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ABSTRACT. The authors describe the effects of practice condi-
tions in motor learning (e.g., contextual interference, knowledge
of results) within the constraints of 2 experimental variables: skill
level and task difficulty. They use a research framework to con-
ceptualize the interaction of those variables on the basis of con-
cepts from information theory and information processing. The
fundamental idea is that motor tasks represent different challenges
for performers of different abilities. The authors propose that
learning is related to the information arising from performance,
which should be optimized along functions relating the difficulty
of the task to the skill level of the performer. Specific testable
hypotheses arising from the framework are also described.
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ractice is generally considered to be the single most
important factor responsible for the permanent

improvement in the ability to perform a motor skill (i.e.,
motor learning; Adams, 1964; Annett, 1969; Fitts, 1964;
Magill, 2001; Marteniuk, 1976; K. M. Newell, 1981;
Schmidt & Lee, 1999). If all other factors are held constant,
then skill improvement is generally considered to be posi-
tively related to the amount of practice. The generalizabili-
ty of the relationship between practice and skill is so pro-
found that it is sometimes modeled mathematically and
referred to as a law (Crossman, 1959; A. Newell & Rosen-
bloom, 1981). Indeed, the attainment of expertise, the high-
est level of proficiency in a motor skill, generally requires
years of practice (Ericsson, 1996).

In truth, the attainment of expertise is not a goal or a real-
ity for most learners of motor skills. Because of our incom-
plete knowledge of practice variables, we are often ineffi-
cient in our practice sessions. Thus, the limited opportunity
for practice, coupled with the potentially small gains in
expertise resulting from each session, increases the impor-
tance of maximizing the benefits gained whenever practice
is undertaken. For over a century, researchers have studied
means by which practice conditions can be structured so
that they maximize the potential for learning (Adams,

1987); understandably, that issue remains of considerable
interest to theorists and practitioners alike. Clearly, the con-
cept of practice as a single, unitary construct that leads to
improvements in performance is not a simple one.

In the present article, we offer a theoretical perspective
for conceptualizing the effects of practice variables in
motor learning (primarily, contextual interference [CI] and
knowledge of results [KR]). Excellent reviews of both areas
of research are available in the literature, and it is not our
purpose to replicate or extend any of them. (For reviews on
CI, see Brady, 1998; Magill & Hall, 1990. For reviews on
KR, see Schmidt 1991; Swinnen, 1996. For an integration
of both CI and KR, see Schmidt & Bjork, 1992). Rather, our
present purpose is to explicitly describe a fundamental rela-
tionship that we believe applies to both research areas. The
relationship involves the effectiveness of CI and KR vari-
ables relative to the skill level of the learner and the diffi-
culty of the task being learned. 

We present those ideas in the form of a research frame-
work. Although presented as a unique conceptualization,
we acknowledge at the very outset that many of the ideas,
relationships, and theoretical concepts that emerge as para-
meters of the framework have appeared, either explicitly or
implicitly, in a variety of sources over many years (notably,
Lintern & Gopher, 1978; Marteniuk, 1976; K. M. Newell,
McDonald, & Kugler, 1991; Wulf & Shea, 2002).1 As
defined by Crick and Koch (2003), “A framework is not a
detailed hypothesis or set of hypotheses; rather, it is a sug-
gested point of view for an attack on a scientific problem,
often suggesting testable hypotheses” (p. 119). Our goal is
to formulate those various ideas within a single conceptual
framework—a framework that suggests how interactions
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among several factors within a single experimental protocol
might be expected to emerge. As a preview, according to the
challenge point framework, learning is intimately related to
the information available and interpretable in a performance
instance, which, in turn, depends on the functional difficul-
ty of the task. Information is seen as a challenge to the per-
former—when information is present there is potential to
learn from it. Three important corollaries arise from that
thesis: (a) Learning cannot occur in the absence of informa-
tion, (b) learning will be retarded in the presence of too
much or too little information, and (c) for learning to occur,
there is an optimal amount of information, which differs as
a function of the skill level of the individual and the diffi-
culty of the to-be-learned task. We begin with a discussion
of the relationship between task difficulty and performance
by individuals of varying skill levels and follow with a crit-
ical discussion of how that relationship affects the informa-
tion available to the learner during action planning and eval-
uation. After we discuss those issues we provide a more
formal description of the challenge point framework, and
we conclude with a presentation of evidence from areas of
research that supports the tenets of the framework.

Task Difficulty and Skill

Task difficulty is a variable that is implicit in almost every
investigation of motor control and learning. The develop-
ment of motor task taxonomies to conceptualize task diffi-
culty has a long history, and the present discussion is not
intended to update or supplant those previous discussions2

(e.g., see Fleishman & Quaintance, 1984; Gentile, 1998).
Indeed, the concept of task difficulty has been the feature of
a large number of studies reported in the motor learning and
motor control literature, although it is often included without
an operational definition of how it was, or should be,
defined. Rather than offer a general or all-encompassing def-
inition of task difficulty, one that would no doubt be less
than satisfactory, we follow here an alternative strategy. We
assume that investigators fully understand the nature and
parameters of tasks that they use in experiments involving CI
and KR variables. Given that there are a variety of opera-
tional definitions of task difficulty, we suggest that those
definitions can be further divided into two broad categories:
(a) nominal task difficulty and (b) functional task difficulty.
The difficulty of a particular task within the constraints of an
experimental protocol would operationally delineate its
nominal level of difficulty. The nominal difficulty of a task
is considered to reflect a constant amount of task difficulty,
regardless of who is performing the task and under what
conditions it is being performed. As such, nominal task dif-
ficulty includes such factors as perceptual and motor perfor-
mance requirements (see also Swinnen, Walter, Serrien, &
Vandendriessche, 1992). Consider the example of a golfer
who is performing a 75-yard pitch shot to a green over a
pond of water. Across the entire spectrum of all possible golf
shots, that task is one that some would argue is of moderate
nominal difficulty. However, the term level of nominal diffi-

culty includes only the characteristics of the task, irrespec-
tive of the person performing it or the conditions under
which the task is performed.

Functional task difficulty refers to how challenging the
task is relative to the skill level of the individual performing
the task and to the conditions under which it is being per-
formed. For example, it is unlikely that the functional task
difficulty of the golf shot just described is the same for both
the professional golfer and the weekend duffer. Now let us
suppose that the shot is being performed into a strong head-
wind. That particular shot then becomes more functionally
difficult because of the wind conditions, and the increase in
difficulty would likely be more severe for the novice golfer
than for the professional. Recall that in all those scenarios,
the nominal task difficulty remains the same.

In Figure 1, we illustrate how the difficulty of the task
affects the expected level of practice performance for four
hypothetical levels of skilled performers. Our assumption is
that with a task of a given level of nominal difficulty, an
individual at any level of skill is likely to perform at a pre-
dictable level. For the beginner, performance outcome is
expected to be high only under conditions of very low nom-
inal task difficulty. That point, shown in the upper left side
of the graph at which all four functions originate (repre-
senting the four different skill levels), is at the same level of
predicted performance for all individuals because it repre-
sents a ceiling effect for all individuals: The task is so easy
that anyone can perform it with a high level of expected
success. As the task becomes more difficult, however, the
expected level of performance for the beginner drops rapid-
ly and reaches a floor level of performance at a relatively
low level of task difficulty (hence, the steep negatively
decelerating curve in Figure 1). Expected performance for
the intermediate and skilled individuals would drop off at
moderate rates as a function of increased nominal task dif-
ficulty (the moderately negative and positively decelerating
curves, respectively). Only the most nominally difficult
tasks would be expected to pose a problem for the expert
(thus, the steep positively decelerating curve in Figure 1).

Although the functions illustrated in Figure 1 represent
negatively decelerating curves for beginners and intermedi-
ate performers and positively decelerating curves for skilled
and expert performers, the exact shape of those functions is
less important than is the idea that performance expecta-
tions interact as a function of the difficulty of the task and
the skill level of the performer. The simple, straightforward
idea in Figure 1 is that with increases in nominal task diffi-
culty comes the expectation that performance will decrease
and that the rate of decline in performance will be more
rapid for the lower skilled performer.

Task Difficulty and Information

A fundamental assumption in this article is that learning is
a problem-solving process in which the goal of an action rep-
resents the problem to be solved and the evolution of a move-
ment configuration represents the performer’s attempt to



M. A. Guadagnoli & T. D. Lee

214 Journal of Motor Behavior

solve the problem (Miller, Galanter, & Pribram, 1960).
Sources of information available during and after each
attempt to solve a problem are remembered and form the
basis for learning, which is defined as a relatively permanent
improvement in skill that results from practice (Guthrie,
1952). Another fundamental assumption in this article is that
two sources of information are critical for learning: (a) the
action plan and (b) feedback. We borrow from Miller et al.
(1960) the concept of an action plan as a construct that
invokes intention and ultimately results in a specific move-
ment configuration on a given performance. We also ascribe
a predictive function to the action plan—however, one that
allows for the anticipation of feedback sensations. The action
plan works in a manner suggested by inverse and forward
internal models of motor control and learning (Wolpert,
Ghahramani, & Flanagan, 2001; Wolpert & Kawato, 1998).
According to that theory, the processing system uses pairs of
inverse (motor predictor) and forward (sensory predictor)
internal models to generate output signals, and it uses senso-
ry feedback as the input signal. The feedback represents
information from sources (a) that are inherent to the per-

former and are normally available during a performance (e.g.,
visual and kinesthetic feedback) and (b) that might not nor-
mally be available to the performer but can be augmented to
the performance experience by an extrinsic source (e.g., an
instructor’s comments or a video replay).

From communication theory (e.g., Shannon & Weaver,
1949), we borrow the concept that information is trans-
mitted only when uncertainty is reduced. For example, the
statement, “it is dark outside,” carries little meaning if
spoken during the middle of the night. One would nor-
mally expect darkness at that time, and therefore the state-
ment reduces little uncertainty. If one were to say the
same thing during the day, however, then information is
being transmitted, because even though daylight usually
means a certain amount of bright light, there are a number
of reasons why there might be relative darkness during the
day (e.g., inclement weather or a solar eclipse). Thus,
information is being transmitted because the statement is
reducing some uncertainty (see also Fitts, 1954; Fitts &
Posner, 1967; Legge & Barber, 1976; Marteniuk, 1976;
Miller, 1956).

FIGURE 1. The relationship between nominal task difficulty and expected performance as a
function of the individual’s skill level. During practice, predicted success becomes a decreas-
ing function of nominal task difficulty.
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Action plans and feedback also represent the means by
which information can be transmitted. The selection of an
action plan that is intended to solve a particular motor prob-
lem results in the expectation of certain outcomes at differ-
ent levels of analysis. At the level of an observable outcome,
one might expect, for example, that an apple core thrown at
a wastepaper basket would have a certain trajectory that
would result in the core’s landing in the basket. The expec-
tation would be highest when the basket is right below one’s
hand and substantially lower when the basket is located
across the room. Visual feedback would provide results of
the throw.3 When the basket is directly below the person’s
hand and the expectation for success is extremely high, then
vision of the apple core entering the basket would provide
very little information. In that case there was little uncer-
tainty about the outcome of the performance before the shot
was taken. A miss from that short distance, however, would
be considered informative, because the outcome did not
match the highly anticipated expectation. The shot to a bas-
ket across the room represents a different scenario. There
the expected outcome of the action plan is less assured—the
level of expectation of success (or failure) is moderate—so
vision of the outcome of the shot would provide informa-
tion to the performer regardless of whether the apple core
does or does not go into the basket.

Action plans and feedback can also be considered from
another level of analysis. The action would result in a copy
of the efferent signals that would be available for analysis
and for comparison with the sensory feedback received
from the ongoing and completed movement (Wolpert et al.,
2001). In the thrown apple core example, a comparison of
the expected sensations with the actual sensations arising
from the movement would result in information if uncer-
tainty were reduced. It should also be noted that the pro-
duction of information may or may not be available at a
conscious level of analysis.

The nominal difficulty of a task would affect expected
performance and therefore the potential information arising
from performance. Having the wastepaper basket close at
hand would present an easier task in terms of expected suc-
cess than would having the basket across the room (Wood-
worth, 1899; Fitts, 1954). But now let us compare the per-
formance of an expert apple core thrower with that of a
novice apple core thrower. Clearly, the lower nominally dif-
ficult (easy) task results in little available potential informa-
tion for either the novice or the expert. However, if the
waste paper basket was located across the room, then that
situation represents a task of high functional difficulty for
the novice but a less high functional difficulty task for the
expert. The novice, not knowing whether the action plan
will produce an accurate shot, will receive uncertainty-
reducing feedback regardless of the outcome. In contrast,
the action plan for the expert facing the task of low func-
tional difficulty is expected to be correct, and confirmation
by feedback would produce little or no information.

Those ideas form one key part of the challenge point

framework. Tasks of identifiable nominal difficulty per-
formed by an individual of a specific level of skill partially
define functional task difficulty. We take that idea one step
further to bring in the concept that conditions of practice
also contribute to the functional difficulty of the task. 

By their very nature, some practice conditions have the
effect of making a task easier or more difficult to perform
well. For example, to make a swing easier to achieve, pro-
ducers of golf training devices have marketed certain phys-
ically restricting guidance aids. By definition, then, tasks of
nominally high difficulty performed under a practice condi-
tion that has been designed so that the task is made easier
will produce a task of lower functional difficulty. Other
practice conditions (e.g., random-practice orders) con-
tribute to making a task more difficult to perform well (Bat-
tig, 1966; J. B. Shea & Morgan, 1979). We do not wish to
imply that only a performer’s skill level and certain practice
conditions contribute to defining the functional difficulty of
a task. However, for our purposes, those two characteristics
are critical in optimizing the potential information that the
result of a performance might be expected to contribute dur-
ing the motor learning process.

The present conceptualization of the effects of task diffi-
culty for different skill levels shares some similarity to the
ideas developed by Marteniuk (1976). Citing the work of
Kay (1962, 1970), Marteniuk suggested that practice leads
to redundancy, less uncertainty, and, hence, to reduced
information. The more that practice leads to better expecta-
tions, the less information there will be to process. The
essence of that idea is developed further in the curves illus-
trated in Figure 2.

The relation between task difficulty and the amount of
information available to be obtained from performance of
the task (i.e., learning) is represented in Figure 2. Note
that Figure 2 is similar to Figure 1, except that the ordi-
nate has been changed from Predicted Success to Poten-
tial Available Information and the abscissa from Nominal
to Functional Task Difficulty. We have also inverted the
scale to represent the concept that potential information
increases as a positive function of increased functional
task difficulty. The performance curves for the four
groups of performers take on the same shape as in Figure
1 but are now inverted. Differences in the amount of
absolute potential information are the focus of interest in
Figure 2. Therefore, whereas Figure 1 represented prac-
tice performance, Figure 2 represents the information
available for learning. As such, Figure 2 demonstrates
hypothetical functions that illustrate the fact that increas-
es in task difficulty are accompanied by increases in
potential information. As functional task difficulty
increases, there is less certainty about the potential 
success of a movement (action plan) and about the poten-
tial outcome of the movement (feedback).

Optimal Challenge Points

According to the challenge point framework, learning is

Challenge Point
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directly related to the information available and inter-
pretable in a performance instance, which, in turn, is tied to
the functional difficulty of the task. Our thesis is that infor-
mation represents a challenge to the performer and that
when information is present, there is potential to learn from
it. As stated previously, the following corollaries arise from
that thesis: (a) Learning cannot occur in the absence of
information, (b) learning will be retarded in the presence of
too much information, and (c) learning achievement
depends on an optimal amount of information, which dif-
fers as a function of the skill level of the individual. There-
fore, the factors contributing to functional task difficulty
(including the level of the performer and practice condi-
tions) interact to dictate the optimal amount of interpretable
information and, hence, the potential for learning.

As Figure 2 illustrates, increases in task difficulty are
accompanied by increases in potential information.
Although potential information is dependent on nominal
task difficulty, interpretable information is based on func-
tional task difficulty. (That concept is discussed in greater
detail in the following sections.) Note that if information is
to serve a role, it must be interpretable. As functional task
difficulty increases, so too does potential available informa-
tion, as is illustrated in Figure 2. However, there is a limit to
which potential information is interpretable. It is assumed

that the limit is governed by one’s information-processing
capabilities and that those capabilities change with practice
(Marteniuk, 1976). Hypothetical points for each per-
former’s level are shown in Figure 2. Those points represent
the optimal amount of potential interpretable information
and are called optimal challenge points.

As skill improves, the expectations for performance
become more challenging. Therefore, to generate a chal-
lenge for learning, one must obtain increased information;
that information can arise only from an increase in the func-
tional task difficulty.

There is one other relationship to describe. Because task
difficulty is negatively associated with performance level,
there is a performance–learning paradox: Depending on the
skill level of the performer, increases in functional task diffi-
culty result in decreased performance expectations but in an
increase in the available interpretable information. Hence, the
optimal challenge point represents the degree of functional
task difficulty an individual of a specific skill level would
need in order to optimize learning. The anticipated amount of
performance decrement, the specific function relating perfor-
mance decrement to information to be processed, and, hence,
the potential for learning are determined by the individual’s
abilities relative to the task at hand.

In Figure 3, we illustrate how the information potential
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FIGURE 2. Optimal challenge points for learning (retention) related to different skill levels,
functional task difficulty, and potential available information arising from action, with optimal
challenge points resulting earlier (lower functional difficulty) for less experienced performers.
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for learning relates to both the expected immediate effect
on performance and the optimal challenge point. Regard-
less of the skill level of the individual, the concept holds
that as functional task difficulty begins to reach its optimal
challenge point, there is an increase in information that
provides a potential learning benefit. Two functions that
change simultaneously with a change in the functional
task difficulty are illustrated Figure 3. The solid line in
Figure 3 represents the effect of functional task difficulty
on performance during practice (temporary performance
effects). The dashed line in Figure 3 represents the effect
of functional task difficulty on potential learning that
could arise from practice (as would be seen in retention or
transfer tests). The effect on performance is straightfor-
ward: As the task becomes more functionally difficult, one
would expect to observe a point at which performance
would falter dramatically (note also that the curve in Fig-
ure 3 is a positively decelerating function—which would
correspond to a skilled performer, as is illustrated in Fig-
ure 1; one would expect the shapes of the performance
functions for individuals of other skill levels to resemble
the curves illustrated in Figure 1).

The effect of task difficulty on the potential benefit for

learning is illustrated as an inverted-U function in Figure 3
for individuals of all skill levels. The concept is that
increased functional task difficulty will result in more infor-
mation generated in the performance of the task (more
uncertainty reduced). That information represents greater
useful information in terms of potential learning benefit, but
only to a point (i.e., the optimal challenge point). As sug-
gested by Marteniuk (1976), one would anticipate that after
that point there will be too much information to be used
effectively—the amount of information would exceed the
capacity of the individual to process the information effi-
ciently, thereby diminishing the potential benefit to learn-
ing. In other words, even though the amount of information
available increases, the amount of interpretable information
does not. In that case, the learner cannot sufficiently process
enough of the available information in the performance
context to improve upon the skill level. Thus, the informa-
tion-processing system becomes overwhelmed and both
performance and learning begin to suffer.

Finally, whereas in Figure 3 the effect of task difficulty
on the potential learning benefit for individuals of all skill
levels can be seen, in Figure 4 one can see the effect of task
difficulty on the potential learning benefit for a single indi-

FIGURE 3. The relation between learning and performance curves and the optimal challenge
point related to tasks of different levels of functional complexity. The point of functional task
difficulty where learning is optimized is not the point at which practice performance is opti-
mized.
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vidual who is increasing skill level through practice. An
implication of Figure 4 is that as a performer’s information-
processing capabilities increase, so too should the function-
al difficulty of the task. That is, because the learner’s 
information-processing abilities change and his or her abil-
ity to use information changes, the optimal challenge point
should change as well. Figure 4 is an extension of Figure 3.
By increasing the functional task difficulty as the per-
former’s ability increases, one maintains an optimal chal-
lenge for the performer. As such, an appropriate functional
difficulty for a beginning performer would be an inappro-
priate (too low) functional difficulty for an expert per-
former. Most interesting, it is likely that even though the
functional task difficulty increases as expertise increases,
the perceived difficulty of the task (i.e., performer’s rating
of difficulty) remains  

Manipulating Practice Variables 
to Create Optimal Challenge Points

Optimal challenge points are similar in concept to what
Bjork (1998) has termed desirable difficulties in perfor-
mance. For our purposes, one of the most important roles of
practice variables is to influence performance and, there-
fore, the potential for learning. To recall an earlier discus-
sion, we assume that for any given individual with a known
level of skill, each task holds a nominal level of difficulty

and, therefore, a potential amount of information available
for learning. The conditions under which the task is prac-
ticed will make the task either more or less difficult to per-
form, thereby defining its functional level of difficulty on
that practice trial. Depending on the skill level of the indi-
vidual, the functional task difficulty will be either optimal
or more or less challenging in terms of its influence on both
performance and learning. Therefore, with regard to the
effects of various practice variables, it is predicted in the
framework that learning will be a function of the skill level
of the learner and the functional task difficulty and, thus, the
challenge of the task in terms of its information potential. In
the next section, we survey some studies with respect to var-
ious predictions arising from the framework. 

Practice Variables That Influence 
Action Planning Information

It has been demonstrated in many studies that various
practice conditions (i.e., CI and KR) influence the amount of
information available for acquisition and, hence, learning. In
the following sections, we review those studies as empirical
evidence to support the challenge point framework.

Contextual Interference

The most common finding in the extensive literature
comparing blocked- versus random-practice schedules is

FIGURE 4. The relation between learning curves, performance curves, and the optimal chal-
lenge point (OCP) related to 2 performers of different skill levels.
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that blocked practice produces better performance than does
random practice during acquisition trials but that random
practice results in better retention performance than blocked
practice does (e.g., Magill & Hall, 1990). By far, the major-
ity of those studies have involved participants who have had
no previous experience with a relatively simple task. In
terms of the challenge point framework, it seems straight-
forward that in comparison with blocked practice, random
practice will increase the functional difficulty of a task.
Other schedules of practice (e.g., small, randomized blocks
of trials) are predicted to produce intermediate levels of
contextual interference. Therefore, on basis of the frame-
work, we make the following predictions:

1. For tasks with differing levels of nominal difficulty, the
advantage of random practice (vs. blocked practice) for
learning will be largest for tasks of lowest nominal difficul-
ty and smallest for tasks of highest nominal difficulty.

Albaret and Thon (1998) reported on research that is rel-
evant to that prediction. In their study, participants practiced
a drawing task in which the patterns to be learned differed
in terms of the number of individual segments. Six groups
of learners practiced three variations of the drawing task:
Two groups practiced patterns involving only two segments,
one in a random order and the other in a blocked order; two
groups (random and blocked) practiced three-segment pat-
terns; and the remaining two groups practiced four-segment
patterns. CI effects did not interact with task complexity in
tests of retention: For patterns of all complexities, the 
random-practice groups performed better in retention than
did the blocked groups. There was, however, a CI × Task
Complexity interaction for tests of transfer in which the
drawing tasks were reduced or enlarged in size or rotated in
orientation. The random-practice groups were better than
the blocked-practice groups for those transfer tests but only
for the two simplest task-complexity groups (two- and
three-segment task complexities). No CI differences in
transfer were found between the most complex (four seg-
ments) blocked- and random-practice groups.

From a challenge point framework view, one could argue
that the four-segment pattern was complex enough in terms
of nominal task difficulty so that action-planning processes
were being sufficiently challenged, regardless of the func-
tional difficulty introduced by the practice schedules. In
contrast, action planning in the two- and three-segment task
was easy. Learning was enhanced only when the random-
practice schedule introduced an additional level of func-
tional difficulty to the task (relative to blocked practice).

2. For individuals with differing skill levels, low levels of
CI will be better for beginning skill levels and higher levels
of CI will be better for more highly skilled individuals.

In an early study, Del Rey, Wughalter, and Whitehurst
(1982) demonstrated that finding well. Participants who had
either very little experience or considerable expertise in
open sport skills performed a coincident anticipation-timing

task under random, blocked, or constant practice conditions
(variations in runway speeds during practice). Performance
on a novel transfer task revealed that the open-skill novices
were better following constant practice conditions than after
either blocked- or random-practice orders. In contrast, the
open-skill experts performed the transfer test better follow-
ing random practice than after either blocked- or constant-
practice conditions.

C. H. Shea, Kohl, and Indermill (1990) investigated the
relationship between CI and the amount of practice com-
pleted on the task. Presumably, if skill level is related posi-
tively to the development of skill at the task, then larger
amounts of practice will produce learners of higher skill.
Following a blocked- or a random-practice order, learners
received either 50, 200, or 400 practice trials on a force-
production task. After completing 50 trials, the group that
received a blocked-practice schedule performed better in a
retention test than did a random-practice group. However,
after extended practice (400 trials), the group that received
the random-practice schedule was superior to the blocked-
practice group. Those findings are consistent with the chal-
lenge point framework because, early in practice, an easier
functional task difficulty condition (blocked practice) was
more effective for learning than a harder functional task dif-
ficulty condition (random practice). However, following
either 200 or 400 practice trials (presumably taking the
learner to a more proficient skill level), the harder function-
al task difficulty condition was more beneficial for learning.

In a more recent study, Guadagnoli, Holcomb, and Weber
(1999) manipulated CI and performer level (novice or expe-
rienced) on a task that was considered to be relatively com-
plex in nominal difficulty (golf putting). Following an
acquisition period in which both novice and experienced
golfers followed either a random- or blocked-practice
schedule, retention performance was found to depend on
both the skill level of the golfer and the acquisition practice
schedule. In retention, the performance of novices who had
practiced under a blocked protocol was superior to that of
the novices who had practiced under a random protocol. In
contrast, the experienced participants who had practiced in
a random protocol performed better than the experienced
participants who had practiced in a blocked protocol. Those
findings are also consistent with predictions of challenge
point framework.

Recall that in the original demonstration of the CI effect,
J. B. Shea and Morgan (1979) compared blocked and ran-
dom practice of a spatial learning task for beginning learn-
ers. Using a similar task, Al-Ameer and Toole (1993) repli-
cated those blocked versus random retention differences
and also found that groups of learners who followed a
schedule in which they received randomized blocks of two
or three trials also performed the retention test as well as the
random group. Thus, for the beginning-level learners, a
functional task difficulty that was much easier than that
experienced in random practice might have been equivalent
for learning. Those findings must also be considered in light
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of the fact that acquisition performance was better in those
randomized-block groups than in the random-practice
group. Thus, those moderate levels of functional task diffi-
culty seemed to have facilitated (or optimized) both short-
term and more long-lasting gains in performance.

Modeled Information in Practice

Lee, Wishart, Cunningham, and Carnahan (1997),
Richardson (1997), and Simon and Bjork (2001) investigat-
ed a practice variable that appears to work in a manner
opposite to that described in the previous discussion. Par-
ticipants in those studies were asked to use the keypad of
the computer keyboard to learn three different patterns. The
task goal was to time the pattern of key presses—the pat-
terns were not to be tapped out as rapidly as possible, but
instead were to be completed in a movement time that was
specific for each pattern. An important difference between
the studies was the nature of those timing goals. In the stud-
ies of Lee et al. and Simon and Bjork, each of the three pat-
terns to be learned had associated with it a single, overall
goal movement time (900, 1,200, or 1,500 ms). There was
no requirement of a specific timing relation between each of
the five key presses that made up the patterns. The timing
goals for the Richardson study were more specific. For all
three patterns (each pattern represented by four key press-
es), the overall movement time goal was 1,200 ms. Howev-
er, each pattern differed in terms of the between-key move-
ment time goals. For example, one pattern consisted of the
keypad sequence 1-4-8-9, and movement time goals
between key presses were 1–4 = 600 ms, 4–8 = 400 ms, and
8–9 = 200 ms. The other two patterns had a similar compo-
sition of overall movement times and between-key times
but a temporal pattern different from the previously men-
tioned segment timings (200, 600, and 400 ms; and 400,
200, and 600 ms).

Three groups of participants learned those patterns in all
of the studies (Lee et al., 1997; Richardson, 1997; Simon &
Bjork, 2001). Two groups represented the typical CI manip-
ulation of blocked- and random-practice sequences. The
third group also received a random-practice schedule. How-
ever, for that group (random+model), the computer provided
three modeled demonstrations of the spatial and temporal
requirements of the next pattern to be performed, with audi-
tory sounds to help augment the temporal information of the
demonstration. In addition, in the Lee et al. and the Simon
and Bjork studies, the augmented feedback that followed
each trial presented information about the timing errors rel-
ative to the overall movement time goal, and in the Richard-
son study, augmented information was provided with respect
to each of the segment timing goals. The functional task dif-
ficulties in Lee and his colleagues’ and in Simon and Bjork’s
studies were easier than they were in Richardson’s.

In all experiments, the blocked group performed better in
acquisition than the random group, and the random group
performed immediate and delayed retention tests better than
the blocked groups did. The interesting difference between

the studies was the effect of the random+model conditions.
In all studies, that group performed better than the other two
groups during acquisition, which demonstrated the power-
ful, positive effect that the modeled demonstrations had on
the reduction of timing error. For retention, however, the
influence of the random+model manipulation depended on
the nature of the task. In the overall timing goal task (Lee et
al., 1997; Simon & Bjork, 2001), the random+model
group’s retention performance was as poor as that of the
blocked group in immediate retention and was worse than
that of the blocked group in delayed retention. In contrast,
for the more complex timing task (Richardson, 1997), the
random+model group had the lowest error overall, outper-
forming the random group in both the immediate and
delayed retention tests.

Together, the results of those experiments indicated that
providing modeled timing information via computer just
before the execution of a practice trial made the task much
easier to perform than did withholding that augmented
information. When the nominal difficulty of the task was
easy (overall MT), the addition of that augmented informa-
tion was detrimental to learning, even though the acquisition
sequence involved a random order. We argue that the reason
for the detriment in learning is that the modeled information
reduced the action planning that was required of the learner
before the initiation of a practice trial. The reduced planning
requirement degraded learning despite the augmented func-
tional difficulty introduced by the random-practice schedule.
In contrast, when the more difficult nominal task (segment
goal times) was combined with a random-practice order, the
augmentation of the modeled timing information facilitated
both performance and learning of the task. We believe that
the explanation for that result is that planning operations
involved in performing the task, although facilitated by the
modeled information, were still required of the learner
because of the combination of the nominal difficulty of the
task (complex timing) and the additional functional difficul-
ty introduced by the random-practice schedule.

We now turn to a more frequently examined use of aug-
mented information, in which the information is provided
about an action either during movement or after its 
completion. What we find most commonly, however, is sim-
ilar to the outcomes of the studies just described: Learning
is affected when augmented information (as feedback) is
presented in such a way that it influences the overall func-
tional difficulty of the task.

Practice Variables That Influence 
Feedback Information

The most common finding in the extensive literature
comparing feedback frequencies, schedules, or both, has
been that high KR frequencies or more immediate presen-
tation of KR during acquisition trials produces better per-
formance than do lower KR frequencies or less immediate
presentation of KR. That trend is reversed for retention per-
formance (see Salmoni, Schmidt, & Walter, 1984). By far,
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the majority of those studies have involved participants who
had no previous experience with a nominally easy task. In
terms of the challenge point framework, it seems straight-
forward to argue that relative to immediate KR, frequent
KR, lower KR frequencies, or less immediate presentation
of KR will increase the functional difficulty of a task
(Guadagnoli, Dornier, & Tandy, 1996). Therefore, we make
the following predictions:

3. For tasks of high nominal difficulty, more frequent or
immediate presentation of KR, or both, will yield the largest
learning effect. For tasks of low nominal difficulty, less fre-
quent or immediate presentation of KR, or both, will yield
the largest learning effect.

In the summary KR method, the learner performs a series
of practice trials before augmented feedback about those tri-
als is provided. When information is provided, the feedback
includes all of the trials since the previous delivery of feed-
back. Therefore, as the number of trials to be summarized
increases, more information will be presented in the aug-
mented feedback, and the average delay in presenting feed-
back about each trial will increase. As compared with KR
given immediately after each trial, summary feedback has
been shown to be strongly detrimental to short-term perfor-
mance gains. However, like the random-practice effect dis-
cussed previously, summary feedback is also positively
related to learning (Guadagnoli et al., 1996; Lavery, 1962;
Schmidt, Young, Swinnen, & Shapiro, 1989). A number of
studies have shown that for the learning of nominally easy
tasks, learning is positively related to the size of the KR
summary: Larger summaries produce better learning effects
(see reviews of that literature in Salmoni et al., 1984;
Schmidt & Lee, 1999, chap. 12).

Schmidt, Lange, and Young (1990) attempted to discov-
er the optimal length of summary KR; they predicted that
the optimal length was task dependent (i.e., related to the
nominal task difficulty). To test that prediction, they used
a task presumed to have high nominal difficulty and pro-
vided augmented feedback to a group of participants after
every trial (essentially a 1-trial summary), after every 5th
trial (a summary of the previous 5 trials), or after every
15th trial (a summary of the previous 15 trials). The
results supported their prediction that for a relatively dif-
ficult task, a medium summary length (5-trial summary)
was more effective for learning than were the short and
long summary lengths. 

In a more recent study, Guadagnoli et al. (1996, Experi-
ment 2) examined the relationship between optimal sum-
mary level and task complexity. Rather than using a single
task and presuming its level of complexity, Guadagnoli and
his colleagues used two versions of a force-production task
that differed in complexity. (Pilot studies had revealed that
one version, a single force production, was less difficult
than another version, a dual force-production task).
Guadagnoli et al. used the same summary conditions that
were used by Schmidt et al. (1990; 1-, 5-, and 15-trial sum-

maries). For the simple version of the task, the 15-trial sum-
mary yielded better retention results than did 5-trial and 1-
trial summaries. For the complex version of the task, the
retention results for the 1-trial summary group was superi-
or to those of the 5-trial and 15-trial summary groups.
Therefore, Guadagnoli et al. confirmed the work of Schmidt
et al., suggesting that an optimal summary size was task
dependent. Taken together, those findings support the pre-
diction that for efficient learning, differing levels of nomi-
nal difficulty require differing levels of KR. The challenge
point framework provides a possible reason for that require-
ment. Learning is intimately related to the information
available and interpretable in a performance instance. A
novice performer might have the information available but
be incapable of interpreting it efficiently. As such, more fre-
quent or immediate information, or both, would be needed
for learning.4

4. For tasks about which multiple sources of augmented
information can be provided, the schedule of presenting the
information will influence learning. For tasks of low nomi-
nal difficulty, a random schedule of augmented feedback
presentation will facilitate learning as compared with a
blocked presentation. For tasks high in nominal difficulty, a
blocked presentation will produce better learning than a
random schedule.

Teaching golf is a good example of a task for which aug-
mented feedback can be provided about many aspects of a
learner’s performance. The instructor might be interested in
pointing out to the learner, for example, something about
the grip, the stance, the body position relative to the ball, or
aspects of the swing plane. It is generally acknowledged,
however, that providing augmented information about one
aspect of the swing following a performance is preferable to
distributing attention to multiple aspects of the swing. A
very practical question is: When instructing a learner,
should the same aspect of performance (e.g., the swing
plane) be the focus of repeated instances of augmented
feedback or should aspects of performance be the focus of
attention?

Lee and Carnahan (1990) and Swanson and Lee (1992)
have provided a laboratory task analog of the golf example.
Their task involved multisegment timing, requiring partici-
pants to move to three target locations in preestablished
time requirements (to the first location in 160 ms, from the
first to the second in 380 ms, and from the second to the
third location in 250 ms). Groups differed in terms of which
segment was the focus of augmented feedback (KR) on sub-
sequent trials. For the blocked group, one segment was the
repeated focus of KR for 20 consecutive trials, followed by
a different segment for 20 trials and the final segment for
the last 20 trials. For the random group, a different segment
was the focus of each consecutive trial. The finding for that
task was a clear learning advantage for the random group
(Lee & Carnahan, 1990; Swanson & Lee, 1992).

In contrast to the above finding were the results of a study
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by Wulf, Hörger, and Shea (1999). Groups of participants
learned a complex ski-simulation task, for which whole-
body, slalom-type movements were practiced on 4 consec-
utive days. Previous research had shown that augmented
feedback about the downward force motion of the feet was
beneficial for learning. Groups in Wulf et al. were provided
force-onset feedback about either the left or right foot dur-
ing practice. For the blocked group, feedback relative to
only one of the feet was presented during an entire session
of practice per day (e.g., left foot feedback on Days 1 and 3
and right foot feedback on Days 2 and 4). For the random
group, the foot for which force-onset feedback was present-
ed was switched on every consecutive trial over the 4 days.
In direct contrast to the findings reported by Lee and Car-
nahan (1990) and by Swanson and Lee (1992), the results
for that more complex task (and more complex feedback
provided) favored the blocked schedule over the alternating
schedule.

Challenge Points and 
the Performance–Learning Relationship

In this article, we have developed a framework that sug-
gests that task difficulties create a learning potential whose
function differs according to the level of the performer, the
complexity of the task, and the training environment.
Because increased task and environment complexity are dif-
ferentially associated with performance levels, there is a per-
formance–learning paradox. As a result, the optimal chal-
lenge point for learning does not coincide with the optimal
challenge schedule for immediate (practice) performance.

For relatively simple skills, a rudimentary action plan
might be developed within a few practice trials, and further
refinement of the skill is dependent on the extent to which
the learner is challenged by the practice conditions. The
development of a movement representation for a more
complex skill that requires, for example, the coordination of
many degrees of freedom, might initially be stored as a
series of relatively independent subcomponents. Such a
movement would typically take considerably longer to learn
and would inherently require more effort and information-
processing activities on the part of the learner. It is conceiv-
able that introducing additional demands for the learner
during this process is actually detrimental, rather than ben-
eficial, because the additional demands compete for a lim-
ited amount of processing capacity with the essential pro-
cessing activities during learning. Instead, it is predicted
that providing the learner with practice conditions that facil-
itate performance (at least until a relatively stable move-
ment presentation is acquired) will enhance complex skill
learning. In addition to possible differential effects that
some variables might have on simple versus complex skill
learning, it is also predicted that this type of relationship
may exist for experienced versus novice performers.

According to classic learning theory, when the performer
is in an early stage of learning the processing system is too
inefficient to deal with multiple task elements (e.g., Adams,

1971; Fitts & Posner, 1967; Miller, 1956). Therefore, the
information should be presented in more appropriate units
for efficient processing. Situations such as a shorter sum-
mary KR length or less practice variability might serve to
provide information in more suitably organized units.
Therefore, those schedules should lead to more efficient
skill acquisition for an early learner. When a performer is in
a later stage of learning, however, the system’s ability to
process information improves, and thus the performer can
and should handle more demanding acquisition protocols.
The overall efficiency of processing information is depen-
dent on functional task difficulty, which is determined by
the ability of the performer, the complexity of the task, and
the conditions of practice. As stated earlier in this article,
the expectations for performance also become more strin-
gent as skill improves. Therefore, to generate an equivalent
amount of information in the performance of a task, one
must increase the functional task difficulty, which paradox-
ically should enhance learning while hindering acquisition
performance.

Concluding Comments

As stated in the introduction, many of the ideas expressed
in this article have been suggested before, either implicitly
or explicitly. Indeed, the concepts of information theory and
information processing as they relate to motor performance
and motor learning have a long history (e.g., Fitts & Posner,
1967; Welford, 1968) and are certainly not unique to the pre-
sent framework. The concept of adapted training as a strate-
gy that progressively increases task difficulty as an individ-
ual acquires skill (Lintern & Gopher, 1978; Mané, Adams, &
Donchin, 1989; Walter & Swinnen, 1992) shares many sim-
ilarities with the present framework. K. M. Newell, et al.’s
(1991) delineation of the perceptual-motor workspace,
which describes task, organism, and environmental con-
straints on action, also shares some similar themes. We
believe that the unique contribution of the present article is
that we make explicit some ideas relating the role of practice
variables in the context of skill levels, task difficulty, and
information theory concepts. In doing so, we have bypassed
some tricky concepts (e.g., defining task difficulty) and have
asked the reader to accept a few leaps of faith (e.g., the spe-
cific shapes of the curves seen in the figures).

Quoting Crick and Koch (2003) once again, “A good
framework is one that sounds reasonably plausible relative
to available scientific data and that turns out to be largely
correct. It is unlikely to be correct in all the details” (p.
119). Whether or not the present framework turns out to be
largely correct or mostly incorrect, we will consider it a suc-
cess if research is conducted that advances our knowledge
regarding the role of practice variables in motor learning.
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NOTES

1. We have attempted to acknowledge as many of those sources
as possible at various points in this article. Some sources might
have been missed, however, and we apologize in advance for any
oversights.

2. Although each of the continua is relatively effective in
describing task difficulty, no one continuum is satisfactory in
quantifying the complexity of the wide variety of motor tasks.
In the larger context, one must consider in the determination of
task difficulty where a task fits on a number of continua, how
the continua interact to fully define difficulty, and ultimately
the demands placed on the memory and processing capacity of
the learner.

3. We do not distinguish here between inherent and augmented
sources of feedback in terms of the quality of information they
provide to the learner. In the given example, vision of the apple
core going into the basket provided uncertainty-reducing feed-
back that could also have been provided by augmented sources if,
for example, the room lights had been extinguished.

4. Along with the notion that the specific shape of the curve is
of less consequence than the general trend is, it should be noted
that the issue of continuous as opposed to discontinuous (nonlin-
earities) aspects of the curve is also of less consequence than is
the general trend for the purpose of the present framework.
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