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Abstract

In inductive learning, the order in which concept instances
are presented plays an important role in learning performance.
Theories predict that interleaving instances of different con-
cepts is especially beneficial if the concepts are highly sim-
ilar to each other, whereas blocking instances belonging to
the same concept provides an advantage for learning low-
similarity concept structures. This leaves open the question
of the relative influence of similarity on interleaved versus
blocked presentation. To answer this question, we pit within-
and between-category similarity effects against each other in a
rich categorization task called Physical Bongard Problems. We
manipulate the similarity of instances shown temporally close
to each other with blocked and interleaved presentation. The
results indicate a stronger effect of similarity on interleaving
than on blocking. They further show a large benefit of com-
paring similar between-category instances on concept learning
tasks where the feature dimensions are not known in advance
but have to be constructed.
Keywords: category learning; order effects; similarity

Introduction
Inductive learning is an essential cognitive ability which, by
abstracting from specific examples, allows the transfer of ex-
perience to new, similar situations. There is a significant body
of evidence from cognitive psychology suggesting that com-
parison of multiple cases represents a particularly promis-
ing avenue for inductively learning difficult, relational con-
cepts (Loewenstein & Gentner, 2005). Comparison not only
takes representations as inputs to establish similarities, but
also uses perceived similarities to establish new representa-
tions (Hofstadter, 1996; Medin, Goldstone, & Gentner, 1993;
Mitchell, 1993). When we compare entities, our understand-
ing of the entities changes, and this may turn out to be a far
more important consequence of comparison than simply de-
riving an assessment of similarity. In this paper, we are in-
terested in identifying optimal ways of organizing these com-
parisons, and the kinds of cases that should be optimally com-
pared.

One major line of argument is that comparing instances of
a concept with very dissimilar features should lead to the best

induction and generalization for the concept. If comparison
serves to highlight commonalities between instances of the
same concept while de-emphasizing differences, comparing
instances that share irrelevant features could result in those
features being retained in a learner’s mental representation.
This notion, called “conservative generalization” by Medin
and Ross (1989) is that people will generalize as minimally
as possible, preserving shared details unless there is a com-
pelling reason to discard them. This, in turn, could limit gen-
eralizability to new, dissimilar cases. Some research is con-
sistent with this conclusion. For example, Halpern, Hansen,
and Riefer (1990) asked students to read scientific passages
that included either “near” (superficially similar) or “far” (su-
perficially dissimilar) analogies. The passages that included
far analogies led to superior retention, inference and transfer
compared to those featuring superficially similar comparison,
which showed no benefit at all.

The conservative generalization principle predicts that in-
creasing the similarity of simultaneously presented instances
from one category will inhibit people’s ability to discover the
rule that discriminates between the two categories. The true,
discriminating rule will need to compete with many other
possible hypotheses related to the many other features shared
by the compared instances. By this account, decreasing the
similarity of the compared instances that belong within a cat-
egory will make it more likely that the proper grounds for
generalization are inferred, by eliminating misleading com-
mon features that lead to incorrect categorization rules.

Results of Rost and McMurray (2009) on young infants
learning to discriminate pairs of similar words point into
the same direction. These authors found that increasing the
within-category variability of the to-be-learned words by hav-
ing different speakers repeat them increases the infants’ abil-
ity to discriminate between the words. One of the potential
explanations they give for their results is that young infants
might still be unsure about what feature dimensions are rel-
evant for the task and the variability in the irrelevant dimen-
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sions helps the infants to focus on the relevant, stable ones.
Another line of argument is that concepts which are highly

similar to each other are better learned when instances of dif-
ferent concepts are interleaved. When learning to distinguish
between several similar concepts, one major difficulty lies in
identifying the subtle differences between them. Birnbaum,
Kornell, Bjork, and Bjork (2012) suggested, in their discrim-
inative contrast hypothesis, that interleaving instances of dif-
ferent concepts enhances the discriminative contrast between
them and therefore helps with the task of spotting their dif-
ferences, see also (Carvalho & Goldstone, 2012; Kornell &
Bjork, 2008; Kang & Pashler, 2012). Additionally, compar-
ing very similar instances from different categories has the
advantage that there are fewer random, irrelevant differences
that compete for attention with the defining difference (see
Winston, 1970, on “near misses”).

In summary, the two lines of arguments described above
predict that high similarity supports between-category com-
parison, while low similarity supports within-category com-
parison. Both types of comparisons are potentially impor-
tant in learning concepts, but one might be more effective
than the other for a specific learning task, depending on the
specific task, context, experience, and structure of concepts
(Goldstone, 1996).

In this paper, we compare the effect that similarity has
on learning performance in blocked and interleaved presenta-
tion schedules. Carvalho and Goldstone (2012) recently con-
ducted an experiment with a similar purpose. They manip-
ulated the category structures in a perceptual categorization
task towards more or less similarity, both within and between
categories, and found this modulates the advantage of block-
ing and interleaving in the expected directions.

Our approach is different in three important ways. First,
we manipulate similarity by grouping concept instances into
either similar or dissimilar comparison, instead of switching
between two separate sets of categories. Second, we de-
signed the blocked and interleaved schedules in a way that
they would enhance within- and between-category compari-
son, respectively, while still allowing for both types of com-
parisons. Therefore, the two argument lines above make
opposite predictions on whether high similarity of instances
shown closely together should help or hurt the induction and
will allow for a direct comparison of effect strengths. Third,
we use an inductive learning task, Physical Bongard Prob-
lems (PBPs), with a much larger feature-space.

This problem domain is inspired by the Bongard problems
(Hofstadter, 1979; Bongard, 1970) and was recently intro-
duced by Weitnauer and Ritter (2012) to study concept learn-
ing and categorization of dynamic, physical situations. Each
problem consists of two sets of 2D physical scenes represent-
ing two concepts that must be identified. The scenes of one
concept are on the left side, the scenes of the other concept
on the right side. Figure 1, 2 and 3 show three example prob-
lems. What makes PBPs particularly interesting as a domain
for concept learning is their open-ended feature space. Peo-

ple do not know in advance which features a solution might be
based on (or indeed what the features are), and while some of
the problems rely on features that are readily available such
as shape or stability, others require the construction of fea-
tures as a difficult part of the solution (e.g., the time an object
is airborne or the direction a particular object in the scene is
moving in)1. This intricate situation in which both features
and concepts have to be identified at the same time is quite
common in real life and people deal with it impressively well,
while it is still considered a very hard problem in the Artificial
Intelligence community.

Figure 1: PBP 08. The task is to identify the two concepts A
and B represented by the scenes on the left and on the right
side, respectively. This is the similarity version in which sim-
ilar scenes are grouped by rows. The concept labels were not
shown during the study. See the end of paper for the solution.

Experiment
In this experiment we analyze the effects of different presen-
tation schedules and similarity groupings on concept learning
performance. We selected 22 PBPs and extended them by ad-
ditional scenes so that the problems consist of sixteen training
scenes and 8 test scenes each. Half of the scenes are shown
on the left side and belong to category A (we name them A1,
..., A10) while the other half of the scenes are shown on the
right side and belong to a different category B (we name them
B1, ..., B10). All scenes were designed to fit into five simi-
larity groups {A1, A2, B1, B2}, {A3, A4, B3, B4}, {A5, A6,
B5, B6}, {A7, A8, B7, B8} and {A9, A10, B9, B10}, so that
within-group similarity between the scenes is high, whereas
between-group similarity is low.

During presentation, two scenes are always displayed si-
multaneously so that for each problem a sequence of six train-

1Solutions can be based on a great variety of features and feature
combinations, as geometrical or physical object features, the way a
physical scene evolves over time, relations between the objects, or
even potential interactions with the scene. Additionally, focusing
on a subset of objects and aligning the scenes with each other is
required to find some of the solutions.
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Figure 2: PBP 18. This is the dissimilarity version in which
similar scenes are positioned far from each other. See the end
of paper for the solution.

ing scene pairs is shown to the participant. We vary the
presentation order of scenes along two dimensions with two
values each, resulting in four conditions. The first dimen-
sion, similarity grouping, controls whether similar scenes are
shown temporally close to each other (“111122223333”) or
temporally far from each other (“132121323213”). We will
refer to the former as “grouped by similarity” or “similar”
and to the latter as “grouped by dissimilarity” or “dissimilar”.
Figure 4 depicts how scenes are positioned for both cases.

The second dimension, presentation schedule, controls
whether the scenes that are shown simultaneously are from
the same or from different categories (AA-BB-AA-BB-AA-
BB vs. AB-AB-AB-AB-AB-AB, see Figure 5). We will
refer to the former as “blocked” condition2 and to the lat-
ter as “interleaved” condition. In the blocked condition
while within-category comparisons are facilitated by present-
ing scenes from the same category simultaneously, between-
category comparisons can still be made between successive
scene pairs, but involve higher memory demands. Analo-
gously, the interleaved condition enhances between-category
comparisons but still allows for within-category comparison
across successive scene pairs.

We expected to find that grouping by similarity should im-
prove learning performance for the interleaved condition and
grouping by dissimilarity should improve performance for the
blocked condition.

Subjects
We conducted the experiment on Amazon Mechanical Turk3.
Sixty-seven participants, all US-citizens, took part in the ex-

2We use the term “blocked” to refer to a slightly different pre-
sentation schedule than it is usually done. Instead of showing all in-
stances of one category before switching to the next, we only block
two instances of one category and interleave these blocked pairs.

3See Mason and Suri (2012) for an introduction to using Me-
chanical Turk as a platform for research.

Figure 3: PBP 24. This is the similarity version in which
similar scenes are grouped by rows. See the end of paper for
the solution.
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B5 B4
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Figure 4: Positions of the 12 training scenes for the condi-
tions grouped by similarity (upper left corners) and grouped
by dissimilarity (lower right corners).

periment in return for monetary compensation. Of these, we
excluded 27 who did not finish all problems (most of them
dropped out after seeing only a few) and another two that
did not get at least one solution correct across the entire task.
There was no need to use catch trials, because the subjects
were required to write down the solutions as free text. Any
cheating or automated answers would have become immedi-
ately apparent during our hand-coding of the solutions. The
data from the remaining 38 participants was used in the fol-
lowing analyses. On average, participants solved 8.6 out of
the 22 problems presented.

Material
For each of the 22 problems, the training scenes were ar-
ranged in three rows, each with four scenes. We prepared
two versions of each problem by placing the scenes at dif-
ferent positions. In the “grouped by similarity” version, the
scenes were arranged in such a way that the scenes inside
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Figure 5: The scene presentation schedule for blocked (top)
and interleaved (bottom) presentation. The participant manu-
ally proceeds through the six states. In each state, two scenes
(in white) are shown while the other scenes (in gray) are hid-
den.

each row are similar to each other. In the “grouped by dis-
similarity” version, similar scenes were distributed over all
rows. Figures 1 and 2 show an example of a dissimilarity and
similarity version, respectively.

Design
We used a 2 x 2 factorial design. The study condition (presen-
tation schedule: {blocked, interleaved} × similarity group-
ing: {similar, dissimilar}) was randomly chosen for each
problem in a within-subject manner.

Procedure
The participants were first given a brief introduction to PBPs
including an example problem with a solution. During the ex-
periment, they could proceed through the scene pairs of each
problem at their own pace by pressing a key. After they had
viewed all scenes once, they were asked whether they thought
they had found a solution. Then they needed to classify six
test scenes which were randomly drawn from the eight avail-
able test scenes. The test scenes were shown one by one. Fi-
nally they had to type in a description of their solution or their
best guess. Before moving on to the next problem, they were
shown the problem with all training scenes at once together
with the official solution. There was no time limit to the task.
At the end of the experiment participants were debriefed on
the study objectives and variables. The original experiment is
available online at Weitnauer (2013).

Results
We used two separate measures to evaluate learning success.
First, we hand-coded the accuracy of each textual solution
given by the participants. Some of the participants had dif-
ficulties remembering which side was left and which side
was right, so they provided a correct solution but with sides
swapped (e.g., writing “left: all objects are squares” and
“right: all the objects are circles” when in fact the left-side
objects were all circles and the right-side objects were all
squares). These cases were counted as correct solutions.

The second measure is based on the proportion of test
scenes that were classified correctly. Using this directly
would be misleading for cases in which participants mixed up
the sides. We therefore developed a consistency measure in-
stead. This consistency measure is defined as max(c,6−c)−

3, where c is the number of correctly classified scenes being
minimally zero and maximally six. The consistency can take
values between zero and three, where the latter corresponds
to cases where either all test scenes were classified correctly
or were all (consistently) classified wrongly. Figures 6 and
Figure 7 show the average of these two measures for all four
conditions.
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Figure 6: Mean proportion of correct answers for blocked and
interleaved presentation schedules and grouping of scenes by
similarity or dissimilarity. There is a significant effect of sim-
ilarity.
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Figure 7: Mean consistency of test scene classifications for
blocked and interleaved presentation schedule and grouping
of scenes by similarity or dissimilarity. There is a highly sig-
nificant effect of similarity.

We applied two separate 2 x 2 repeated measures ANOVAs
with presentation schedule (blocked vs. interleaved) and sim-
ilarity grouping (similar vs. dissimilar) as factors to the pro-
portion of correct responses and consistency measures. These
analyses revealed a significant effect of similarity condition,
F(1,37) = 5.32, p= .03 for the proportion of correct answers
measure and F(1,37) = 15.7, p = .0003 for the consistency
measure. There was no effect of schedule of presentation, or
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interaction between the two factors for any of the measures
(all p > .05).

Discussion
The data analysis revealed a positive effect of grouping scenes
by similarity, independent of whether they were presented in
a blocked or an interleaved schedule. We argue that this is ex-
plained by a strong positive effect of similarity on interleav-
ing which more than compensates for any possible negative
effect that similarity had on blocking.

The advantage of similarity for interleaving is in line
with our expectations. Goldstone (1996) and the discrim-
inative contrast hypothesis of Birnbaum et al. (2012) pre-
dict that direct comparison of instances from different cate-
gories highlights their differences (see also Carvalho & Gold-
stone, 2012). Identifying differences between highly similar
scenes is especially effective, as there are fewer superficial
differences to compete with the defining one. This insight
is already present in the desirable “near misses” in Winston
(1970) work, where instances from different concepts that
differ by just one feature are ideal for his algorithmic learner.
Near misses provide clear evidence about what features are
critical, concept-defining ones. Another possible contribut-
ing effect is that it is easier to structurally align two simi-
lar scenes than two very different scenes and this alignment
process promotes noticing differences (Markman & Gentner,
1993).

What might seem surprising at first is that similarity
also improves learning performance in the blocked condi-
tion, given that theories like “conservative generalization” by
Medin and Ross (1989) predict that similarity for blocked
scenes will lead to many superficial similarities and therefore
inferior performance compared to dissimilar scenes. How-
ever, the results can be explained in a way compatible with
these theories. We designed both scheduling conditions in a
way that allows for within- and between-category compar-
isons. Given this, negative effects of similarity on the former
and positive effect of similarity on the latter will compete with
each other. In the blocking condition, within-category com-
parisons were facilitated by showing scenes of the same cate-
gory simultaneously, while scenes of different categories had
to be compared sequentially.

Still, a strong positive effect of similarity on between-
category comparison could mask a small negative effect of
similarity on within-category comparison and lead to the
overall improvement due to similarity that we found. What
is indeed surprising is that, although learners were pushed to-
wards attending to similarities with a paired comparison, they
still exploited between-pair differences to find the solution.

We believe that one important reason for this might be
found in the type of categorization task that was used. Due
to its open ended feature space, participants had to identify or
construct relevant feature dimensions as a major part of the
challenge. Comparing similar scenes from different concepts
provides the additional advantage of highlighting such feature

dimensions, an advantage that blocking of dissimilar scenes
does not provide.

Implications for an Algorithmic Learner An interesting
question is how the presented results could inform the imple-
mentation of a computational model of concept learning in
open feature-spaces. A general observation is the fact that
presentation order matters at all. This means that attending
to the first scenes changes the way the following scenes are
perceived and solution hypotheses that are formed. The lim-
ited memory capacity of humans makes it impossible to keep
a detailed representation of all instances or a large number of
hypotheses in mind and forces a decision on which aspects of
an instance one should concentrate on and which information
should be retained. The big challenge is that these decisions
have to be made before knowing the answer to the problem
and therefore before knowing what aspects are actually im-
portant. In open-ended feature spaces algorithmic learners
could face similar problems because the a-priori construction
of all possible features might be infeasible due to a combina-
torial explosion, so dynamic processes that discover feature
dimensions and concepts at the same time might be neces-
sary.

The main insight from the present experiment is that
between-category comparisons of similar instances are espe-
cially beneficial, as they promote learning, both by making
new, potentially relevant feature dimensions more salient and
by increasing the likelihood that a perceived difference is a
defining one. Between-category comparisons should there-
fore play a privileged role in how active learning algorithms
choose the next training example.

Pedagogical Implications Birnbaum et al. (2012) showed
the benefit of interleaving for several concept learning tasks,
and Carvalho and Goldstone (2012) proposed that this ben-
efit is modulated by how similar the concepts are, so that
in low-similarity cases blocking can be better. The current
work provides a slightly different perspective. Our results
suggest no direct advantage of interleaved or blocked presen-
tation, but instead a greater potential of between- compared
to within-category comparisons. This holds even for situa-
tions in which the between-comparison relies on sequentially
shown instances while within-comparison can be made on the
basis of simultaneously shown instances. A result that might
directly inform the design of learning material is the big bene-
fit of comparing similar scenes from different categories. The
grouping of instances by similarity - instead of relying on
a single similarity measure for a whole set of concepts - is
a new, interesting dimension along which presentation order
can be manipulated to optimize learning.
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Solution to the problems
PBP 08: unstable vs. stable
PBP 18: objects eventually touch vs. objects are eventually
separated
PBP 24: several possible outcomes vs. one possible outcome
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