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The psychophysics of home plate 
umpire calls
Kevin S. Flannagan 1*, Brian M. Mills 2 & Robert L. Goldstone 3

We analyze the visual perception task that home plate umpires (N = 121) perform calling balls and 
strikes (N = 3,001,019) in baseball games, focusing on the topics of perceptual learning and bias in 
decision-making. In the context of perceptual learning, our results show that monitoring, training, 
and feedback improve skill over time. In addition, we document two other aspects of umpires’ 
improvement that are revealing with respect to the nature of their perceptual expertise. First, we 
show that biases in umpires’ decision-making persist even as their overall accuracy improves. This 
suggests that bias and accuracy are orthogonal and that reduction of bias in decision-making requires 
interventions aimed specifically at this goal. Second, we measure a distinct difference in the rate 
of skill improvement between older and younger umpires. Younger umpires improve more quickly, 
suggesting that the decision task umpires engage in becomes routinized over time.

Over the course of more than 100 years, experimental psychologists have developed sophisticated methods for 
achieving laboratory control in the study of human judgment and behavior. However, this accumulated expertise 
may have had the unwelcome effect of predisposing them to neglect the possibilities of discovering principles of 
behavior by analyzing naturally occurring data sets rather than conducting experiments1,2. Uncovering principles 
of psychology by analyzing naturally occurring data is an exciting endeavor because (1) there has been a rise of 
well curated and large data sets involving collections of tagged images, text corpora, Wikipedia edit histories, 
trends in Twitter tag usage, demographics, consumer product sales, patent use and dependencies, sporting event 
outcomes, scientific citations, etc.3, (2) there now exist novel analytic methods for inferring causal relations from 
observational data4, (3) the data often come from strongly motivated decisions and life-changing behaviors of 
social importance5, and (4) the data sets allow us to explore the interplay between internal psychological processes 
and external environments, artifacts, and social institutions6.

Sporting contests offer particularly compelling naturally occurring data sets because of the expertise and life-
long learning possessed by their participants and the highly incentivized behaviors that they capture7. Addition-
ally, because of the widespread popularity of sports and the interest from both fans and professionals in objective 
assessments of performance, many sports leagues have made large investments in measurement and database 
technology that allow researchers to freely access copious amounts of well-curated data. For example, in the case 
of Major League Baseball (MLB) in the United States, the PITCHf/x monitoring system has been installed in 
every MLB baseball stadium since 2008, recording the trajectory of every pitch as it leaves a pitcher’s hand and 
the location of the pitch as it crosses the front of home plate. This detailed trajectory information is combined 
with the home plate umpire’s call, as well as contextual information regarding the score, previous calls, player 
information, time, date, inning, events, and pitch classification. Given the large number of individual pitches 
that a single umpire classifies as ball or strike during their MLB career, the dataset provides a highly diagnostic 
and robust source of information for revealing the mechanisms and biases underlying expert human perceptual 
judgment8–10. This is the dataset we use in this paper.

The perceptual judgment that we are interested in is made by the home plate umpire, positioned behind the 
catcher, in MLB baseball games. One of the jobs of this umpire is to determine whether the baseball as thrown 
by the pitcher passes through a volume of space called the “strike zone” when the batter does not swing at it. 
The left and right boundaries of this zone are defined by the left and right edges of the home plate, respectively. 
The top of the strike zone is defined by the midpoint between the top of the batter’s shoulders and the top of the 
batter’s pants. The bottom of the strike zone is defined by the hollow beneath the batter’s knee caps. Generally 
speaking, an umpire’s “strike” call (within the strike zone) benefits the pitcher’s team because the batter is called 
out after accumulating three strikes, and calling a pitch a “ball” (outside the strike zone) benefits the batter’s team 
because after accumulating four balls, batters advance to first base. A diagram depicting this perceptual task can 
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be found in Fig. S1. Note that in the rulebook and in the diagram, the strike zone is a three-dimensional volume 
of space. In our models of the judgment task, we treat it as if it were merely a two-dimensional plane. This is a 
common simplification in studies of umpires and in casual discussion of baseball.

The detailed online archive of every MLB play in a season is a felicitous source of evidence bearing on these 
difficult perceptual judgments by these elite professionals. Given that the average speed of a MLB pitcher’s fast-
ball is 91 to 94 MPH, a baseball takes only 450 milliseconds (ms) to reach the home plate, and is only above the 
home plate for about 10 ms. Accurate judgments by umpires about whether a pitch falls within a batter’s strike 
zone require years of deliberate practice11,12, strategic eye gaze patterns13, and complex coordination between 
perception, action, and judgment processes14.

It is not unusual for a professional MLB umpire to make more than 5,000 judgments in a single season, with 
some umpire careers spanning more than 40 years and 200,000 individual ball-strike decisions at the MLB level. 
Although umpires are generally accurate at this demanding perceptual classification task, with an average accu-
racy of 85% to 90% as measured by the PITCHf/x system, this accuracy varies depending on various factors and 
biases. For example, umpires tend to expand the strike zone for high-status, star pitchers relative to lower-status 
pitchers15, and shrink the strike zone for batters with more physical and social contact with umpires8. There is 
additional evidence that umpires expand the strike zone for pitchers playing in their team’s home stadium (home 
pitchers)8. Past work has also found that umpires’ decisions are sensitive to the preceding sequence of pitches16. 
When the count of strikes and balls on a batter favors the pitcher, umpires also shrink the strike zone for the 
subsequent pitch compared to when the count favors the batter17, consistent with the theory that umpires try to 
avoid making judgments that will have a large impact on the course of the game8,18. More recent work suggests 
that this behavior is consistent with maximizing accuracy19. Finally, while some evidence exists that umpires 
expand the strike zone for pitchers that match the umpire’s race20, other analyses do not show robust race-related 
biases9,21. All of these findings are based on the same dataset (recorded with the PITCHf/x system) that we use 
in our analysis.

Our primary contribution in this paper is to introduce a new model of umpires’ decision task, one that allows 
us to examine previously unmeasured features of it. Our model has two innovative features in particular. First, 
our psychophysical model features a parameter that measures umpires’ consistency in calling balls and strikes 
at the edge of the strike zone. Other measures of consistency have been presented in previous work, but none 
integrate it with other psychologically relevant features of the decision task22. Second, our model addresses devia-
tions in the shape of the strike zone from the official rectilinear zone to one that allows vertical deviations to be 
compensated for by horizontal accuracy, and vice versa. Each of these phenomena, consistency and compensa-
tion, is represented by a unique parameter, allowing us to measure differences across umpires and over time.

Using the model, we make two substantive contributions to the psychological literature. Each contribution 
consists of empirical evidence, taken from observing these umpires, that provides useful input on important 
questions in psychology. First, we demonstrate that biases in umpires’ decision-making–specifically, tendencies 
to change the boundaries of their strike zones in different situations–persist even as their overall accuracy in 
calling balls and strikes improves. This supports the idea suggested in past literature that bias and accuracy are 
separable aspects of decision-making23. The umpires in our dataset received incentive-based training to become 
more accurate. While these incentives did improve accuracy, they left these biases unchanged. This demonstrates 
that if the goal of training is to decrease bias, then providing incentives for overall accuracy improvement is not 
always effective. Our second contribution is that we measure a distinct difference in the rate at which older and 
younger umpires improve in response to these incentives. Older umpires improve more slowly. This result cor-
roborates findings in other application areas and documents age differences in novel aspects of psychophysical 
performance24. Specifically, we show this age difference in the consistency parameter described above.

Methods
Data
Pitch-tracking equipment, consisting of a system of cameras and known as PITCHf/x, was installed in every 
MLB stadium as of 2008. The data recorded by this system have been made publicly available for every pitch 
thrown since 2008 by MLB. We acquired this dataset from MLB’s data website, called Baseball Savant25. From 
this dataset, we are interested in the following variables for their relevance to the umpire’s perceptual task: the 
pitch location in the vertical plane at the moment it crosses home plate, measured in feet, with the ground and 
the horizontal center of the plate as the origin; and pitch metadata, including the count, the batter’s and pitcher’s 
handedness, the inning side, and which umpire made the call.

We restrict our analysis to 2008-2015. MLB installed new, radar-based tracking systems in 2016, and this 
change is associated with minor systematic changes in measurement accuracy and consistency26. We also restrict 
the data to pitches on which the batter did not swing, as these are the only pitches for which the umpire’s percep-
tual judgment is observed. The resulting dataset includes 3,001,019 pitches called by 121 umpires.

Model
Previous models of umpires’ calls in MLB games have documented systematic shifts in called strike zones as a 
function of various contextual factors8,16,18,20. However, these models have not been based on a full psychophysical 
model of the perceptual judgment task confronting the umpire. This prior work used non-parametric or machine 
learning methods to analyze the strike zone and visualize its shape8,19,27. Those approaches achieve high predic-
tive accuracy, but they do not measure meaningful parametric characteristics of the physical shape of the strike 
zone. A more recent empirical approach28 focuses more upon the shape of the zone, but does not address the 
psychophysical parameterization of decision making. Because we are interested in making inferences about the 
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strike zone’s physical shape, we therefore construct a parametric model that extracts features of psychophysical 
interest based on a logistic function29 as:

where P(“strike”) is the probability of an umpire calling a pitch a “strike” instead of a “ball”; β is the steepness 
of the transition from calling strikes to calling balls as the distance, d , of the pitch from the center of the strike 
zone increases; and α is the point of indifference, the distance at which the umpire is equally likely to call a ball 
or a strike. The point of indifference, α , is defined in terms of our distance metric, not distance in Euclidean 
space. We define the distance d as

where x and y are the horizontal and vertical coordinates of the pitch, measured in feet, with the origin set at 
ground-level and the center of home plate. (These measurements are from the umpire’s perspective, so pitches 
with negative x values will be closer to a right-handed batter than to a left-handed batter.) This definition of 
distance is useful because it allows for the shape of the strike zone to be flexible within a reasonable range. 
In particular, it allows the border of the strike zone to be a superellipse (a generalization of ellipses that, said 
roughly, allows for more squared-off corners) with variable height, width, eccentricity, and center. This modeling 
approach–restricting the strike zone to be superelliptical–is similar to that of Zimmerman et al.28 (Note also that 
we do not have measurements of the position of the umpire’s eyes when making the call, though this factor is 
relevant to their judgment. Fortunately, each umpire is in roughly the same position–with their head just behind 
the catcher’s helmet–for every call, so this should not substantially affect our analyses.) We estimate the model 
using the Bayesian statistical software Stan (Stan Development Team 2018).

Interpretation of parameters
The parameters in this model represent meaningful measurements in the context of psychophysics and facilitate 
comparisons to the rulebook strike zone. One characteristic, centering, refers to how close the center of the 
umpire’s strike zone, point { x0,y0 }, is to the rule-book center. A second characteristic, strike zone size, is directly 
quantifiable by the combination of α and � . (Note that the parameter α represents the half-width, as α� represents 
the half-height of the strike zone. In the results, we will present estimates of the full height and width, which are 
equal to 2α and 2α� , respectively.)

The parameter β can be interpreted in terms of a third characteristic, consistency. A relatively large value of 
β indicates two kinds of consistency. The first is that pitches that are further from the strike zone are not often 
called a “strike” when closer pitches are called “ball”. The second is that pitches that are thrown the same distance 
from the center of the strike zone tend to receive the same call. In the case of β = ∞ , there is a single, sharp 
threshold distance such that a pitch is called a strike if and only if it is closer than this distance to the strike zone 
center. This parameter can also be interpreted as visual perceptual skill: it represents the accuracy with which 
umpires see the true location of the pitch.

A fourth characteristic, rectilinearity, is directly captured by r . The rule-book strike zone is completely 
rectilinear (corresponding to r = ∞ ), but if an umpire adopts a compensatory decision policy, in which a pitch 
being far from the horizontal center of the strike zone can be compensated for by it being very close to the verti-
cal center, then their called strike zone might be better accommodated by a value of 2 < r < ∞ . If umpires have 
difficulty separately appraising the horizontal and vertical deviations from the strike zone center, treating them 
as integrated together into an overall sense of distance from the strike zone center30, then a value of r close to 2 
would be expected31,32. Accordingly, a relatively high value of r indicates that an umpire is successful at separately 
assessing the horizontal and vertical borders of the strike zone rather than reverting to a sense of overall distance 
that is imperfectly separated into horizontal and vertical components.

Contextual covariates
We add contextual covariates to our model to control for various factors known to influence umpire calls. For 
each of the six parameters described above, we create a regression equation that includes fifteen independent 
variables in addition to an intercept: eleven indicator variables for the count (with zero to two strikes and zero 
to three balls possible, there are twelve unique counts, which necessitate eleven indicator variable in addition 
to the intercept), three indicator variables for the batter/pitcher handedness, and one indicator for the side of 
the inning (which indicates whether the home or away team is pitching). Because we are interested in the strike 
zones called by individual umpires, and the data are clustered at the umpire level, we also include a random 
intercept for each umpire.

Each umpire has six individual parameters, one for each of the six parameters described above ( α , β , � , r , x0 , 
and y0 ). We model these hierarchically, as samples from a multivariate normal distribution. The multivariate 
prior allows information to be shared between parameters: if umpires with large strike zone widths also tend 
to have large strike zone heights, then the multivariate structure will estimate that relationship. We discuss the 
covariates and the prior specification in more detail in the supplementary materials.

(1)P(“strike”) = logit−1(−β(d − α))

(2)d =
r
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Results
We present two primary findings in this paper. The first is that training did not reduce umpires’ perceptual biases 
even though it improved their perceptual skill. The second is that younger umpires displayed a faster rate of 
improvement in response to training. Before detailing those results, we provide a short overview of the model’s 
measurements pertaining to global changes in the strike zone. These measurements are consistent with the 
existing literature8,33, which suggests that our model provides an adequate fit to the data and, in our view, adds 
credence to those of our findings that are novel.

Strike zone changes
Consistent with past work33, from 2008 to 2015, MLB umpires made improvements in their ability to call the 
rulebook strike zone. Figure 1 shows a summary of the changes. The most salient change is that the bottom of 
the strike zone moved downward. The top of the strike zone was roughly correct in 2008 and remained stable, 
while the outside portion of the zone receded during this period. (Note that this figure shows a single contour 
line for each year, so it does not display changes in the consistency parameter, β . Changes in consistency would 
affect the distance between adjacent contour lines within a given year, indicating changes in the slope of the 
function that maps pitch location to the probability of a strike.)

Figure 2 shows the average parameter values in the generic context of a 0-0 count in the bottom of the inning 
(home team batting). For simplicity, we show the parameter estimates for a right-handed pitcher only, facing 
either a right-handed batter or a left-handed batter. Changing the pitcher’s handedness has only a small effect 
on each of the parameter estimates.

There is a consistent and substantial change in all of the parameter values (except for x0 , in plate appearances 
with right-handed batters). In all cases, the parameter estimates move toward the values stipulated by the rule-
book strike zone. For example, the 2008 total strike zone width is about 2 feet, and by 2015 it is about 1.9 feet, 
a change of 1.2 inches towards the rulebook value of 1.42 feet. At the same time, the consistency parameter β 
increased. This means that as the strike zone boundary moved closer to the rulebook values, umpires also became 
better at consistently calling that boundary.

Lack of bias attenuation
Bias occurs when an umpire’s strike zone differs between different contexts. For example, an umpire who calls a 
wider strike zone when the home team is pitching–holding all other factors constant–is said to biased in favor 
of the home team. We define bias as the marginal effect of a covariate on the physical strike zone parameters in 
a given game situation (this definition is explained in detail in the supplementary materials).

Figure 3 shows the measurements of home-team bias in the height and width parameters from 2008 to 2015. 
These marginal effect estimates are calculated for the game situation of a 0–0 count with a right-handed pitcher 
and left-handed batter. (The main result we discuss here holds for other combinations of those parameters as 
well.) Figure 3 suggests that umpires are biased in favor of the home-team pitcher in both height and width, 
consistent with previous work8,34. We find no evidence of a consistent home-team bias in any of the other four 
strike zone parameters.

Figure 1.   Time trends in strike zone shape (umpire’s point of view). The figure plots the 50% contour line (the 
point at which an umpire makes a strike call with probability 0.5) in a 0-0 count and in the top of the inning 
for each year from 2008 to 2015. The left-hand plot shows a left-handed batter’s strike zone and the right-hand 
plot shows a right-handed batters strike zone. The black boxes show the true strike zone. (Note that the top and 
bottom of the strike zone vary depending on the batter’s body position, so the top and bottom of the true strike 
zone in this diagram are just one realization of a possible true strike zone).
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Central to our inquiry, we find that the magnitude of the bias is roughly constant over time, even as the model 
parameters overall are getting closer to the rulebook values. That is, even as umpires improve in their perceptual 
skill, the magnitude of their bias remains roughly constant. This suggests that despite the success of monitoring 
and training on accuracy and consistency, these interventions did not necessarily reduce bias. While we do not 
investigate racial bias, the result in Fig. 3 is in contrast to prior work arguing that umpires’ racial biases disappear 
when their performance is being monitored20.

We calculate analogous bias measurements for different counts, shown in Supplementary Fig. 1. As with 
home-team bias, our results are consistent with past work8,15 in that a significant bias does exist for several game 
contexts. The attenuation of bias is more complicated for count-based bias: some situational biases (e.g. the bias 
in strike zone width) are moderately reduced over time, while others (e.g. the bias in strike zone height) are 
essentially unchanged over time. This suggests that the relationship between skill improvement and bias attenu-
ation is complicated. At a minimum, we can say that improvements in skill do not guarantee reductions in bias.

Figure 2.   Time trends in parameter values. The width, height, and horizontal/vertical center parameters are 
measured in feet. The consistency and rectilinearity parameters are scaling factors and are measured in arbitrary 
units. The width and height measurements represent the full width and height of the strike zone, from one 
side to the other. (In the terminology of our model, this is twice the width and height parameters that enter 
the model, or 2α for the full width and 2α� for the full height.) The horizontal/vertical center parameters are 
measured in reference to the origin, which is defined as the middle of home plate at ground level. The vertical 
bars in the plot represent 95% credible intervals.
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Age and learning
Our goal in this section is to estimate the difference in learning rates between older umpires and younger umpires. 
To do so, we present a hierarchical Bayesian growth curve model that measures the difference in umpires’ rates 
of improvement based on their ages. We conclude that there is an association between age and learning, but 
that it is unclear what the mechanism is, for reasons to be discussed below. This builds upon prior work that 
found the same result using umpires’ global accuracy rates33. Our analysis extends that result by using the more-
parsimonious psychophysical measurements of our strike zone model.

To motivate our analysis, we provide a short summary of the recent history of umpire training. A more 
detailed account can be found in Mills’ prior work33. Before umpires debut in the major leagues, they spend sev-
eral years working in the minor leagues, which constitute professional baseball’s lower divisions. In 2008, MLB 
installed the PITCHf/x pitch-tracking system in all major-league stadiums (and not in minor league stadiums). 
(This is the system with which our data were measured.) In 2009, MLB and the umpires’ union agreed to a collec-
tive bargaining agreement that included performance incentives based on the PITCHf/x measurements, with the 
intention of encouraging umpires to adhere to the rulebook strike zone. This was the first substantial monitoring 
and training program that MLB instituted. Lastly, because the PITCHf/x system was only installed in major-
league stadiums, umpires working in the minor leagues did not receive direct feedback based on a pitch-tracking 
system until they reached the major leagues (or, in some cases, when working MLB Spring Training games).

Given this history, in our analysis we only consider umpires who debuted during or before 2008. Other 
umpires, even though they did not receive direct feedback from the PITCHf/x system prior to their respective 
MLB debuts, may have been indirectly influenced by the new, PITCHf/x-based observations of MLB umpires’ 
performance. That is, there may have been a trickle-down effect in which minor league umpires received instruc-
tions based on the new observations of major league umpires. If this is the case, then umpires who debuted after 
2008 are not exchangeable with umpires who debuted during or prior to 2008. Their rates of improvement in 
response to the PITCHf/x-based training system could be affected by their training experience at the minor 
league level. In the supplementary materials, we provide a robustness check that shows that our substantive result 
does not depend on this modeling decision.

A second advantage of this restriction is that the resulting set of umpires begins observation at the same 
time–2008, when PITCHf/x was first installed. If we were to include later-debuting umpires, their observation 
periods would begin later than 2008. Umpires who debuted after 2008 may have been indirectly affected by the 
PITCHf/x-based training program prior to our observation of them, and so we remove them from this analysis. 
These umpires would have worked in the minor leagues between 2008 and their individual debut years. Though 
they did not receive direct strike zone feedback during that time, they may have received general directives about 
how to adjust their strike zones based on the evidence from the major-league level. (For example, MLB may 
have directed all umpires to raise the strike zone based on observations of MLB umpires.) There is evidence that 
umpires change their behavior based on such general directives, even in the absence of feedback: in 2001, MLB 
told umpires to call more strikes and the strike rate suddenly increased (see Mills’ prior work33, sec. 3). If indi-
rect feedback does affect performance and those umpires received such feedback, then including those umpires 
in the age analysis would bias our estimate of the age and learning association, because they are systematically 
different from umpires who did not receive that indirect feedback. Out of 121 total umpires in our dataset, 35 
umpires debuted after 2008, leaving us with 86 umpires in this analysis. The unit of observation in our analysis 
is an umpire-year, and we retain 641 umpire-years out of 773 in the full dataset. Among these umpires, in 2008 
the average umpire was 44 years old, the youngest was 30, and the oldest was 62.

Moving to the growth curve model, the dependent variable is each umpire’s β parameter in each year. Out of 
the six strike zone parameters, we chose β because it represents the most general measurement of umpires’ per-
formance. For each umpire, we assume that, once the PITCHf/x-based training begins, his β parameter changes 
linearly as a function of time. The linear rate-of-change in each umpire’s β parameter constitutes his learning 
rate. We estimate these rates-of-change using a hierarchical Bayesian model with umpire-specific parameters, 

Figure 3.   Measures of home-team bias over time. The y-axis shows the difference in inches between the height 
and width for a home-team pitcher, versus those for an away-team pitcher. Positive values indicate an advantage 
for the home team. The vertical bars show the 95% credible intervals.
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following the framework laid out in35. (We use masculine pronouns because all umpires in the dataset are men. 
Women have umpired MLB games in spring training at various times, but never in the regular season).

In the dataset for our cohort analysis, the unit of observation is an umpire-year. For each umpire in each 
year, we produce an estimate of the umpire’s β parameter in a 0-0 count, with a right-handed batter and a right-
handed pitcher, in the top of an inning. We call this quantity β†

ut = exp
(

β0−0,t + βRHB-RHP,t + βTOP,t + βut
)

 , for 
each umpire u and each year t  . (This simulated quantity is calculated using the mean value of the joint posterior 
distribution of the parameters. Technically, this exaggerates the certainty in our estimates because we collapse 
each umpire’s posterior distribution to a point estimate. However, given that our estimates of the umpires’ con-
sistencies are relatively precise and because it simplifies the cohort model relative to one that fully incorporates 
the uncertainty, we think this is a reasonable approximation.) This value, β†

ut , is the dependent variable. The 
dataset also includes each umpire’s year of birth and the year of his MLB debut.

Our model is a two-level hierarchical model. At the first level, for which the observational unit is umpire-
years, the dependent variable is the quantity β†

ut . The first level has an umpire-specific intercept term θ0u and 
one independent variable, the timepoint t  . For all umpires, t = 0 is the year 2008 and t  increases by one for each 
additional year the umpire appears in the dataset. The umpire-specific slope parameter θ1u therefore measures 
the annual rate-of-change in the β† values for umpire u . The parameter θ1u estimates the learning rate for umpire 
u , and it is the outcome we are interested in: is this value associated with age?

At the second level, the individual growth curve parameters, θ0u and θ1u , are given a multivariate normal prior 
with mean dependent on the umpire’s (mean-centered) birth year. The γ parameters are given normal priors 
with mean 0 and a standard deviation of 100 (reflecting low prior certainty). The covariance matrix σθ is given 
a Lewandowski, Kurowicka, and Joe (LKJ) prior with parameter 236. We give the parameter σy a Cauchy prior 
with location parameter 0 and scale parameter 5.

The γ parameters have straightforward interpretations in terms of an individual umpire’s development. The 
parameter γ00 is the β† value in year t = 0 for an umpire with the average umpire birth year. The intercept param-
eter γ10 measures the average rate-of-change of all the umpires. The slope parameter γ01 measures the relationship 
between umpire birth year and umpire consistency in 2008, the first year of observation. Lastly, γ1,1 measures the 
relationship between umpire birth year and the rate-of-change in umpire consistency. The slope parameter γ1,1 
is the key parameter in our age analysis. If this parameter is non-zero, then there is a difference in the learning 
rate between old and young umpires.

The key elements of the model are shown below. The variable Bu represents the mean-centered birth year of 
umpire u.

Figure 4 shows the estimates of θ0u and θ1u . The upward slope in the right-hand panel indicates that there is a 
relationship between age and learning rate. As described above, the parameter γ11 measures that relationship. Its 
posterior median is 0.006 and the 95% credible interval is (0.003,0.008), indicating a high degree of confidence 
that there is a positive association between birth year and learning rate. That is, the younger an umpire is (the 

β†
ut ∼ N

(

θ0u + θ1ut, σy
)

[

θ0u
θ1u

]

∼ N

([

µ0u

µ1u

]

, σθ

)

µ0u = γ00 + γ01Bu

µ1u = γ10 + γ11Bu

Figure 4.   Cohort effect model estimates. The vertical bars show the 95% credible intervals for each individual 
umpire’s parameter estimates. The left plot shows each umpire’s consistency measurement in 2008, the first year 
of PITCHf/x-based observation. The right plot shows each umpire’s rate of improvement in consistency over the 
years during which he was observed by the PITCHf/x system.
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higher his birth year), the faster his β parameter improves during training. There is not evidence for an associa-
tion between umpires’ birth years and their initial consistency, suggesting that the old and young umpires are 
comparable prior to the start of training: the posterior median for γ01 is -0.005 and its 95% credible interval is 
(−0.019,0.011).

The magnitude of this difference is best illustrated through an example. Consider a 30-year old umpire and 
a 60-year umpire who, prior to training, have the same initial consistency of 8.5. Assuming that our estimate of 
0.006 is the true value of γ11 , then after ten years of training, the 30-year old umpire will improve his consistency 
by 4 units (a 47% improvement over the initial value) and the 60-year old umpire will improve his consistency 
by 2.1 units (a 25% improvement over the initial value). The thirty-year age difference corresponds to almost 
double the magnitude of learning.

Discussion
We present two main findings in this paper. First, improvements in perceptual accuracy, resulting from feedback 
on performance, do not guarantee bias attenuation. This result is strongest in the measurements of umpires’ bias 
in favor of home teams (Figure 3), but appears in the results on count bias as well (see Figure S1). From 2008 to 
2015, the average strike zone width changed by about 2.5 inches, but during that time umpires’ bias in favor of 
home team pitchers remained constant at about 0.2 inches. For count bias, some instances of bias were reduced 
(e.g. in 3-2 counts the bias is completely attenuated by 2015), but most remain constant. Furthermore, the lack 
of bias attenuation occurred even as umpires increased their consistency by roughly 33%. Given that umpires 
are “seeing” the ball more accurately over time, it is surprising that their home-team bias remains constant.

The persistence of bias demonstrates that accuracy and bias are separable and orthogonal features of decision 
making23. Improvements in overall accuracy do not guarantee improvements in bias. This has important implica-
tions for efforts to adapt decision-makers’ behavior. For example, if MLB wanted to reduce these context-based 
biases, then they would need to give umpires incentives specifically for that purpose instead of (or in addition 
to) incentives for overall accuracy.

The persistence of these biases, coincident with improvements in perceptual accuracy, suggests that the biases 
are manifest at a post-perceptual decisional stage. If the biases were directly influencing pitch perception, then 
their magnitude would probably be expected to decrease as perceptual judgments became increasingly precise 
over the years. Instead, the biases are likely affecting decisional thresholds for calling pitches “strikes” vs “balls” 
rather than distorting the perceived locations of pitches.

Second, these results add to the literature on the effects of aging in occupational training24. In particular, 
there is often a loss of perceptual processing speed with increasing adult age37. Meta-analyses have shown that, 
in general, training proceeds more efficiently for younger than older adults in occupational settings38. A training 
perspective is particularly relevant for MLB home plate umpires because a major professional change was enacted 
in 2008 in the form of the PITCHf/x pitch measurement technology that was widely distributed to ballparks 
across the USA. Their introduction led to a sudden increase in precise feedback given to umpires, leading to 
rapid increases in the consistency with which umpires called pitches, as measured here by β . Consistent with 
the literature on systematic reductions in learning efficiency and perceptual skills with age39–41, consistency 
improved significantly more rapidly for younger than older umpires. Our results confer evidence against this 
aging difference being caused by different initial levels of performance, as there were no differences in umpires’ 
initial consistency as a function of age. The more rapid improvement in consistency for younger umpires may be 
because of their greater fluid intelligence resources40,42, the greater need for older umpires to unlearn previously 
learned cognitive and perceptual routines43, or a combination of these age and experience factors. Our study 
cannot distinguish between these underlying causes and this is not an exhaustive list of potential explanations. 
Further work is needed to determine the reasons for the difference. Although training advantages for younger 
compared to older adults are often greater in laboratory experiments than field research38, our analysis shows a 
robust, quantitative training effect for both younger and experienced professionals who have risen to the very 
top echelon of their professions.

Data availability
The datasets used in this study are available for download in the OSF repository at https://​osf.​io/​hv68j/.
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