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Abstract 
We investigated whether, and in what, ways people use visual 
structures to evaluate mathematical expressions. We also 
explored the relationship between strategy use and other 
common measures in mathematics education. Participants 
organized long sum/products when visual structure was 
available in algebraic expressions. Two experiments showed a 
similar pattern: One group of participants primarily calculated 
from left to right, or combined identical numbers together.  A 
second group calculated adjacent pairs. A third group tended 
to group terms which either produced easy sums (e.g., 6+4), 
or participated in a global structure. These different strategies 
were associated with different levels of success on the task, 
and, in Experiment 2, with differential math anxiety and 
mathematical skill.  Specifically, problem solvers with lower 
math anxiety and higher math ability tend to group by chunks 
and easy calculation. These results identify an important role 
for the perception of coherent structure and pattern 
identification in mathematical reasoning.   

 
Keywords:  numerical cognition; mathematical cognition; 
cognitive psychology; educational psychology 

Introduction 
Consider the arithmetic expression 1 + 2 + 3 + 4 + 1 + 2 + 3 
+ 4 + 1 + 2 + 3 + 4. What strategy would you use to 
calculate this sum (without a calculator)? Do you prefer to 
simply add the addends from left to right? Do you find this 
one-size-fits-all approach (assuming compliance with the 
order of precedence) less mathematically satisfying because 
of the visual structure in this expression? Does the repeated 
number value catch your attention and encourage you to do 
1×3+2×3+3×3+4×3=3+6+9+12=30? Or, alternatively, are 
you more sensitive to the three groups of 1+2+3+4 and 
decide to parse the expression according to these groups, 
eventually calculating 3×(1+2+3+4).  Because they can all 
lead to a correct answer, there is no right or wrong solution. 
Theoretically, the number of possible solutions for an 
arithmetic expression can be infinite (e.g., reorganizing a 
sequence in a self-preferred way), but some of them appear 
more sensible and common than others depending on the 
problem structure. For example, grouping same numbers is 
not applicable to expressions without repeated numbers. 
Nevertheless, many mathematical representations contain 
internal coherent structure, and that structure may be an 
important determiner of how mathematical reasoners do in 
fact choose to solve problems. 
 
A Tale of Two Explanations 
At the surface level, the strategy applied to evaluate an 
algebraic expression may seem secondary to the answer’s 
accuracy. In school, students doing arithmetic worksheets 

are often graded based on their answers but not intermediate 
steps of their strategies. Oftentimes, teachers and students 
only go back to the solution when the calculation is wrong, 
hoping to find out where the mistake is. However, 
intuitively, many people, including us, do not think all 
solutions are created equal. Indeed, multiple “easy and 
quick” routes (aka shortcuts) have been proposed (e.g., 
Asimov, 1964). Rearranging an expression so that items can 
cancel each other out or make multiples of 10 feels clever, 
efficient, and insightful (Benjamin & Shermer, 2006). This 
is especially the case when the alternative strategy 
substantially reduces computation cost. These alternatives 
are usually cognitively driven. Despite different shortcuts, a 
common motivation is to reduce intrinsic cognitive load by 
grouping interacting elements into chunks (Sweller & 
Chandler, 1994; Paas et al., 2003). 

Take the expression we started with as an example:  
1+ 2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4, one solution 
path is to realize that (1+ 2 + 3 + 4) + (1 + 2 + 3 + 4) + (1 + 
2 + 3 + 4) = 3 × (1+ 2 + 3 + 4) = 3 × 10 = 30. There are at 
least two ways to explain the rationale behind this — one is 
more cognitively inspired while the other one is more 
perceptually inspired. First, the solution exemplifies a 
specific mathematical trick – making multiples of 10. We 
imagine an individual looking at the problem with the hope 
of finding some numbers that add up to 10. Because 1+ 2 + 
3 + 4 = 10, that individual chooses to segment the 
expression into three groups of 1 + 2 + 3 + 4. This solution 
would apply equally well to a problem such as 1 + 2 + 3 + 4 
+ 7 + 3, which contains two groups that sum to 10. 
However, the former problem also contains a coherent 
visual structure and layout. The three groups are identical, 
separate, and adjacent, all features of good grouping that 
underlie perceptual organization.  In line with the idea that 
visuospatial organization guides algebraic (Kirshner, 1989; 
Landy & Goldstone, 2007) and arithmetic (Landy & 
Goldstone, 2010; Braithwaite et al, 2016; Landy & 
Goldstone, 2007b) reasoning in the specific case of order of 
operation, it is possible that this irrelevant visual structure 
also guides mathematical reasoning when calculating 
complex sums in which multiple pathways are equally valid 
and appropriate—but unequally clever and efficient.  

 These two explanations are by no means mutually 
exclusive, especially given that arithmetic strategies can be 
discovered without conscious awareness (Siegler & Stern, 
1998). It is worth noting that we do not plan to identify 
which account is more accurate. Instead, we wish to explore 
whether and in what ways structure, when present, will be 
used by people to solve algebraic expressions.  

 

How Perceptual Cues Shape Formal Reasoning 
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Making sense of symbols is one of the most powerful and 
fascinating cognitive traits that characterize humans. Most 
research into formal symbolic reasoning has focused on the 
symbolic and abstract aspects of formal symbol systems. 
The general conclusion is that symbolic reasoning depends 
on internal structural rules, but not external structural forms 
(e.g., Gentner, 2003). So visuospatial structure seems 
peripheral to symbolic reasoning. This is especially the case 
with mathematical reasoning, which is often considered a 
purely formal discipline. Still, evidence has shown that 
mathematical reasoning is strongly grounded in visual 
processing. There is a general relationship between physical 
and syntactic proximity in notational mathematics (Kirsher, 
1989). For example, the exponent is always closer to the 
base than to other terms in an expression, echoing its high 
precedence in the order of operations. People are also 
sensitive to visuospatial features of abstract representations 
in addition to the mathematical contents (McNeil & Alibali, 
2004). Recently, there is a growing amount of evidence that 
non-formal contexts influence higher-level reasoning in 
various fields, such as graph interpretation (e.g., Gattis & 
Holyoak, 1996), physics (Larkin & Simon, 1987), and even 
mathematics (Landy & Goldstone, 2007b). The visual 
system can be trained to grasp and appreciate affordances of 
different types of display formats and to extract task-
relevant information from external representations 
(Goldstone, Landy, & Son, 2010; Kellman et al., 2008).  
 

The Gestalt Principles of Perception in Mathematics 
Research into the role of visuospatial features in 
mathematics has continuously gained momentum with the 
rise of perceptual training. An important extant question is 
whether and when perceptual organization facilitates 
mathematical reasoning with symbols, and when it acts as a 
crutch or a distraction (Goldstone, Landy, & Son, 2010; 
Kellman, Massey, & Son, 2010). Kirshner and Awtry 
(2004) argue that employing visual heuristics in 
mathematics may block learning of principles and formal 
rules, and so impair learning. Nogueira de Lima & Tall 
(2008) support this by observing that students with weaker 
understanding of algebraic transformations are more likely 
to invoke physical analogies over equations, such as 
‘moving’ a term to the other side of an equation. Moreover, 
the alignment of surface features between equations and 
expressions has been identified as an important source of 
errors in novices and experts (Landy, Brookes, & Smout, 
2014). Incorrect use of visual patterns often leads to 
misleading generalizations (Marquis, 1988; Nogueira de 
Lima & Tall, 2008). However, there is a long tradition in 
psychology, dating back to the Gestalt psychologists, of 
invoking perceptual organization as an important factor in 
reasoning and problem-solving (Ohlsson, 1984). 
Appropriate chunking of input information enables the 
discovery of higher-order invariances (Kellman et al, 2008). 
Recently, Braithwaite et al (2016) suggested that children 
importantly learn relations between visual and formal 
properties of mathematics. They note that sensitivity to 
spacing variations increased rather than decreased with age 

and suggested that perceptual learning provides one way to 
off-load mathematical rules onto perceptual systems so as to 
decrease load on executive processes. However, a direct link 
between mathematical achievement and sensitivity to 
perceptual organization has not been shown, nor have 
algorithms or strategies been identified that would take 
direct advantage of perceptual organization. 
 
The Present Study 
In the current work, we explore strategies involved in 
computing long arithmetic expressions. We manipulated 
operands’ neighboring values to create different kinds of 
higher-order organizations (e.g., 4 + 4 + 6 vs. 4 + 6 + 4 with 
equal space between adjacent elements). Second, we went a 
step further by asking reasoners to compute arithmetic 
expressions (long sums/products) instead of judging the 
validity of equations. Research into metacognition suggests 
that adult problem solvers can monitor their progress and 
adjust their methods as they proceed if they realize that the 
problem is more complex than they had first thought 
(Schoenfeld, 1992). Thus, there are good reasons to think 
that the effect of perceptual groupings may differ between 
judging and computing arithmetic expressions because the 
latter is generally more cognitively demanding.  

 

Experiment 1 
 

Experiment 1 explored whether and how people use 
grouping pressure available in long sums/products to 
compute arithmetic expressions and whether they are 
associated with different levels of arithmetic success.  

 

Participants We recruited 33 undergraduates at Indiana 
University, Bloomington in exchange for course credit.  

 

Stimuli The stimuli were a set of 24 long sums and products 
questions composed of multiple operators and operands. 
Each problem was designed to afford distinguishable 
perceptual cues. Questions differed either in lower-level 
features (e.g., numerical values) or higher-level structure 
(e.g., repetition of a conglomeration of terms). Taking 1 + 2 
+ 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 as an example, 
grouping cues include: a) high-level relational exactness:1 + 
2 + 3 + 4 + 1 + 2 + 3 + 4 + 1 + 2 + 3 + 4 (1+2+3+4 repeated 
three times), b) high-level featural exactness: 1 + 2 + 3 + 4 
+ 2 + 3 + 4 + 1 + 3 + 4 + 1 + 2 (sums of 1 to 4 presented in 
dissimilar orders), and c) lower-level identity: 1 + 1 + 1 + 2 
+ 2 + 2 + 3 + 3 + 3 + 4 + 4 + 4 (adjacent common value). 
Other times, we varied number values for the same 
arrangement (e.g., 17 + 23 + 17 + 23 + 17 + 23 + 17 + 23 
and 99 + 101 + 99 + 101 + 99 + 101 + 99 + 101). This 
allowed us to explore to what extent perceivers would be 
influenced by the actual values.  

Procedure Experiment 1 was a within-subjects design in 
which participants answered 24 questions. The dependent 
measures included subjects’ strategy use and their accuracy. 
Subjects were asked to compute each of the questions in the 
problem set to the best of their ability, but more importantly, 
to demonstrate their arithmetic reasoning by either using 
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mathematical notions (e.g., parentheses and lines) or 
descriptive language (e.g., group all the 5s together) for 
each problem with a pen or a pencil. No calculator was 
allowed. They were assured that their overall performance 
would not affect their credit. Subjects also reported their age 
and sex after they completed the problem set.  

 

Strategy Encoding There is no standard coding system for 
evaluating complex arithmetic expressions, and so we 
developed an approach tailored for this project. The data 
from this experiment were used to create a set of eight non-
exclusive properties of subject strategies. Each specific 
response could be coded as matching or failing to match 
each code. We began from a set of theoretically interesting 
categories, including left to right ordering, chunking, and 
easy calculation, and added other categories that were 
needed to capture what seemed to be major repeated themes.   

1) (Group from) left to right: Strict left to right 
2) (Group by) common numeral  
3) (Group by) neighbors: Group spatially adjacent terms 

(may or may not be every term)   
4) (Group by) pairs: Break the long sum/product into 

shorter adjacent pairs with dissimilar sums 
5) (Group into) higher-order patterns: Group into 

conglomerations of (at least three) terms  
6) (Group by) easy common sum/product: intermediate 

steps produce 5 or 10 
7) (Group by) sign: Group every same operator together 

when there are mixed operators.  
8) (Group into) sorted order: Reorder operands in an 

ascending or descending order  
Note: One participant rewrote all questions vertically and then did 
calculations based on decimal place values.  
 

We performed a binary coding for our subjects’ responses. 
Each arithmetic question was translated into an eight-
dimensional vector by applying above rules one at a time.  

Responses were encoded based on what was available and 
what was shown in participants’ answers. For example, for 
those who indicated 3+13+23+33+43–3–3–3–3–3 as 3 + 13 
+ 23 + 33 + 43 – (3 + 3 + 3 + 3 + 3), their responses were 
encoded both as Neighbor, Numeral, and Sign. Of course, 
the participant may only have noticed a subset of these 
properties; categories were based on conformance to the 
rules, not participants’ (hidden) intentions. 
 

Results & Discussion 
 

Strategy Use Analysis We conducted a principal 
component analysis (PCA) on the distribution of strategies 
for each subject, followed by k-means clustering. We 
represented each subject by collapsing their performance on 
the 24 questions. Thus, each subject is an eight-dimensional 
vector, with each dimension representing an averaged value 
for each grouping pattern. This transformation led to 33 data 
points in an eight-dimensional space. The correlation matrix 
(Figure 1) exhibits a moderate to strong positive correlation 
between Common sum/product and Higher-order patterns, 
which are both negatively correlated with Numeral, Sorted 

order, and Left to right at varying levels. The strong 
correlation between Numeral and Sorted order is partially 
due to participants’ tendency to group common numerical 
value, followed by reordering. Pair and Neighbor are also 
strongly (positively) correlated. This is not surprising 
because the definition of Pair implies grouping neighbors.  

 
Figure 1. Correlation matrix for different grouping strategies 
 

Three principal components were retained as they 
explained around 85% of variance altogether. Table 1 shows 
the factor loadings for grouping strategies in PCA. We 
identified three distinctive clusters by visual inspection. For 
simplicity, we named the clusters as follows: a) Surface 
Properties (N = 14): Go from left to right, sometimes 
clustering by numeric value or signs of operators, b) Near 
neighbors (N = 5):  Group close entities, often into adjacent 
groups or pairs, and c) Higher-order patterns (N = 14): 
Group terms which were either led to multiples of 10, or 
which participated in a global structure (see Figure 2).  

 

Table 1 
Rotated factor loadings for grouping strategies 

 
 

 
Figure 2. A PCA bi-plot of individuals and strategies with axes 
being the first two principal components. PC1 explains 41.6% of 
variance and PC2 explains 21.5% of variance 
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Accuracy by Cluster Subjects’ response accuracy was also 
coded along with each strategy. Questions that were not 
given answers were coded as wrong. A failure to calculate 
an answer may be indicative of a poor choice of strategy, 
because the chosen strategy may involve too many 
calculations. Given three distinctive clusters of strategies, a 
natural question to ask is whether their accuracy in solving 
arithmetic expressions differs. We conducted an analysis of 
variance (ANOVA) to examine whether distinctive clusters 
led to different success rates. The analysis showed a 
significant association between the two, F(2,30) = 7.314, p 
= .001, 𝜂𝑝

2 = .33. Tukey’s HSD post hoc test indicated that 
the average accuracy of Higher-order Structure (M = .84, 
SD = .087) was significantly higher than that of Surface 
Properties (M = .66, SD = .18), p = .0039. Similarly, the 
average of Near Neighbors (M = .85, SD = .056) was also 
significantly higher than that of Surface Properties., p = 
.032 (see Figure 3).  

 
Figure 3. A boxplot of accuracy by cluster.  
 

Overall, Experiment 1 showed that most people were 
inclined to use visual structures when they were available in 
long sums/products but that they used them differently. 
Different grouping strategies were observed and classified 
into three groups: Surface Properties, Near neighbors, and 
Higher-order Structure. Results also suggest that these 
distinctive clusters of strategy are associated with different 
levels of success, with people who use surface properties 
to evaluate arithmetic expressions having a lower rate of 
success than those in the alternative clusters. 
 

Experiment 2 
 

In light of the results of Experiment 1, we were particularly 
interested in the relationship between strategy use and 
common measures in mathematics education. Experiment 2 
was designed to replicate and extend the findings of 
Experiment 1 by adding the Abbreviated Math Anxiety 
Scale (AMAS) (Hopko, Mahadevan, Bare, & Hunt, 2003) 
and the Berlin Numeracy Test (BNT) (Cokely et al, 2012). 
By including these two tests, it is possible to conclude 
whether the connection between strategy use and arithmetic 
success is only an artifact of our stimuli, or it in fact is 
associated with different levels of performance on some 
well-established measures in mathematics. 

Participants We recruited 51 undergraduates at Indiana 
University, Bloomington in exchange for course credit. 

 

Stimuli The arithmetic problems in Experiment 2 were 
similar to those in Experiment 1 except that there were 18 
questions. The 9-item version of the AMAS was used to 
measure math anxiety. Participants rated how anxious they 
would feel during specified math-related events. Responses 
were on a Likert-type scale, ranging from 1 = Low Anxiety 
to 5 = High Anxiety (sample event: Listening to a lecture in 
mathematics class). The 4-item BNT was administered to 
assess statistical numeracy and risk literacy. A sample BNT 
question: Image we are throwing a five-sided die 50 times. 
On average, out of these 50 throws how many times would 
this five-sided die show an odd number (1, 3, or 5)? (30) 
 

Procedure The procedure of Experiment 2 was identical to 
that of Experiment 1 except that participants were instructed 
to finish the BNT and AMAS after completing the 
arithmetic problems. In addition to age and gender, 
participants were also asked to report their math score on 
the SAT or ACT.  

 

Results & Discussion 
 

Strategy Use Analysis We retained 7 out of 8 strategies in 
Experiment 1, excluding (group into) a sorted order as it 
was not observed in Experiment 2. PCA and k-means 
clustering were applied to classify participants in terms of 
strategy use. The correlation matrix in Figure 4 reveals a 
pattern similar to the correlational finding in Experiment 1. 
Once again, we retained three principal components (Table 
2) and observed three clusters: Surface Properties, Near 
neighbors, and Higher-order Structure (Figure 5). 

 
Figure 4. Correlation matrix for different grouping strategies 
 
Table 2 
Rotated factor loadings for grouping strategies 
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Figure 5. A PCA bi-plot of individuals and strategies with axes 
being the first two principal components. PC1 explains 46.1% of 
variance and PC2 explains 26.9% of variance.  
 
Accuracy by Cluster An ANOVA indicated a significant 
effect of strategies on arithmetic success, F(2,48) = 5.914, 
p = .0051, 𝜂𝑝

2 = .20. Tukey’s HSD post hoc test indicated 
that the average accuracy of participants in the Higher-
pattern Structure cluster (M = .86, SD = .087) was 
significantly higher than that of Near Neighbors (M = .68, 
SD = .18), p = .0054. Nonetheless, the average of Surface 
Properties (M =.76, SD = .15) did not differ significantly 
from either group (see Figure 6).   
 
Relationship to Measures in Mathematics We conducted 
an ANOVA for each measure. 
Math Anxiety. The ANOVA showed that math anxiety 
level indeed associated with strategy use, F(2, 48) = 9.068, 
p = .00046, 𝜂𝑝

2 = .27. Tukey’s HSD post hoc test indicated 
that participants in Higher-order patterns (M = 17, SD = 
4.87) had a significantly lower level of anxiety than those in 
either Surface Properties (M = 24.07, SD = 5.79, p 
= .00054) or Near Neighbors (M = 22.1, SD = 6.05, p 
= .037). In other words, individuals with a lower level of 
math anxiety were more likely to group terms which either 
led to simple sums (especially multiples of 10) or 
participated in a global structure (see Figure 7).  
Math Ability & Numeracy. We found reliable differences 
between different clusters on a few measures that are 
believed to be indicative of math ability and math anxiety. 
First, participants in distinctive clusters have significantly 
different math score on the SAT or ACT exam (transformed 
to the same percentage scale), F(2,34) = 3.37, p = 0.046, 
𝜂𝑝

2 = .17  (14 participants were excluded for having not 
taken either test). Post hoc comparisons using the Tukey 
HSD test indicated that participants in Higher-order 
Structure (M = .82, SD = .13) had a significantly higher 
accuracy on high-stake standardized math tests than those in 
Surface Properties (M = .68, SD = .11), p = .04. A similar 
pattern was observed in their BNT scores, F(2, 48) = 4.129, 
p = .02, 𝜂𝑝

2 = .15 with those in Higher-order Structure (M 
= 2.4, SD = 1.42) scoring significantly higher on the BNT 
than those in Surface Properties (M = 1.2, SD = 1.15), p 
= .016. Figure 8 illustrates a striking trend that, in general, 
as BNT accuracy increases, the proportion of participants 

in Higher-order Structure increases while the proportion of 
participants in Surface Properties decreases. This is 
especially compelling given that the BNT and our task taps 
into different aspects of mathematical knowledge. These 
trends suggest an elegant connection between strategy and 
basic numeracy and mathematical literacy. By and large, 
participants who were better at using higher-order relations 
scored higher on the BNT. 

 
Figure 6. A boxplot of accuracy by cluster.  

 

 
Figure 7. A boxplot of math anxiety by cluster (the higher the 
score the more mathematically anxious were participants). 
 

 
Figure 8. A stacked bar graph plots the proportion of subjects in 
each group at each level of BNT performance. The number of 
participants at each level is roughly equal: N = 9, 12, 11, 9, 10 at 
BNT score = 0, 1, 2, 3, 4, respectively. 

 

Once again, the results of Experiment 2 supported the 
findings in Experiment 1 that people use visual structure to 
solve arithmetic expressions. Furthermore, Experiment 2 
extended the findings of Experiment 1, revealing a clear 
relationship between grouping strategy and other common 
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measures in mathematics education. Our results suggest 
that grouping by higher-order patterns is usually associated 
with lower math anxiety and higher BNT accuracy.  

 

General Discussion & Conclusion 
 

The present study, to the best of our knowledge, provides 
the first evidence that problem solvers use visual structural 
affordances to solve long sums/products. Across two 
experiments, we found that when visual structure was 
available, some participants relied on low-level properties 
(e.g., similarity between numerical value) while others 
tended to take advantage of higher-level patterns (e.g., exact 
pattern repetition). Some participants appeared to use fewer 
visual perceptual cues as they consistently shortened 
questions by pairing neighboring terms. We consider this 
difference in recognizing arithmetic patterns to reflect visual 
flexibility. People who tend to group math expressions into 
higher-order visual patterns are also likely to be able to 
solve problems by alternative strategies when necessary. 
Consequently, visual flexibility may directly impact 
procedural flexibility, which has been argued to be an 
important component of mathematical proficiency 
(Kilpatrick et al., 2001). However, the former, perceptual, 
type of flexibility has been less recognized and thus studied.    

Patterning skill is considered by Steen (1988) to be at the 
core of mathematics. Many studies have explored relations 
between patterning skill and math ability, ranging from how 
young children identify and complete pattern extension 
tasks (e.g., Fyfe, McNeil, & Rittle-Johnson, 2015) to 
whether recurrent patterns can be observed through sets of 
analogies (Richland, Holyoak, & Stigler, 2004). Yet, little is 
known about patterning skill at the level of arithmetic 
expressions. While common core state standards for 
mathematics emphasize arithmetic pattern abstraction, the 
focus is on observations such as that the sum of two odd 
numbers is an even number. Our present study, in this sense, 
contributes to the literature on mathematics by showing that 
people also seek patterns at an arithmetic level.  Moreover, 
individual differences in the kinds of arithmetic patterns 
spontaneously noticed is associated with measures of 
mathematics proficiency and anxiety. We consider visual 
flexibility and arithmetic pattern seeking to be an 
undervalued factor underlying skill in mathematics.  
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