure is a depiction of a continuous, integral perceptual
stimulus space (gray region), with points indicating particular stimuli.
A and B differ only in overall scale, an incidental property of how the
diagram is drawn. Thus, they can be interpreted as depicting exactly the
same psychological representation. C differs from A only in orientation.
In Cartesian models of integral dimensions that assume Euclidean
similarity metrics, this rigid rotation is also an incidental change with
no psychological implications. D differs from the others by a nonrigid
transformation. Under the Cartesian model, it depicts a meaningfully
different psychological representation (e.g., because the rows and col-
umns of the highlighted stimuli are no longer orthogonal), but under the
topological model, this too is an incidental transformation, and all four
diagrams (A–D) depict exactly the same psychological representation.
Finally, E depicts a psychological representation that is different from
the others according to both Cartesian and topological models. This
diagram differs from the others by a discontinuous transformation, in
which the top and bottom halves of the stimulus space have been torn
apart and rearranged.
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separable dimensions (e.g., Ashby, Queller, & Berretty, 1999),
rigid rotation of an integral stimulus space is a purely formal
transformation, with no psychological implications.3

The topological model takes this idea further by asserting that
continuous, nonrigid transformations have no psychological impli-
cations either (because they do not alter the open neighborhoods of
the space). Thus, under the topological model, Figure 3D depicts
exactly the same psychological representation as do Figures 3A–
3C. Although the diagrams are physically different, their differ-
ences do not reflect different psychological commitments. In par-
ticular, Figure 3D illustrates how orthogonality of component
dimensions is not a meaningful psychological property in the
topological model. Whereas Figures 3A–3C seem to indicate an
orthogonal pair of dimensions, this is an incidental property of how
the diagrams are drawn (whereas in the Cartesian model it reflects
a psychological commitment). The one constraint in the topolog-
ical model is that if a transformation is not continuous, meaning it
“tears” the stimulus space (and hence some of the open neighbor-
hoods), then the psychological representation has been changed
(see Figure 3E). It is in this sense that local similarity is the sole
meaningful form of structure in the representation.

Although the Cartesian model also has a topology (as noted
above, any distance metric implies a topology), we use the term
topological model to mean the assumption that topology is the only
structure present in the representation, that is, that there is no
Cartesian structure. An intuitive way to think of the contrast
between the Cartesian model and the topological model is by
analogy to sheet metal and rubber. A sheet of metal has a rigidity
that confers a stable geometry. Any two lines have a well-defined
angle of intersection, and given any one line (and a point of
intersection), there is a unique other line that intersects it perpen-
dicularly. In contrast, if one were to draw two intersecting lines on
a sheet of rubber, the sheet could be stretched to make their angle
of intersection take on any nonzero value. All the rubber has is a
local similarity structure in that it cannot be torn. The topological
model thus constitutes a significant departure from extant models
in that it attributes far less structure to perceptual representations
of integral dimensions. Thus, the topological model is more par-
simonious, and hence should be viewed as a viable alternative in
the absence of direct evidence for the geometrical structure im-
plied by the Cartesian model.

Design of Experiments 1 and 2

The experiments reported here test the Cartesian and topological
models of integral dimensions by contrasting the orthogonal and
independence hypotheses of dimension differentiation. Experiments 1
and 2 extend the dimension differentiation paradigm of Goldstone and
Steyvers (2001, Experiments 3 and 4), which is illustrated in Figure
4A. The 16 points represent stimuli, arranged in a circle within a
two-dimensional integral stimulus space (morphed faces or colors
varying in brightness and saturation). During training, the stimuli
were divided into two equal-sized categories, as indicated by the solid
horizontal line. The participants’ task was to learn to classify the
stimuli from corrective feedback. On each trial, a stimulus was pre-
sented, the participant responded with one of the two category labels,
and then the correct response was displayed. Following training, each
participant was given a transfer task, using the same stimuli but
divided into new categories, as indicated by one of the two dashed

lines in Figure 4A (participants were told the categories had changed).
The orientation of the transfer boundary relative to the training bound-
ary was manipulated between participants as either 90 or 45 degrees.
The critical finding was that transfer performance, defined as the
proportion of correct classifications, was superior in the 90-degree
condition.

Goldstone and Steyvers (2001) concluded that the superior transfer
in the 90-degree condition arose because the dimension that was
diagnostic at transfer was perfectly irrelevant during training. They
argued that the training phase induces, at least temporarily, an analytic
representation of the stimuli, composed of the primary (diagnostic)
dimension and a complementary (irrelevant) dimension. When the
complementary dimension becomes diagnostic at transfer, the transfer
task can be directly solved using this newly learned dimension, thus
facilitating transfer performance.

The question addressed by the present experiments is what
determines the complementary dimension. According to the or-

3 In fact, the finding that integral dimensions are best fit by a Euclidean
metric in the MDS framework (e.g., Grau & Kemler Nelson, 1988; Handel
& Imai, 1972; Hyman & Well, 1967, 1968; Torgerson, 1958) is consistent
with the topological model. Because ordinal MDS procedures only enforce
a monotonic relationship between psychological distance and observed
data (e.g., similarity ratings), the metric is only determined up to mono-
tonic transformation (e.g., Shepard, 1962). Thus, the implication of the
Euclidean metric is primarily the negative conclusion that the space lacks
a well-defined orientation. Because the Euclidean metric is the unique
rotation-invariant metric among the family typically considered in MDS
studies (the Minkowski r-metrics), the topological model predicts it to fare
the best by virtue of imposing less extraneous structure than the others.

Figure 4. Illustration of dimension differentiation paradigm. Dots indi-
cate stimuli. Solid and dashed lines indicate category boundaries for
training and transfer tasks, respectively. Category boundaries determine
which component dimension is diagnostic in each task. (A) Conceptual
design of Goldstone and Steyvers (2001). Orthogonal and independence
hypotheses both predict superior transfer performance in the 90-degree
condition because the diagnostic transfer dimension is both perpendicular
to and uncorrelated with diagnostic training dimension in that condition.
(B) Conceptual design of Experiments 1 and 2. Elliptical stimulus distri-
bution deconfounds whether the diagnostic transfer dimension is perpen-
dicular to and uncorrelated with the diagnostic training dimension. The
perpendicular transfer boundary corresponds to the complementary dimen-
sion predicted by the orthogonal hypothesis; thus, this hypothesis predicts
superior transfer performance in the perpendicular condition. The uncor-
related transfer boundary corresponds to the complementary dimension
predicted by the independence hypothesis; this hypothesis predicts superior
transfer performance in the uncorrelated condition.
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thogonal hypothesis, the complementary dimension is orthogonal
to the diagnostic dimension in training, with respect to a psycho-
logically intrinsic geometry of the stimulus space. According to the
independence hypothesis, the complementary dimension is uncor-
related with the diagnostic dimension, under the distribution of
stimuli present in the task. With the circular stimulus distribution
used by Goldstone and Steyvers (2001), these two hypotheses
make exactly the same prediction. To distinguish between them,
Experiments 1 and 2 adopt an elliptical stimulus distribution, as
shown in Figure 4B. This change enables us to construct separate
perpendicular and uncorrelated conditions in which the diagnostic
dimension at transfer is either perpendicular to or uncorrelated
with the diagnostic training dimension. Comparing transfer per-
formance between these conditions provides a test between the
orthogonal and independence hypotheses. Under the assumption
that transfer performance will be greatest when the diagnostic
dimension at transfer coincides with the complementary dimension
learned from training, the orthogonal hypothesis predicts superior
transfer in the perpendicular condition, whereas the independence
hypothesis predicts superior transfer in the uncorrelated condition.

In interpreting Figure 4B, one must keep in mind that the
diagnostic dimension in each task is not the boundary itself; it is
the dimension that best separates the two categories. Convention-
ally, this dimension is treated as lying perpendicular to the bound-
ary. For example, because the training boundary in Figure 4B is
shown as horizontal, the diagnostic dimension would be referred to
as the vertical dimension. This convention is technically inappro-
priate in the context of the topological model because it relies on
a well-defined geometry to the space, although a reader choosing
to think in those terms will encounter no confusion.4

In the perpendicular condition, the category boundaries in train-
ing and transfer are perpendicular, and hence so are the diagnostic
dimensions. In the uncorrelated condition, the diagnostic training
and transfer dimensions are uncorrelated in the sense that if all 24
stimuli were expressed in terms of their values on these two
dimensions, those two variables would be uncorrelated across the
stimulus set. One easy way to see this is to observe that the training
boundary and the uncorrelated transfer boundary jointly partition
the stimuli into four equally sized subsets. Therefore, knowing
which side of the training boundary a stimulus lies on gives no
information (even probabilistically) regarding which transfer cat-
egory it belongs in.

The Cartesian model is logically consistent with both the or-
thogonal and independence hypotheses. Although the model as-
sumes that integral stimulus spaces have meaningful geometry,
this geometry would not necessarily have to play a role in dimen-
sion differentiation. However, if orthogonality between component
dimensions has any psychological implications at all, it seems that
it would have to contribute to determining the irrelevant dimension
in tasks like the training tasks used here. Therefore, the Cartesian
model strongly favors the orthogonal hypothesis.

According to the topological model, any two linearly indepen-
dent dimensions are sufficient to parameterize the space in the
sense that specifying the values of any stimulus on both dimen-
sions fully determines that stimulus. Therefore, any component
dimension other than the diagnostic dimension is logically capable
of serving as the complementary dimension. Assuming the dimen-
sion that is learned depends on experience (i.e., the new analytic
representation is not chosen blindly), a natural expectation is that

it should be driven by stimulus statistics, in particular as in the
independence hypothesis.5 There may be other plausible principles
that are compatible with the topological model, but the orthogonal
hypothesis is not because it relies on information that the model
holds is absent from the perceptual representation.

In summary, the goal of Experiments 1 and 2 was to compare
transfer performance between perpendicular and uncorrelated con-
ditions. Transfer performance is taken as an index of how well (or
whether) participants have developed a psychological representa-
tion of the diagnostic dimension as a consequence of learning the
training categorization. Superior transfer in the uncorrelated con-
dition would support the independence hypothesis of dimension
differentiation and lend support to the topological model of inte-
gral dimensions. Superior transfer in the perpendicular condition
would support the orthogonal hypothesis and would rule out the
topological model by providing direct evidence for the intrinsic
geometry entailed by the Cartesian model.

One modification to the logic of Figure 4B made in the actual
experiments was that the training task was varied between subjects,
whereas the transfer task was held fixed (rather than the other way
around), so that transfer performance could be directly compared
across conditions. Experiments 1 and 2 achieved this control in two
different ways. In Experiment 1, the training tasks in the perpendic-
ular and uncorrelated conditions differed by a rotation of the stimulus
set, so that the appropriate transfer boundary was the same in both
conditions. In Experiment 2, the roles of training and transfer bound-
aries in Figure 4B were reversed, so that subjects were trained on
different boundaries (dashed lines) and transferred to a common
boundary (solid line). Details of both experiments are given below.

Experiment 1

Participants in Experiment 1 leaned to classify color patches
varying in brightness and saturation. These two physical dimen-
sions form a classic example of an integral perceptual space
(Garner & Felfoldy, 1970). Every participant performed a training
and a transfer task, which drew stimuli from the same region of
color space but differed in the particular stimuli presented and in
how they were partitioned into categories. The category labels
differed for the two tasks, and participants were instructed at
transfer that they would now sort the colors in a new way.

There were six experimental conditions, illustrated in Figure 5. The
conditions differed in the stimuli and the category boundaries used in

4 A more rigorous definition of a component dimension is a mapping
from the stimulus space to (a subset of) the real number line, giving the
value of every stimulus on the dimension in question. This mapping can be
identified with its isoclines, which are sets of stimuli sharing a fixed value
of the dimension. The category boundary determines the diagnostic dimen-
sion because it is one such isocline. The conventional view of a dimension
as running perpendicular to its isoclines identifies the dimension with its
gradient, which is not defined in a topological manifold.

5 Correlations between component dimensions are not necessarily well
defined in the topological model because they can be altered by nonlinear
transformations. However, under the smoothness assumption of the differ-
entiable manifold (see Footnote 1), we can assume that nonlinear consid-
erations are negligible as long as the range of the stimulus set is sufficiently
restricted. This is a necessary assumption of the topological model for it to
apply to our or Goldstone & Steyvers’ (2001) studies.

115STRUCTURE OF INTEGRAL DIMENSIONS



training and in transfer. The conditions were grouped into three types
on the basis of the relationship between training and transfer tasks:
perpendicular (Conditions 1 and 4), uncorrelated (Conditions 2 and
5), and control (Conditions 3 and 6). Conditions 1–3 used the same
transfer task, as did Conditions 4–6. Contrasting transfer performance
between conditions of different types using the same transfer task
allowed two separate tests between the orthogonal and independence
hypotheses. The predictions for these contrasts are shown in Table 1
(the unsupervised hypothesis is introduced in the Discussion section
of Experiment 1).

The first contrast is between the perpendicular and uncorrelated
conditions, as described in the previous section. The diagnostic di-
mensions in training and transfer differed by 90 degrees in the
perpendicular conditions and 60 degrees in the uncorrelated condi-

tions. The Pearson correlations between these dimensions, taken over
the training stimuli, were .45 in the perpendicular conditions and .00
in the uncorrelated conditions. Therefore, the orthogonal hypothesis
predicts superior transfer performance in the perpendicular condi-
tions, and the independence hypothesis predicts superior transfer
performance in the uncorrelated conditions. In each pair of conditions
to be contrasted (1 vs. 2 and 4 vs. 5), the training tasks were
isomorphic but differed by a rotation of 30 degrees, allowing the
transfer tasks to be identical.

The second contrast is between the uncorrelated and control
conditions. It provides a direct test of the independence hypothesis
by testing whether the stimulus distribution in training can affect
performance during transfer, when the diagnostic training dimen-
sion is held fixed. In each pair of conditions to be contrasted (2 vs.

Figure 5. Design of Experiment 1. Each scatterplot shows the stimuli used within a particular phase and
condition(s) of the experiment. Black and gray circles indicate stimuli belonging to the two categories (training
and transfer used different pairs of category labels). The boundary drawn through each stimulus set divides the
two categories and is for illustrative purposes only. In perpendicular conditions, the dimensions defining the
training and testing categories were perpendicular. In uncorrelated conditions, these dimensions were uncorre-
lated under the training stimulus distribution. Control conditions form a 2 � 2 design with uncorrelated
conditions, in which two training tasks (with the same diagnostic dimension but different stimulus distributions)
were crossed with two transfer tasks.
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3 and 5 vs. 6), the training tasks differed in stimulus distribution
but had the same diagnostic dimension, and the transfer tasks were
identical. The diagnostic dimensions in training and transfer dif-
fered by 60 degrees in both conditions, but their Pearson correla-
tions (over the training stimuli) were .00 in the uncorrelated
conditions and .71 in the control conditions. Therefore, the orthog-
onal hypothesis predicts no difference in transfer performance
between conditions, but the independence hypothesis predicts su-
perior transfer in the uncorrelated conditions. The two control
conditions were derived by swapping the training tasks of the two
uncorrelated conditions (hence their name because they control for
any effects of training distribution). Thus, the four conditions form
a 2 � 2 design, in which two training tasks are crossed with two
transfer tasks. Under this view, the independence hypothesis pre-
dicts an interaction between training and transfer tasks, such that
transfer performance is better when the diagnostic training and
transfer dimensions are uncorrelated under the training distribu-
tion.

In designing the stimulus sets, we used the coordinates of the
Munsell Color System, an established standard for psychophysical
scaling of color space (Newhall, Nickerson, & Judd, 1943). Ac-
cording to the Cartesian model, this coordinate system is the best
candidate for specifying the geometry of perceptual color space.
Therefore, according to the Cartesian model, dimensions that are
perpendicular in Munsell coordinates should be perceptually or-
thogonal. The use of these coordinates thus underpins the Carte-
sian model’s predictions.

Method

Participants. Sixty-three undergraduates participated for
course credit or $6. All participants could earn a $1 bonus in each
phase of the experiment for performance above 65%. Normal color
vision was verified using the color plates in Ishihara (1967).

Stimuli. Stimuli were circular color patches shown in the
center of a CRT monitor on a black background. Each stimulus had
a diameter of 5 cm. All stimuli were of Munsell hue 10PB (i.e., in
the purple-blue region). Brightness ranged between 6.8 and 8.2,
and saturation ranged between 4.2 and 7.8 (see Appendix Tables
A1 and A2 for the complete set of values). Calibration of the
monitor and accurate representation of the Munsell Color System
were achieved with a Photoresearch Spectrascan 704 Colorimeter
and the relevant equations of Brainard (1989) and Travis (1991).
All calculations of stimulus values and category boundaries (de-
scribed next) were based on the assumption that one unit of

brightness is perceptually equivalent to two units of saturation
(e.g., Nickerson, 1936).

Design. Participants were randomly assigned to six condi-
tions (ns � 12, 10, 10, 10, 11, and 10, respectively). The condi-
tions differed in the stimuli and categories used for the training and
transfer tasks (see Figure 5). Every task comprised 24 stimuli,
forming a circle or ellipse in stimulus space and divided by a
straight line into two equally sized categories. In all training tasks,
the stimulus ellipse and category boundary were arranged so that
the diagnostic dimension and the dimension with which it was
uncorrelated differed by 60 degrees. There were two transfer tasks,
each using the same circular stimulus set and differing in their
category boundaries. Each transfer task was used in three condi-
tions (Conditions 1–3 or 4–6).

In the perpendicular conditions, the category boundaries in the
training and transfer tasks (and hence the diagnostic dimensions)
were perpendicular. In the uncorrelated conditions, the diagnostic
training and transfer dimensions were uncorrelated with respect to
the distribution of training stimuli. The control conditions were
obtained by swapping the training tasks of the uncorrelated con-
ditions. Thus, Control Condition 3 used the transfer task from
Uncorrelated Condition 2 and the training task from Uncorrelated
Condition 5, and Control Condition 6 used the opposite pairing.

Procedure. Participants were instructed prior to the training
task that they would learn to classify colors into two categories,
labeled A and B. After training, participants were told they would
see more colors “similar to the ones from before,” which they
would learn to classify into two new categories labeled X and Y.
The mapping of categories to category labels was randomized for
each participant and task. Participants were instructed at transfer,
“There is NO RELATION between this task and the previous one.
Knowing whether a color is A or B WILL NOT HELP YOU
decide if it is X or Y.” These instructions were intended to
discourage simple, explicit strategies at the level of individual
stimuli, such as hypothesizing that all As are Xs and all Bs are Ys.
They were not expected to impede the perceptual-learning pro-
cesses of dimension differentiation. The fact that all three exper-
iments found consistent and systematic transfer differences among
conditions supports the assumption that the training task affected
transfer performance, despite the instructions that they were unre-
lated.

Each task lasted 240 trials, divided into five blocks of 48,
separated by self-paced breaks. Every stimulus appeared exactly
twice per block; otherwise, presentation order was randomized.
Each trial began with presentation of a stimulus in the center of the
monitor. The participant indicated a category response by pressing
the A or B key during training and the X or Y key during transfer.
Feedback was given below the stimulus as “Correct” (in green
font) or “Wrong” (in red) followed by “That was a(n) A/B/X/Y”
(in white). The stimulus and feedback remained on the screen
together for 1,500 ms. Trials were separated by 500 ms of blank
display. The entire experiment lasted 30–50 min.

Results

Learning curves at transfer were constructed by computing the
proportion correct for all subjects in each condition during each
transfer block. Figure 6 displays these learning curves, and Table
2 presents mean transfer performance averaged over blocks.

Table 1
Experiment Predictions

Hypothesis Experiment 1 Experiment 2 Experiment 3

Orthogonal P > U, U � C P > U �
Independence U � P, U � C U � P �
Unsupervised C > U U � P >

Note. P � perpendicular; U � uncorrelated; C � control; @ � clock-
wise;!� counterclockwise. Predictions for Experiments 1 and 2 compare
transfer performance between conditions. Predictions for Experiment 3
compare rotational bias of transfer responses between conditions. Correct
predictions are indicated by bold type.
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The difference in transfer performance between perpendicular
and uncorrelated conditions was tested using a mixed-effects anal-
ysis of variance (ANOVA), with condition type and transfer task
as between-subjects variables and block as a within-subjects vari-
able. This analysis revealed significant main effects of condition
type, F(1, 39) � 4.10, p � .05; transfer task, F(1, 39) � 19.63, p �
.001; and block, F(2.97, 115.94) � 9.18, with Greenhouse–Geisser
(GG) sphericity correction, ε � .743, p � .001. There were no
significant interactions (ps � .16). Collapsing over transfer tasks,
average transfer performance in the perpendicular conditions (1
and 4) was 81.3%, compared with 74.6% in the uncorrelated
conditions (2 and 5).

The difference in transfer performance between uncorrelated
and control conditions was tested using a mixed-effects ANOVA
with training and transfer tasks as between-subjects variables and
block as a within-subjects variable. This analysis revealed signif-
icant main effects of training task, F(1, 37) � 4.16, p � .05);
transfer task, F(1, 37) � 15.28, p � .001; and block, F(3.26,
120.56) � 6.95, GG ε � .81457, p � .001. No interactions
involving block were significant (Fs � 1), but, critically, there was
a reliable interaction between training and transfer tasks, F(1,
37) � 5.46, p � .05. This interaction is logically equivalent to a
main effect of condition type, with worse transfer performance in
the uncorrelated conditions than the control conditions (collapsed
means: Muncorrelated � 74.6%, Mcontrol � 81.3%). This result
indicates an effect of stimulus distribution on transfer, but one
opposite that predicted by the independence hypothesis.

Discussion

The results of Experiment 1 support the orthogonal hypothesis
over the independence hypothesis. Comparison between the per-
pendicular and uncorrelated conditions shows that transfer perfor-
mance is better when the training and transfer dimensions are

perpendicular, even if those dimensions are correlated under the
distribution of training stimuli. This result suggests that the com-
plementary dimension extracted in dimension differentiation is
determined by its geometrical relationship to the primary dimen-
sion, not by their statistical relationship. This finding is consistent
with the Cartesian model of integral dimensions and is at odds with
the topological model.

The finding that transfer performance was reliably better in the
control conditions than in the uncorrelated conditions presents a
puzzle because it cannot be explained by either hypothesis under
consideration. The independence hypothesis predicts the opposite
effect, and the orthogonal hypothesis predicts no difference at all.
Thus, dimension differentiation does not appear to offer an expla-
nation, regardless of how integral dimensions are represented.
However, there is a possible explanation rooted in unsupervised
learning. The mathematics of the control conditions is such that the
major axis of the training stimulus distribution is the same as the
diagnostic transfer dimension (i.e., is perpendicular to the transfer
category boundary; see Figure 5). This correspondence suggests
that participants learn the principal dimension of variation among
the stimuli during training (regardless of the category structure),
and that they can use that knowledge at transfer if this dimension
is sufficiently aligned with the diagnostic transfer dimension.
Thus, this unsupervised hypothesis would predict the superior
transfer in the control conditions, as listed in Table 1.

Experiment 3 further explores the possibility of an unsupervised
learning mechanism with integral dimensions that is complemen-
tary to the supervised mechanism of dimension differentiation. For
now, we note that such a mechanism is only possible within the
Cartesian model. In the Cartesian model, the notion of principle
variation is well defined because distance and hence covariance
are meaningful. In the topological model, this type of information
is not present in the perceptual representation. Although informa-
tion about correlation may be present (see Footnote 5), information
about covariance is not. In particular, a stimulus set forming a
proper ellipse and one forming a circle have exactly the same
perceptual characteristics under the topological model (they only
appear different to the researcher because of how they are objec-
tively parameterized). Therefore, to the extent that the transfer
advantage of control over uncorrelated conditions found here is
due to unsupervised learning, this finding also supports the Car-
tesian over the topological model.

Experiment 2

An important feature of Experiment 1 was that the transfer task was
identical between contrasted conditions (i.e., Conditions 1–3 or 4–6).

Table 2
Mean Transfer Performance in Experiment 1

Condition Type Performance (%)

1 Perpendicular 85.6
2 Uncorrelated 82.9
3 Control 83.9
4 Perpendicular 76.0
5 Uncorrelated 67.0
6 Control 78.8

Figure 6. Learning curves for transfer phase of Experiment 1. Solid and
dashed lines differentiate conditions using the two different transfer tasks.
Perpendicular: �. Uncorrelated: *. Control: o.
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This was achieved by allowing the stimulus set in each condition to
differ between training and transfer. One strength of this approach is
that it demonstrates that the dimensional structure learned in training
generalizes to new exemplars. However, one negative consequence is
that any effects of training stimulus distribution, as predicted by the
independence hypothesis, might have been altered or diluted by the
distribution of transfer stimuli. To address this possibility, Experiment
2 followed a modified design in which each participant saw the same
set of stimuli at training and transfer (see Figure 7). The design still
contrasted pairs of perpendicular and uncorrelated conditions that had
matched transfer tasks. Two such pairs were tested, differing by a
90-degree rotation in stimulus space. The two conditions composing
each pair differed only in how the stimuli were divided into categories
during training.

Another possible concern with Experiment 1 was that color space
is low-dimensional and densely sampled in participants’ prior expe-
rience, and hence the statistics of this prior experience might over-
come those of a 15-min training task. To address this concern, stimuli
in Experiment 2 were novel faces. Four photographs were used to
generate a continuous two-dimensional space of face stimuli using
Steyvers’ (1999) morphing algorithm. Figure 8 shows the stimuli used
in two of the conditions; the other stimulus set was drawn from the
same space. To the extent that the independence hypothesis is correct,
these stimuli should provide a better opportunity for effects of the
stimulus distribution to be observed.

Together, the differences between Experiments 1 and 2 serve to
make Experiment 2 a more stringent test of the orthogonal hypoth-
esis. The matched stimulus sets in training and transfer maximize
the possibility for the stimulus distribution to influence learning
(as predicted by the independence hypothesis), as does the use of
novel faces as stimuli. The matched stimulus sets between con-

trasted conditions also control for any possible unsupervised learn-
ing. Therefore, the unsupervised hypothesis cannot predict any
differences between conditions (see Table 1 for predictions from
all three hypotheses). Superior transfer performance in the perpen-
dicular conditions in Experiment 2 would thus provide very strong
evidence for the orthogonal hypothesis and the Cartesian model.

Method

Participants. Twenty undergraduates participated for course
credit.

Stimuli. Stimuli were images of faces, approximately 14 cm
high and 12 cm wide, presented in the center of an LCD monitor on
a black background. Stimuli were generated from photographs of four
base faces (all bald Caucasian men) using Steyvers’ (1999) morphing
algorithm, which generates a stimulus image from input weights for
the four base faces. For each stimulus, the weights for base faces A
and B were constrained to sum to .5, as were the weights for base
faces C and D. The stimuli varied in the relative weightings of A
versus B and of C versus D. Images of the stimuli used in two of the
experimental conditions, as well as the base faces, are displayed in
Figure 8.

The four base faces were selected from a set of 104 candidates. A
six-dimensional, nonmetric (i.e., ordinal), Euclidean MDS solution
for the 104 candidate faces was obtained using the method of Gold-
stone (1994a). A search was then performed to find the four faces for
which the vectors A–B and C–D were as close as possible to being
orthogonal and of equal length. These properties ensured proper
psychophysical scaling of the stimulus set (according to the Cartesian
model). For the four chosen faces, the two dimensions lie at an angle
of 88.0 degrees in the MDS space, and C–D is longer than A–B by a

Figure 7. Design of Experiment 2, following the same presentation scheme as Figure 5.
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factor of 1.14. The latter factor was accounted for in all stimulus-
generation calculations (i.e., a unit along the CD dimension was
equated to 1.14 units along the AB dimension).

Design. Participants were randomly assigned to four condi-
tions (ns � 5, 5, 6, and 4, respectively). The stimulus values and
category structures used in all conditions are displayed in Figure 7.
One set of 24 stimuli was used for training and transfer in Con-
ditions 1 and 2. During training, the stimuli were partitioned into
categories differently for the two conditions, but both conditions
used the same transfer categories. A second set of 24 stimuli was
used for Conditions 3 and 4, which again used different training
categories but had identical transfer tasks. Each of these pairs
comprised one perpendicular condition (Conditions 1 and 3) and
one uncorrelated condition (Conditions 2 and 4).

Procedure. Participants were instructed prior to the training
task that they would be shown faces of people who live in two
fictitious towns, Bradford and Troy, and their job would be to learn
which town each person lives in. After training, participants were told
they would now learn to classify each person based on whether his
last name is Smith or Jones. Participants were instructed that “know-
ing which town someone might live in WILL NOT HELP YOU
decide whether they are a Smith or a Jones.” The mapping of cate-
gories to category labels was randomized for each participant and
task. Response keys were B and T in training and S and J in transfer.
The rest of the procedure was identical to that of Experiment 1.

Results

Figure 9 displays transfer learning curves by block, and Table 3
presents mean transfer performance in all four conditions. Collaps-

ing over transfer tasks, transfer performance averaged 79.8% in the
perpendicular conditions and 76.1% in the uncorrelated conditions.
The reliability of this difference was confirmed by a mixed-effects
ANOVA, which revealed main effects of condition type, F(1,
16) � 5.10, p � .05; transfer task, F(1, 16) � 34.65, p � .001; and
block, F(2.93, 46.94) � 6.00, GG ε � .733, p � .001. None of the
interactions was significant.

Discussion

The results of Experiment 2 lend further support to the orthogonal
hypothesis over the independence hypothesis. As in Experiment 1,
participants exhibited better transfer performance when the diagnostic
dimensions in training and transfer were perpendicular rather than
uncorrelated. Unlike Experiment 1, the same stimulus distribution
was used for training and transfer, eliminating the possibility that
correlation between dimensions plays a role but only when defined
with respect to the transfer distribution (e.g., that dimension differen-
tiation somehow occurs during transfer). Furthermore, this result was
obtained using unfamiliar stimuli (faces) drawn from a vast, high-
dimensional space, for which statistics from prior experience should
play a minimal role. Finally, because both conditions within each
contrasted pair used the same set of training stimuli (with different

Figure 8. Stimuli used for Conditions 1 and 2 of Experiment 2. The
images along the axes are the base faces from which the stimuli were
generated. Stimuli for the other conditions and for Experiment 3 were
drawn from the same stimulus space.

Figure 9. Learning curves for transfer phase of Experiment 2. Solid and
dashed lines differentiate conditions using the two different transfer tasks.
Perpendicular: �. Uncorrelated: *.

Table 3
Mean Transfer Performance in Experiment 2

Condition Type Performance (%)

1 Perpendicular 85.3
2 Uncorrelated 83.3
3 Perpendicular 75.2
4 Uncorrelated 67.3
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category structures), unsupervised learning cannot explain any differ-
ences in transfer performance.

Experiment 3

A final experiment was conducted to evaluate the unsupervised
learning mechanism suggested by the results of Experiment 1. It
was suggested above that the unexpected transfer advantage in the
control conditions of Experiment 1 arose because the dimension of
maximal variation (i.e., the first principal component) in the train-
ing stimulus distribution coincided with the diagnostic transfer
dimension. Central to this explanation is the proposal that partic-
ipants engage in a form of unsupervised learning that extracts that
principal component (regardless of the category structure), which
in turn affects stimulus representations or attention during the
transfer task. Because this unsupervised hypothesis is incompatible
with the topological model, direct evidence for this hypothesis
would provide further support for the Cartesian model.

The strategy of Experiment 3 was to measure a particular
rotational bias predicted by the unsupervised hypothesis in partic-
ipants’ patterns of errors. In every condition, the diagnostic di-
mensions at training and transfer were perpendicular, but the first
principal component of the training distribution was oblique to
both of these (see Figure 10). The unsupervised hypothesis pre-
dicts participants’ attention will be biased away from the diagnos-
tic dimension during transfer in the direction of this unsupervised
dimension. The experiment design contrasts pairs of conditions
that differ only in the training distribution, and hence in the
direction of the predicted bias. In the clockwise conditions, the

unsupervised dimension is situated clockwise from the diagnostic
transfer dimension, and hence the unsupervised hypothesis pre-
dicts a clockwise bias in participants’ errors (as elaborated below).
The counterclockwise conditions have a reverse relationship and
hence lead to the opposite prediction.

The logic of the predictions for Experiment 3 is illustrated in
Figure 11 for the case of Condition 1. Figure 11A shows the
training task, with lines indicating the diagnostic training dimen-
sion, the dimensions that are perpendicular to and uncorrelated
with that dimension, and the unsupervised dimension. As else-
where in this article, we indicate dimensions by boundaries or
isoclines, rather than the conventional view of a dimension as lying
perpendicular to its isoclines, because that convention is inappro-
priate in the context of the topological model. Thus, the unsuper-
vised dimension is indicated by the minor axis of the stimulus
distribution because the first principal component is perpendicular
to this boundary.

The unsupervised hypothesis predicts that attention will shift
to the unsupervised training dimension. The effect on the trans-
fer task can be modeled as stretching the stimulus space along
the attended dimension, as shown in Figure 11B (e.g., Nosof-
sky, 1986). Although we draw on extant theories to model the
effects of selective attention, the current proposal differs mark-
edly from previous theories in how and when selective attention
operates. Existing theories assume that selective attention is
feedback- or goal-driven, and that it does not operate reliably
with integral dimensions or in arbitrary directions in perceptual
space (Garner, 1974; Nosofsky, 1992; but see Goldstone,

Figure 10. Design of Experiment 3, following the same presentation scheme as Figures 5 and 7. Clockwise and
counterclockwise refer to the orientation of the first principal component of the training stimulus distribution
relative to the diagnostic transfer dimension. These labels also refer to the directions of predicted biases in
participants’ category judgments at transfer, according to the unsupervised hypothesis.
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1994b). We return to the implications of the present proposal in
the General Discussion.

The predicted perceptual representation of the transfer task,
resulting from attention to the unsupervised training dimension, is
shown in Figure 11C. The arrangement of stimuli under this
representation leads to a prediction of asymmetric rates of classi-
fication errors near the category boundary. In particular, the two
critical border stimuli (boxed) should be misclassified more often
than the other two border stimuli (circled). A similar, weaker
asymmetry is predicted for stimuli farther from the boundary. The
prediction of asymmetric error rates can be understood in a number
of different ways and is qualitatively the same for all standard
theories of category representations. First, similarity to members
of the opposite category is greater for the critical stimuli than for
the other border stimuli. Therefore, exemplar-based models predict
more errors for the critical stimuli (e.g., Nosofsky, 1986). Second,
similarity to the opposite prototype (defined as the mean or cen-
troid of all stimuli in each category) is greater for the critical
stimuli. Therefore, prototype models make the same qualitative
prediction (e.g., J. D. Smith & Minda, 1998). Third, the training

category boundary is rotated clockwise in the attentionally altered
representation of Figure 11C. Consequently, the orthogonal di-
mension under this representation (i.e., the predicted complemen-
tary dimension) corresponds to a decision bound that is rotated
clockwise from vertical. Therefore, models that learn decision
bounds with a tendency toward unidimensional rules make the
same qualitative prediction as well (e.g., Ashby & Maddox, 2005).

Rather than simply comparing error rates to the border stimuli,
we devised a more sensitive measure that takes into account
responses to all stimuli. Specifically, a linear classifier was fit to
each participant’s transfer responses. The classifier is similar to
classic decision-bound models of categorization (Ashby & Mad-
dox, 1993) but is simpler and is intended merely as a data-analysis
tool. The classifier is derived from a logistic regression with
category response as the outcome and objective stimulus coordi-
nates as the two predictors. The regression coefficients are then
translated to an orientation by taking the arctangent of their ratio.
This process amounts to fitting each participant’s responses using
a two-dimensional logistic function (basically a smoothed step
function) with degrees of freedom for its orientation and steepness.
A participant responding without rotational bias would produce an
orientation perfectly aligned with the true category boundary,
whereas the predicted asymmetry of classification errors would
manifest as a deviation of the estimated orientation away from the
true boundary. This deviation served as the dependent measure in
Experiment 3. The unsupervised hypothesis predicts the deviation
to be clockwise in the clockwise conditions and counterclockwise
in the counterclockwise conditions.

Notwithstanding that Experiments 1 and 2 appear to rule out the
independence hypothesis, this hypothesis also makes a prediction
in Experiment 3, which is directly opposite the prediction of the
unsupervised hypothesis. In each clockwise condition, the dimen-
sion that is uncorrelated with the diagnostic dimension at training
is rotated counterclockwise relative to the transfer dimension (see
Figure 11A). Therefore, following essentially the same reasoning
as above, the independence hypothesis predicts a counterclockwise
bias in participants’ classification errors. The reverse reasoning
applies to the counterclockwise conditions. Finally, because the
training and transfer dimensions are perpendicular in all conditions
(absent any modification of the perceptual space by unsupervised
learning), the orthogonal hypothesis by itself predicts no effects of
training condition in this experiment. Table 1 lists the predictions
of all three hypotheses. In summary, Experiment 3 provides a
direct test of the unsupervised hypothesis, as well as a contrast
with the independence hypothesis.

Method

Participants. Forty undergraduates participated for course
credit.

Stimuli. Stimuli were generated as in Experiment 2, using the
same four base faces. Because of differences in overall perfor-
mance between the two transfer tasks of Experiment 2, the scaling
factor obtained from the MDS solution (see Experiment 2 Method
section) was omitted and the AB and CD dimensions were scaled
equally, as a simple default assumption. Note that because the
diagnostic dimensions in all tasks in Experiment 3 were aligned
with one of these nominal dimensions, their relative psychological

Figure 11. Illustration of predictions for Experiment 3, Clockwise Con-
dition 1. (A) Training task, with category boundary indicated by solid line.
Dashed lines represent dimensions predicted to be learned by independence
(uncorrelated), orthogonal (perpendicular), and unsupervised hypotheses
(all dimensions indicated by isoclines). Perpendicular dimension matches
the diagnostic dimension at transfer; hence, orthogonal hypothesis predicts
good and unbiased transfer performance. The uncorrelated dimension
is rotated counterclockwise from the diagnostic transfer dimension; hence,
the independence hypothesis predicts counterclockwise bias in transfer
classification errors. (B) The transfer task, with an arrow indicating effect
of attention to the unsupervised training dimension as predicted by the
unsupervised hypothesis, which is modeled as stretching stimulus space.
(C) Resulting representation of the transfer stimulus set. The unsupervised
hypothesis predicts boxed border stimuli to be misclassified more often
than circled border stimuli, and more generally a clockwise bias is pre-
dicted in errors over all stimuli. The counterclockwise condition is a mirror
image; hence, predictions of the unsupervised and independence hypoth-
eses are reversed in that condition.
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scaling does not affect whether they are orthogonal and does not
affect any of the predictions.

Design. Participants were randomly assigned to four conditions
(ns � 11, 9, 10, and 10, respectively). The stimulus values and
category structures used in all conditions are displayed in Figure 10.
Conditions 1 and 2 used the same transfer task, as did Conditions 3
and 4. Both transfer tasks used the same, circular set of stimuli, with
diagnostic dimensions differing by 90 degrees. In all conditions, the
diagnostic training dimension was perpendicular to the diagnostic
transfer dimension. The two conditions associated with each transfer
task differed only in their distributions of training stimuli. In each
clockwise condition (1 and 3), the major axis of the (elliptical)
training distribution was 36.95 degrees clockwise from the transfer
dimension (i.e., from being perpendicular to the transfer category
boundary). This relationship was 36.95 degrees counterclockwise in
the counterclockwise conditions (2 and 4).

Procedure. The procedure of Experiment 3 was identical to
that of Experiment 2.

Results

Transfer learning curves by block are shown in Figure 12. A
mixed-effects ANOVA revealed significant effects of transfer task,
F(1, 36) � 13.55, p � .001, and block, F(2.91, 104.86) � 16.71,
GG ε � .72817. Neither the main effect of condition type (clock-
wise vs. counterclockwise) nor any of its interactions was signif-
icant (ps � .24), implying that the manipulation of training dis-
tributions did not affect transfer performance, as expected.

Prior to fitting the linear classifier to transfer responses, we
computed a grand-average learning curve using a block size of 10
trials. On the basis of visual inspection, the first two points of this
curve were markedly lower than the rest. Because the predictions
for this experiment regard error patterns once the categories were
reasonably well learned, and because random behavior early in

learning adds noise to the classifier fits, we omitted the first 20
transfer trials (out of 240) from the classifier analysis.

The linear classifier was estimated by fitting a logistic regres-
sion to the final 220 transfer responses from each participant,
with the two objective stimulus dimensions (AB and CD) as
predictors. The resulting regression coefficients are denoted �AB

and �CD. The orientation of the classifier was then computed as
� � tan�1(�AB/�CD). The arctangent function was defined to take
values between 0 degrees and 180 degrees, and 180 degrees was
added to � if �AB � 0. Under this definition, � represents the
orientation of the best-fitting linear bound separating the partici-
pant’s category responses, measured in degrees clockwise from
horizontal (with respect to the graphical scheme of Figure 10).

Table 4 presents the results of the classifier analysis. Mean devia-
tion of classifier orientation for each condition is reported in terms of
degrees clockwise from the optimal category boundary. Thus, the
table reports �–90 degrees for Conditions 1 and 2 and � for Conditions
3 and 4. Collapsing across transfer conditions, transfer responses were
biased an average of 11.2 degrees (clockwise) in the clockwise
conditions and �13.5 degrees (i.e., 13.5 degrees counterclockwise) in
the counterclockwise conditions. This difference was confirmed by a
2 � 2 ANOVA, which revealed a main effect of condition type
(clockwise vs. counterclockwise), F(1, 36) � 10.44, p � .01; a
marginal effect of transfer task, F(1, 36) � 4.10, p � .1; and no
interaction, F(1, 36) � 1.75, p � .1.

Discussion

The results of Experiment 3 confirm the predictions of the
unsupervised hypothesis. In both clockwise and counterclockwise
conditions, transfer responses were biased in the direction of the
unsupervised training dimension. Regardless of how the categories
are represented (by exemplars, prototypes, or decision bounds),
this effect is consistent with selective attention to that dimension.
Because the experimental manipulation varied the training stimu-
lus distribution while holding the diagnostic dimension fixed, the
observed effects are due to the stimuli themselves and not the
category structure (i.e., feedback), thus implicating unsupervised
learning. A great deal of theoretical and empirical work has sup-
ported the proposal of supervised, feedback-driven selective atten-
tion among separable dimensions (i.e., attention to predictive or
diagnostic dimensions; Jones, Maddox, & Love, 2005; Nosofsky,
1992; Sutherland & Mackintosh, 1971), but the present finding of
unsupervised attention with integral dimensions is novel and not
anticipated by extant category-learning models.

The results also provide further evidence against the indepen-
dence hypothesis, which predicts a pattern opposite what was
observed. The orthogonal hypothesis, taken alone, predicts no
effect either way, but this is not a problem for that hypothesis
because it is not in competition with the unsupervised hypothesis.
The orthogonal and independence hypotheses concern dimension
differentiation (specifically, what determines the complementary
dimension), whereas the unsupervised hypothesis concerns a pu-
tative separate learning process, based only on the stimuli and not
the category structure. One could try to save the independence
hypothesis by conjecturing that dimension differentiation contrib-
uted a bias that was opposite what was observed, but that this bias
was overcome by the effect of unsupervised learning. However,
Experiment 2 found no evidence for the independence hypothesis

Figure 12. Learning curves for the transfer phase of Experiment 3. Solid
and dashed lines differentiate conditions using the two different transfer
tasks. Clockwise: o. Counterclockwise: x.
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when unsupervised learning was controlled. Taken together, the
experiments support the orthogonal over the independence hypoth-
esis as an explication of dimension differentiation, with unsuper-
vised learning as an additional, separate mechanism. Because the
orthogonal and unsupervised hypotheses are both incompatible
with the topological model, the two learning mechanisms provide
separate sources of support for the Cartesian model.

General Discussion

The goal of this study was to contrast the Cartesian and topo-
logical models of integral dimensions by testing between the
orthogonal and independence hypotheses. Experiments 1 and 2
both supported the orthogonal hypothesis by showing that when
subjects learn to discriminate two categories of stimuli, they trans-
fer best to a task in which the new diagnostic dimension is
perpendicular to (rather than uncorrelated with) the original one.
This finding in turn supports the Cartesian model, because it shows
that the geometrical structure that model attributes to integral
perceptual spaces—in particular, angles between component di-
mensions—is psychologically meaningful.

The other primary finding from this study also supports the Carte-
sian model over the topological model. Experiments 1 and 3 found
evidence for an unsupervised learning effect, whereby subjects learn
or attend to the dimension of maximal variation in the stimulus
distribution, regardless of the category structure. This effect was
opposite the predictions of the independence hypothesis. It is also
incompatible with the topological model because distance in percep-
tual space and, hence, the dimension of maximal variation are not
psychologically well defined according to that model.

These results come from using both colors and faces as stimuli.
There is debate over whether faces are processed differently from
other stimuli (e.g., Bukach, Gauthier, & Tarr, 2006; Grill-Spector,
Knouf, & Kanwisher, 2004), but faces and colors nevertheless led to
the same conclusions here. The convergence between two such dif-
ferent integral dimensions speaks to the generality of these conclu-
sions.

We view the support for the Cartesian model as surprising,
despite its traditional role in both MDS (Garner, 1974; Kruskal,
1964; Shepard, 1962, 1964; Torgerson, 1958) and general recog-
nition theory (Ashby & Lee, 1991; Ashby & Maddox, 1994;
Ashby & Townsend, 1986). The strong geometrical structure as-
sumed by the Cartesian model had received little acknowledgment
or scrutiny, and it was adopted primarily because the alternative
had not been considered. Here, we have shown how setting aside
the assumptions of the Cartesian model leads to a model in which
the representation of integral dimensions is much more primitive
and unstructured, its only principle of organization being the local

similarity that defines a topological space. The lack of internal
structure noted by past researchers of integral dimensions (Garner,
1974; Lockhead, 1972) strongly suggests something like the topo-
logical model considered here.

Nevertheless, the present results indicate that component dimen-
sions (i.e., directions) in an integral stimulus space have well-
defined angles, and distances in different directions can be mean-
ingfully compared. Both of these properties are inconsistent with
the topological model, but they are direct consequences of the core
assumptions of the Cartesian model. Therefore, integral dimen-
sions have an internal geometric structure of the type implied by
Cartesian models. This metric structure is likely adaptable with
sufficient experience (Goldstone, 1998; Schyns et al., 1998), but it
appears to be a fundamental, if malleable, characteristic of the
perceptual representation.

One possible objection is that interpretation of the present results
depends on assuming that the stimuli were correctly scaled (despite
the careful calibration methods used in all three experiments). Indeed,
the main effects of transfer task on transfer performance in all three
experiments suggest that the CD face dimension was more discrim-
inable than the AB dimension, and that discrimination between high-
saturation–low-brightness and low-saturation–high-brightness was
easier than between high-saturation– high-brightness and low-
saturation–low-brightness (cf. Melara & Marks’, 1990 finding of
interaction between pitch and loudness). Likewise, selective attention
might increase the salience of the diagnostic dimension in training or
transfer (although this effect is known to be weak with integral
dimensions), effectively stretching the perceptual space along that
dimension (Nosofsky, 1986). However, neither of these effects should
be expected to alter the relationship between diagnostic training and
transfer dimensions in the perpendicular conditions because the
change in scaling would be aligned with those dimensions. Hence, the
predictions of the orthogonal hypothesis should not be altered. More
critically, positing a different stimulus scaling cannot save the inde-
pendence hypothesis because any linear transformation of stimulus
coordinates cannot change the correlations between diagnostic dimen-
sions at training and transfer. Likewise, the topological model holds
that the choice of coordinate system is irrelevant (because, psycho-
logically, there is no coordinate system), so there is no way for it to
predict a different result under a different choice of scaling.

Holistic and Analytic Representations

Our results are reminiscent of previous findings of privileged
axes with integral dimensions (Foard & Kemler, 1984; Grau &
Kemler Nelson, 1988; Melara, Marks, & Potts, 1993b), but the
theoretical implications are quite different. Research has shown
that classification or discrimination along certain component di-
mensions in integral spaces (e.g., brightness and saturation or pitch
and loudness) is easier than along other, rotated dimensions. These
privileged axes are evidence for the presence of (weak) analytic
representations of integral dimensions, which have been argued to
be secondary to holistic representations (Kemler Nelson, 1993).
Whereas this past work shows that privileged axes exist, the
current study can be viewed as addressing the principles guiding
their acquisition. The results indicate that when new privileged
axes are learned (either temporarily or permanently), they are
chosen to be orthogonal with respect to an intrinsic geometry of
the perceptual space. Critically, because subjects learned new,

Table 4
Mean Rotational Bias in Experiment 3, Clockwise From
Optimal Boundary

Condition Type Deviation (°)

1 Clockwise 8.3
2 Counterclockwise �27.7
3 Clockwise 14.3
4 Counterclockwise �0.8
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arbitrary dimensions (especially with the face stimuli), this geo-
metrical structure must be a preexisting property of the holistic
representation itself before dimension differentiation takes place.

This conclusion also bears on the difference between analytic
(separable) and holistic (integral) representations. According to the
topological model, transitioning from a holistic to an analytic
representation entails a radical reorganization that adds a great deal
of new structure to the perceptual space. Instead, the present
results indicate that much of that structure already exists; the only
change is in selecting a particular orientation or set of axes. This
shift might arise from a change in perceptual representation, en-
abling access to or explicit encoding of stimulus values on the
separate dimensions (Goldstone & Steyvers, 2001). Alternatively,
it may arise as a change in hypotheses regarding how concepts are
distributed, as oriented randomly in stimulus space versus aligned
with particular axes (Austerweil & Griffiths, 2010).

Learning of new analytic representations raises a number of
open questions having to do with the nature of the representation
when dimension differentiation is partial and not permanent, such
as in our experimental participants at the end of training. Does the
representation lie somewhere on a continuum between integral and
separable, with one (or more) axis systems partially dominant in an
otherwise isotropic space; or are there parallel, competing repre-
sentations, one integral and holistic and the other(s) separable and
compositional (but somehow not fully established)? Likewise, can
multiple sets of privileged axes exist simultaneously?6 Research
by Melara, Marks, and colleagues (Melara & Marks, 1990; Melara,
Marks, & Lesko, 1992; Melara et al., 1993b; see also Foard &
Kemler Nelson, 1984) suggests that analytic representations exist
independently from holistic representations and that task factors
can moderate their relative influence, but the details of how these
representations interact have yet to be settled (Kemler Nelson,
1993; Melara, Marks, & Potts, 1993a).

Unsupervised Learning With Integral Dimensions

This study began with the goal of testing between Cartesian and
topological models by investigating the determinants of the comple-
mentary dimension learned in dimension differentiation. However,
the manipulation of stimulus distributions in these experiments led to
an additional, unanticipated effect, which appears to be a form of
unsupervised learning, driven by the dimension of greatest variation
within the stimulus set. This finding provides additional support for
the Cartesian model, as explained above (because the dimension of
greatest variation is not well defined in the topological model), but it
is also theoretically significant in its own right.

The unsupervised learning observed here can be viewed as a
form of selective attention, but of a fundamentally different nature
than the type of selective attention previously studied in category
learning and related paradigms. Previous research has shown that
category learning can induce a shift of attention to the diagnostic
dimension (Nosofsky, 1986), affecting perceptual discrimination
and generalization (Goldstone, 1994b; Jones et al., 2005). In
contrast, the present effect appears to be driven by the distribution
of stimuli, regardless of the category structure. Furthermore, ex-
tensive research comparing integral and separable dimensions
shows that feedback- or goal-driven attention is weak with integral
stimuli (in fact, this is generally taken as a defining property of
integral dimensions; Garner, 1974; Shepard, 1964).

Other research on categorization has demonstrated unsupervised
effects of stimulus distributions, but of a different form than found
here. Pothos and Close (2008) found that subjects’ preference for
unidimensional versus multidimensional sorts in spontaneous classi-
fication depends on how stimuli are clustered. Gureckis and Gold-
stone (2008) showed that when categories are composed of distinct
clusters (separated by regions of low stimulus density), subjects
subsequently show enhanced discrimination between stimuli in dif-
ferent clusters within the same category. This latter effect is antici-
pated by models of category learning that explicitly represent catego-
ries as unions of stimulus clusters (Anderson, 1991; Griffiths, Canini,
Sanborn, & Navarro, 2007; Love, Medin, & Gureckis, 2004). Canini,
Shashkov, and Griffiths (2010) demonstrated that transfer between
categorization tasks can be improved when training and transfer
categories are recombinations of a common set of clusters.

The unsupervised learning observed here appears closely related
to the statistical procedure of principal components analysis
(PCA). PCA works by computing the covariance matrix of some
data distribution and then rank ordering its eigenvectors according
to their eigenvalues. Projecting out the lower ranked eigenvectors
produces a simpler representation of the data that can be more
effective in problems of estimation and prediction (see, e.g., Jol-
liffe, 2002). Principles related to PCA for learning the most infor-
mative dimensions in a stimulus set have been proposed as models
for vision (Bell & Sejnowski, 1997), object recognition (Intrator &
Gold, 1993), speech perception (Toscano & McMurray, 2010), and
lexical acquisition (Landauer & Dumais, 1997). PCA and similar
algorithms have also been proposed as models for human face
perception (Burton, Jenkins, Hancock, & White, 2005; Dailey,
Cottrell, Padgett, & Adolphs, 2002; Furl, Phillips, & O’Toole,
2002; Turk & Pentland, 1991; Valentin, Abdi, & Edelman, 1997).
The demonstration of unsupervised learning in the present study
goes beyond this previous work by directly manipulating the
covariance structure of the stimulus set, and by showing an effect
of this manipulation in the course of a half-hour learning task
(whereas previous theories have tended to focus on developmental
timescales). Furthermore, the present results indicate that this
unsupervised learning also occurs in colors, suggesting that it is a
generic principle of perceptual learning with integral dimensions
rather than being specific to face recognition.

A further question regarding this unsupervised learning mechanism
is how it relates to the supervised mechanism of dimension differen-
tiation. One possibility is that the two mechanisms operate indepen-
dently, one driven by the stimulus distribution and the other by the
category structure. Experiment 2 showed that transfer performance
depends on the training category structure (in line with the orthogonal
hypothesis) when the stimulus distribution is held fixed, and Exper-
iment 3 showed a corresponding effect of stimulus distribution (in line
with the unsupervised hypothesis) when the category structure is held

6 In the topological model, an additional, analogous question arises in
learning an individual set of privileged axes. If a diagnostic dimension
remains fixed, but the stimulus distribution changes over time, are multiple
complementary dimensions learned (each uncorrelated with the diagnostic
dimension under a different experienced stimulus distribution), or is the
distributional information somehow combined to produce a single com-
plementary dimension? This issue does not arise in the Cartesian model
(with the orthogonal hypothesis) because a primary dimension determines
a unique complementary dimension regardless of stimulus distribution.
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fixed. Therefore, both sources of information play a role. However, it
is also possible that supervised and unsupervised information are
combined in learning a single analytic representation, which aims
somehow to balance their contributions. This possibility has precedent
in research on semisupervised learning, wherein areas of low stimulus
density can guide learning of a category boundary (Kalish, Rogers,
Lang, & Zhu, 2011; Zhu, Rogers, Qian, & Kalish, 2007), and in object
segmentation following categorization, wherein the segments people
learn are jointly influenced by the stimuli present and how they are
divided into categories (Goldstone, 2003; Pevtzow & Goldstone,
1994). More research is needed to determine how supervised and
unsupervised information interact in learning with integral dimen-
sions.

Conclusion

The type of structure contained in a psychological representation is
a subtle but fundamental question. We have shown here how standard
Cartesian models of integral dimensions imply more structure than is
commonly realized, and how mathematical constructs from topology
allow alternative models that do not make these assumptions. Our
experimental results indicate that perceptual representations of inte-
gral dimensions have a surprising amount of intrinsic structure, suf-
ficient to determine angles between, and to compare stimulus varia-
tion along, different component dimensions. This structure is
consistent with the geometry induced by a Cartesian coordinate sys-
tem. An important future question will be to investigate the sensory,
developmental, or innate mechanisms that give rise to this geometrical
structure.
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Appendix

Stimulus Values

Stimulus values for all experiments were calculated using math-
ematical (trigonometric) functions for circles and ellipses. This
Appendix reports the generating functions, numerical values, and
critical mathematical properties for each stimulus set. For all
experiments and conditions, the training categories are denoted by
1 and 2 and the transfer categories by 3 and 4.

Experiment 1

Transfer stimuli for Experiment 1 are described first because
their mathematics is simpler and motivates the design of the
training stimuli. All conditions used a common set of stimuli for
transfer, arranged in a perfect circle with respect to the assumed
scaling of the space. First, a set of abstract stimulus values were
defined on the unit circle as

x � cos	�

y � sin	�
 (A1)

The parameter � takes on 24 equally spaced values, from 7.5
degrees through 352.5 degrees in increments of 15 degrees. Equa-
tion A1 thus defines 24 points, (x, y), arranged evenly around a
circle. Next, the abstract values were scaled to Munsell Value (v)
and Chroma (c):

v � 7.5 � .7 · x
c � 6 � 1.4 · y (A2)

Equations A1 and A2 define a circle centered on Value (bright-
ness) 7.5 and Chroma (saturation) 6, with a radius of .7 value units
or 1.4 chroma units. These two increments were assumed to be
psychologically equivalent based on Nickerson’s (1936) classical
scaling work showing that one unit of value is perceptually equiv-
alent to two units of chroma.

Table A1 presents the transfer stimulus values for Experiment 1,
as generated by Equations A1 and A2. The table also shows how
the stimuli were partitioned into categories. In Conditions 1–3, the
category boundary was between stimuli corresponding to � � 22.5
degrees and � � 37.5 degrees and (at the opposite side of the
circle) between � � 202.5 degrees and � � 217.5 degrees. This
partition corresponds to a category boundary oriented 30 degrees
counterclockwise from the brightness axis (under the graphical
arrangement of Figure 6). In Conditions 4–6, the partition was
between � � 142.5 degrees and 157.5 degrees and between � �
322.5 degrees and 337.5 degrees, corresponding to a boundary 30
degrees clockwise from the brightness axis.

To generate the training stimuli, abstract stimulus values were
defined analogously to Equation A1, but this time in an ellipse:

x � cos	�


y �
2

�3
sin	�
 �

1

�3
cos	�
 (A3)

with � taking on the same 24 evenly spaced values as above. The
ellipse defined by Equation A3 is shaped as in the training task for
Conditions 2 and 6 shown in Figure 6 (except for scaling). The
other training tasks were obtained by rotation and reflection. For
Condition 1, the ellipse defined by Equation A3 was rotated 30
degrees counterclockwise:

Condition 1:
x� �

�3

2
x �

1

2
y

y� �
1

2
x �

�3

2
y

(A4)

The coefficients
�3

2
and

1

2
are the cosine and sine of 30 degrees,

respectively. For Conditions 3 and 5, the ellipse of Equation A3
was flipped horizontally:

Conditions 3 and 5:
x� � �x
y� � y (A5)

For Condition 4, the ellipse was rotated 30 degrees counterclock-
wise and flipped vertically:

Condition 4:
x� �

�3

2
x �

1

2
y

y� � �
1

2
x �

�3

2
y

(A6)

No rotation or reflection was applied for Conditions 2 and 6:

Conditions 2 and 6:
x� � x
y� � y (A7)

Lastly, the same scaling used for the transfer stimuli (Eq. A2)
was applied to center each stimulus set on Value 7.5 and Chroma
6 and to equate the psychological scaling of the two dimensions:

v � 7.5 � .7 · x�
c � 6 � 1.4 · y� (A8)

Each training task was thus defined in three steps: generation of
the abstract ellipse in (x, y) coordinates (Eq. A3), rotation or
reflection into (x�, y�) coordinates (Eqs. A4–A7), and scaling onto
value and chroma (Eq. A8). Table A2 reports the resulting Munsell
coordinates of the training stimuli.

(Appendix continues)
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Table A1
Transfer Items in Experiment 1

�

Munsell coordinates Category

Value Chroma Conditions 1–3 Conditions 4–6

7.5 8.194 6.183 4 3
22.5 8.147 6.536 4 3
37.5 8.055 6.852 3 3
52.5 7.926 7.111 3 3
67.5 7.768 7.293 3 3
82.5 7.591 7.388 3 3
97.5 7.409 7.388 3 3

112.5 7.232 7.293 3 3
127.5 7.074 7.111 3 3
142.5 6.945 6.852 3 3
157.5 6.853 6.536 3 4
172.5 6.806 6.183 3 4
187.5 6.806 5.817 3 4
202.5 6.853 5.464 3 4
217.5 6.945 5.148 4 4
232.5 7.074 4.889 4 4
247.5 7.232 4.707 4 4
262.5 7.409 4.612 4 4
277.5 7.591 4.612 4 4
292.5 7.768 4.707 4 4
307.5 7.926 4.889 4 4
322.5 8.055 5.148 4 4
337.5 8.147 5.464 4 3
352.5 8.194 5.817 4 3

Table A2
Training Items in Experiment 1

� Category

Condition 1 Conditions 2 and 6 Conditions 3 and 5 Condition 4

Value Chroma Value Chroma Value Chroma Value Chroma

7.5 2 7.848 7.571 8.194 7.012 6.806 7.012 7.848 4.429
22.5 2 7.719 7.829 8.147 7.365 6.853 7.365 7.719 4.171
37.5 2 7.575 7.963 8.055 7.625 6.945 7.625 7.575 4.037
52.5 2 7.425 7.963 7.926 7.775 7.074 7.775 7.425 4.037
67.5 2 7.281 7.829 7.768 7.803 7.232 7.803 7.281 4.171
82.5 2 7.152 7.571 7.591 7.708 7.409 7.708 7.152 4.429
97.5 1 7.047 7.205 7.409 7.497 7.591 7.497 7.047 4.795

112.5 1 6.972 6.758 7.232 7.184 7.768 7.184 6.972 5.242
127.5 1 6.933 6.258 7.074 6.790 7.926 6.790 6.933 5.742
142.5 1 6.933 5.742 6.945 6.343 8.055 6.343 6.933 6.258
157.5 1 6.972 5.242 6.853 5.872 8.147 5.872 6.972 6.758
172.5 1 7.047 4.795 6.806 5.410 8.194 5.410 7.047 7.205
187.5 1 7.152 4.429 6.806 4.988 8.194 4.988 7.152 7.571
202.5 1 7.281 4.171 6.853 4.635 8.147 4.635 7.281 7.829
217.5 1 7.425 4.037 6.945 4.375 8.055 4.375 7.425 7.963
232.5 1 7.575 4.037 7.074 4.225 7.926 4.225 7.575 7.963
247.5 1 7.719 4.171 7.232 4.197 7.768 4.197 7.719 7.829
262.5 1 7.848 4.429 7.409 4.292 7.591 4.292 7.848 7.571
277.5 2 7.953 4.795 7.591 4.503 7.409 4.503 7.953 7.205
292.5 2 8.028 5.242 7.768 4.816 7.232 4.816 8.028 6.758
307.5 2 8.067 5.742 7.926 5.210 7.074 5.210 8.067 6.258
322.5 2 8.067 6.258 8.055 5.657 6.945 5.657 8.067 5.742
337.5 2 8.028 6.758 8.147 6.128 6.853 6.128 8.028 5.242
352.5 2 7.953 7.205 8.194 6.590 6.806 6.590 7.953 4.795

(Appendix continues)
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In all conditions, the training category structure was defined so
that the abstract variable x (i.e., prior to rotation or reflection) was
the relevant dimension, by assigning stimuli with x � 0 (90
degrees � � � 270 degrees) to Category 1 and the remaining
stimuli to Category 2. Setting � � 90 degrees or 270 degrees in
Equation A3 yields x � 0, which confirms that the intended
category boundary x � 0 perfectly bisects the border stimuli at � �
82.5 degrees and 97.5 degrees and at � � 262.5 degrees and 277.5
degrees.

A critical design feature of the training tasks concerns the
relationship between diagnostic training and transfer dimensions in
the three condition types (perpendicular, uncorrelated, and con-
trol). First, the diagnostic training dimension in Condition 1 is 30
degrees counterclockwise from the brightness dimension because
of the rotation applied in Equation A4. This training dimension is
parallel to the transfer category boundary for this condition, mean-
ing that it is perpendicular to the diagnostic transfer dimension.
Likewise, the training dimension in Condition 4 is 30 degrees
clockwise from brightness (from Eq. A6), which is parallel to the
category boundary (i.e., perpendicular to the diagnostic dimension)
in the transfer task for that condition. Thus, the training and
transfer dimensions are perpendicular in both Conditions 1 and 4,
justifying their designation as perpendicular conditions.

Second, Equation A3 implies

�3

2
y �

1

2
x � sin	�
, (A9)

implying that
�3

2
y �

1

2
x is uncorrelated with x (because sin(�) and

cos(�) are uncorrelated). Stated differently, if the stimulus space
were linearly transformed or reparameterized so that x and
�3

2
y �

1

2
x were the coordinate dimensions, then the stimuli would

form a perfect circle (of the same form as in Eq. A1). Therefore,

the topological model predicts
�3

2
y �

1

2
x as the complementary

dimension learned in dimension differentiation. This dimension is
rotated 30 degrees counterclockwise from the y dimension. It
coincides with the diagnostic transfer dimension (i.e., is perpen-
dicular to the transfer category boundary) in both Conditions 2 and
5. Thus, the training and transfer dimensions in these conditions
are uncorrelated in these two conditions, justifying their designa-
tion as uncorrelated conditions.

Third, elementary calculus applied to Equation A3 shows that
x2 � y2 attains its maximum at � � 45 degrees and 135 degrees.

These values correspond to x-y coordinates of �(
1

�2
,
�3

�2
), which

define the two extremal points on the abstract stimulus ellipse. The
two points lie on a line through the origin (in x-y space) that is 30
degrees clockwise from vertical. This line defines the major axis of
the ellipse and, hence, the principal dimension of variation of the

stimuli. In Condition 6, no rotation was used in translating from (x,
y) to (v, c) (see Eqs. A7 and A8), so the principal variation in the
stimuli lies 30 degrees clockwise from the saturation dimension.
This direction coincides with the diagnostic transfer dimension
(i.e., is perpendicular to the transfer boundary) in that condition. In
Condition 3, the reflection applied by Equation A5 leads the
principal dimension of variation in the training stimuli to lie 30
degrees clockwise from the saturation dimension. Again, this
direction coincides with the transfer dimension in that condition.
These relationships corroborate the statement in the main text that,
in Control Conditions 3 and 6, the dimension indicated by the
unsupervised hypothesis is identical to the diagnostic transfer
dimension.

Experiment 2

Stimuli in Experiment 2 were defined using an ellipse equation
similar to that used for the training stimuli in Experiment 1 (Eq.
A3). Because the same stimulus set was used for training and
transfer within each condition, the coefficients defining the ab-
stract stimulus values x and y had to be modified slightly, so that
all of the desired category boundaries would cross midway be-
tween adjacent pairs of stimuli.

x � cos	�


y � sin	�
 �
1

�3
cos	�
 (A10)

In all conditions, the category structure for the transfer task was
defined so that x was the relevant dimension, by assigning stimuli
corresponding to 90 degrees � � � 270 degrees to Category 3 and
the remaining stimuli to Category 4. Because � � 90 degrees or
270 degrees implies x � 0, the category boundary defined by x �
0 bisects the border stimuli (at � � 82.7 degrees and 97.5 degrees
and � � 262.5 degrees and 277.5 degrees) as desired.

In the perpendicular conditions (1 and 3), the training categories
were defined so that y was the relevant dimension, by assigning
stimuli corresponding to 150 degrees � � � 330 degrees to
Category 1 and the remaining stimuli to Category 2. From Equa-
tion A10, � � 150 degrees or 330 degrees implies y � 0; therefore,
the category boundary defined by y � 0 bisects the border stimuli
(at � � 142.5 degrees and 157.5 degrees and � � 322.5 degrees
and 337.5 degrees), as desired. Because the abstract coordinates x
and y were scaled directly onto the objective stimulus coordinates
AB and CD (as described below), the training and transfer dimen-
sions are approximately perpendicular according to the MDS fit of
the 104 candidate base faces (which suggests that AB and CD are
nearly perpendicular; see Experiment 2 Method section). This
relationship justifies the designation of Conditions 1 and 3 as
perpendicular conditions.

Regarding the uncorrelated conditions, Equation A10 implies

y �
1

�3
x � sin	�
. (A11)
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Therefore, y �
1

�3
x is uncorrelated with the diagnostic transfer

dimension x (because sin(�) and cos(�) are uncorrelated), under the
stimulus distribution used for both phases of the experiment.
Therefore, paralleling the argument above with Experiment 1 (see

Eq. A9), the topological model predicts that if y �
1

�3
x is the

diagnostic dimension during training, then x will be the comple-
mentary dimension that is learned. This dimension lies 30 degrees
counterclockwise from y.7 In the uncorrelated conditions of Ex-
periment 2 (Conditions 2 and 4), the training categories were

defined so that y �
1

�3
x was the diagnostic dimension, by assign-

ing stimuli corresponding to � � 180 degrees to Category 1 and
the remaining stimuli to Category 2. From Equation A11, � � 0

degrees or 180 degrees corresponds to y �
1

�3
x; therefore, the

category boundary defined by y �
1

�3
x � 0 bisects the border

stimuli at � � 352.7 degrees and 7.5 degrees and at � � 172.5
degrees and 187.5 degrees. In conclusion, the diagnostic training
dimension in both Conditions 2 and 4 is uncorrelated with the
transfer dimension, justifying the designation of these conditions
as uncorrelated.

In Conditions 1 and 2, the abstract coordinates x and y were
scaled onto the objective dimensions CD and AB, respectively
(where A, B, C, and D denote the four base faces used to generate
the morph stimuli):

Conditions 1 and 2:

AB � .5 � r · y

CD � .5 �
r

1.1376
· x

(A12)

The scaling factor 1.1376 compensates for the discrepancy
between the distances A–B and C–D in the MDS solution, to
equate the scaling of the two objective dimensions. The joint

scaling factor r �
�3

4
serves to place all stimulus coordinates into

the unit square [0, 1] � [0, 1]. Conditions 3 and 4 were rotated 90
degrees counterclockwise from Conditions 1 and 2, by scaling –x
to AB and y to CD:

Conditions 3 and 4:

AB � .5 � r · x

CD � .5 �
r

1.1376
· y

(A13)

We do not report the numerical values of the stimuli for Experi-
ment 2 for space reasons and because the stimuli depend on the
particular base faces used here (in contrast to the Munsell coordi-
nates of Experiment 1), but they are presented graphically in
Figure 8 and can be readily computed from Equations A10, A12,
and A13.

Experiment 3

The same abstract ellipse from Experiment 2 (Eq. A10) was
used for the training tasks of Experiment 3. In all conditions, x was
defined as the diagnostic training dimension, by assigning stimuli
corresponding to 90 degrees � � � 270 degrees to Category 1 and
the remaining stimuli to Category 2 (note from Eq. A10, � � 90
degrees or 270 degrees implies x � 0). This category structure was
scaled onto the objective stimulus coordinates for the four condi-

tions as follows (with r �
�3

4
as above):

Condition 1:
AB � .5 � r · y
CD � .5 � r · x (A14)

Condition 2:
AB � .5 � r · y
CD � .5 � r · x (A15)

Condition 3:
AB � .5 � r · x
CD � .5 � r · y (A16)

Condition 4:
AB � .5 � r · x
CD � .5 � r · y (A17)

Consequently, CD was diagnostic in Conditions 1 and 2,
whereas AB was diagnostic in Conditions 3 and 4.

The stimulus set for transfer in all conditions was a circle
defined by

AB � .5 � r · cos	�

CD � .5 � r · sin	�
 (A18)

In Conditions 1 and 2, stimuli corresponding to 90 degrees �
� � 270 degrees were assigned to Category 3 and the rest to
Category 4. This partition defines a category boundary at AB � .5
(because AB � .5 when � � 90 degrees or 270 degrees) and makes
AB the relevant dimension. In Conditions 3 and 4, stimuli corre-
sponding to � � 180 degrees were assigned to Category 3 and the
rest to Category 4. This partition defines a category boundary at
CD � .5 (because CD � .5 when � � 0 degrees or 180 degrees)
and makes CD the relevant dimension. Therefore, the training and
transfer dimensions were approximately perpendicular in all con-
ditions, according to the MDS solution of the 104 candidate base
faces.

7 Note that y �
1

�3
x is proportional to, and hence lies in the same

direction as, the
�3

2
y �

1

2
x dimension discussed above in relation to Ex-

periment 1. Because the present analysis is only concerned with angles and
correlations between component dimensions, their magnitudes do not mat-
ter; only their directions are important.
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Although the predictions of the unsupervised hypothesis for
Experiment 3 are qualitative, it is still informative to determine the
orientation of the predicted unsupervised dimension (i.e., the first
principal component of the training stimulus distribution). Differ-
entiation of x2 � y2 with respect to � (using Eq. A10) reveals a

maximum at � � tan�1� �13�1

2�3
� . Inserting this value into Equation

A10 to calculate the ratio of y and x yields

y

x
�

�13 � 1

2�3
. (A19)

This ratio represents the tangent of the angle between the extremal
points on the ellipse and the x axis. The arctangent of this ratio is
approximately 53.05 degrees, meaning that the predicted unsuper-
vised dimension is 53.05 degrees counterclockwise from the x dimen-
sion, or 90 degrees – 53.05 degrees � 36.95 degrees clockwise from
the y dimension. In Condition 1, this orientation translates (via Eq.
A14) to 36.95 degrees clockwise from AB, which is the diagnostic
transfer dimension in that condition. Similar reasoning (using Eqs.
A15–A17) concludes that the unsupervised training dimension differs
by 36.95 degrees from the diagnostic transfer dimension in all con-

ditions, clockwise in the clockwise conditions and counterclockwise
in the counterclockwise conditions.

Regarding the predictions of the independence hypothesis, the
same reasoning as used with Experiment 2 (see Eq. A11) implies

that y �
1

�3
x is uncorrelated with the diagnostic training dimen-

sion, x, under the distribution of training stimuli. As above, this
dimension is oriented 30 degrees counterclockwise from the y
dimension. Working through the rotations and reflections of the
scaling equations (A14–A17) reveals that the uncorrelated dimen-
sion (i.e., the complementary dimension predicted by the indepen-
dence hypothesis) differs by 30 degrees from the diagnostic trans-
fer dimension, counterclockwise in the clockwise conditions and
clockwise in the counterclockwise conditions.

The numerical stimulus values for Experiment 3 are not re-
ported, for the same reasons given for Experiment 2, but they are
presented graphically in Figure 11 and can be readily computed
from Equations A11 and A14–A18.
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