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Recent studies have suggested that educators should avoid concrete instantiations when the goal is to
promote transfer. However, concrete instantiations may benefit transfer in the long run, particularly if
they are “faded” into more abstract instantiations. Undergraduates were randomly assigned to learn
a mathematical concept in one of three conditions: generic, in which the concept was instantiated using
abstract symbols, concrete in which it was instantiated using meaningful images, or fading, in which it
was instantiated using meaningful images that were “faded” into abstract symbols. After learning,

Keywords: . undergraduates completed a transfer test immediately, one week later, and three weeks later. Under-
Mathematics learning . . is s ..

Transfer graduates in the fading condition exhibited the best transfer performance. Additionally, undergraduates
Symbols in the generic condition exhibited somewhat better transfer than those in the concrete condition, but

Concreteness fading this advantage was not robust. Results suggest that concrete instantiations should be included in the

educator’s toolbox.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many educators use concrete materials during instruction. For
example, a preschool teacher might use toy animals in a lesson on
counting and sorting, and an algebra teacher might use a balance
scale in a lesson on equations. We use “concrete” here to refer to
materials that are grounded in previous perceptual and/or motor
experiences and have identifiable correspondences between their
form and referents. Contrast this with “abstract” materials, which
eliminate detailed perceptual properties and are more arbitrarily
linked to referents. Learning materials vary in their level of
concreteness, and the notion that high levels of concreteness
benefit learning has a long history in psychology and education,
dating back to Montessori (1917), Bruner (1966) and Piaget (1970).
Such materials are theorized to benefit learning by activating real-
world knowledge (Kotovsky, Hayes, & Simon, 1985; Schliemann &
Carraher, 2002), inducing physical or imagined action (Glenberg,
Gutierrez, Levin, Japuntich, & Kaschak, 2004; Martin & Schwartz,
2005), and enabling students to construct their own knowledge
of abstract concepts (Brown, McNeil, & Glenberg, 2009; Martin,
2009; Smith, 1996). There are also practical reasons to use
concrete materials. They are widely available in teaching supply
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stores, and they seem to increase students’ motivation and interest
in learning (Burns, 1996).

Despite the theoretical and practical reasons for using concrete
materials, there are also reasons to caution against the use of
concrete materials. For example, concrete materials often contain
extraneous perceptual details that can distract learners from the to-
be-learned information (Kaminski, Sloutsky, & Heckler, 2008). Such
materials may be so interesting in their own right that they draw
learners’ attention to themselves, rather than to their referents
(DeLoache, 2000; Uttal, Scudder, & DeLoache, 1997). In these ways,
concrete materials may “seduce” learners’ attention away from the
concepts educators want to convey, similar to what happens when
a passage of text contains interesting or entertaining details that
are irrelevant to the main ideas in the passage (a.k.a., “the seductive
details effect,” Garner, Gillingham, & White, 1989; Harp & Mayer,
1998; Sanchez & Wiley, 2006). In support of this view, several
studies have shown little to no benefits of using concrete materials
(Ball, 1992; Baranes, Perry, & Stigler, 1989; Resnick & Omanson,
1987; Thompson, 1992; Uttal et al, 1997). Some studies have
even shown negative effects (Goldstone & Sakamoto, 2003;
Kaminski, Sloutsky, & Heckler, 2006, 2008; McNeil, Uttal, Jarvin, &
Sternberg, 2009; Sloutsky, Kaminski, & Heckler, 2005; Son, Smith,
& Goldstone, 2008), particularly for transfer to novel problems.
For example, Goldstone and Sakamoto (2003) found that low-
performing undergraduates who learned a scientific principle
(competitive specialization) from a computer simulation involving
concrete images (realistic looking ants and fruit) exhibited worse
transfer to a superficially different domain than did those who
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learned the principle from a simulation involving generalized
images (black dots and green patches).

Similarly, a recent study by Kaminski et al. (2008) provided
systematic evidence that concreteness can be detrimental to
transfer in the domain of mathematics. Participants learned the
rules of a commutative group of order 3 either through a generic
instantiation using abstract symbols (e.g., @@, ’ My). or through
concrete instantiations using meaningful images such as measuring
cups (e.g., =2, B2, BP). All participants learned the material equally
well, but a significant advantage emerged for the generic instanti-
ation in terms of transfer to novel problems. Participants who
learned through the generic instantiation even outperformed those
who learned through multiple concrete instantiations (i.e.,
measuring cups, pizza slices, and tennis balls in a container). These
results were controversial because researchers and educators have
long assumed that multiple concrete instantiations of a concept are
beneficial for learning and transfer (e.g., Bruner, 1966; Gick &
Holyoak, 1983). A follow-up experiment produced even more
striking results—participants who learned only through a generic
instantiation outperformed those who learned through a concrete
instantiation that was explicitly linked to a generic instantiation.
Thus, learning from a single generic instantiation seemed to
promote transfer better than learning from multiple instantiations
when at least one was concrete, arguably because the generic
instantiation is less distracting, less context specific, and has
greater representational status than the concrete instantiation(s)
(Kaminski et al., 2008, see also Goldstone & Son, 2005). Some
reporters in the popular press interpreted these results as evidence
that teachers should stop using concrete examples when teaching
mathematics concepts to students (Chang, 2008).

Although the aforementioned studies have provided valuable
information about the potential limitations of concrete materials,
recent critiques suggest that the movement against concrete
examples may be premature (e.g., De Bock, Deprez, Van Dooren,
Roelens, & Verschaffel, 2011; Jones, 2009). In the present study,
we focus on two specific points of contention that make it difficult
to accept the conclusion that teachers should scrap concrete
materials. First, previous studies have examined participants
learning from concrete and generic instantiations either presented
alone or one after another in isolation. Although Kaminski et al.
(2008) explicitly told participants in their “Concrete-then-
Generic” condition that the concrete and generic instantiations
followed similar rules, many proponents of concrete materials
have specifically recommended beginning with concrete instan-
tiations and then explicitly “decontextualizing” or “fading” away
to the more abstract (Bruner, 1966; Goldstone & Son, 2005;
Gravemeijer, 2002; Lehrer & Schauble, 2002; Lesh, 1979). For
example, a teacher might teach “three” by presenting the
following sequence of representations: three apples 9 a picture
of three apples —» a picture of three red dots —» a picture of three
black tally marks 9 the Arabic numeral 3. This explicit, gradual
fading process may be necessary to provide benefits over and
above abstract materials.

Surprisingly, no study to date has experimentally tested the
effects of explicit, gradual fading from concrete-to-abstract repre-
sentations. Some studies have examined the effects of fading more
general forms of instructional support (e.g., Wecker & Fischer, 2011),
but none have tested the effects of explicitly and gradually fading
the symbolic representations themselves. The closest exception is
Goldstone and Son (2005), who found that undergraduates
exhibited better transfer performance when learning a science
concept after being taught with materials that switched from
concrete to abstract (in a single step) than after being taught with
materials that remained concrete, remained idealized, or switched
from abstract to concrete. However, their study only involved two

steps—concrete then abstract—as opposed to the three steps rec-
ommended by Bruner (1966). They also did not fully explore the
scope of abstractness because their abstract materials were still
fairly concrete representations of the target concept (competitive
specialization). The abstract and concrete materials were both
animations of ants foraging for food. The abstract version was
simply stripped of the perceptual details that made it look specifi-
cally like ants and pieces of food. Further, extra measures were
taken to ensure participants interpreted the small black dots as ants
and the larger green patches as food, including labeling the images
as ants and food. Thus, the abstract materials were not arbitrarily
linked to their referents, as most mathematical symbols are.

Another fading study by Scheiter, Gerjets, and Schuh (2010)
found that undergraduates exhibited better transfer performance
after learning via worked-out examples that were accompanied by
animations that gradually faded from concrete to abstract than after
learning via worked-out examples that were not accompanied by
any animations. However, they did not compare “faded” animations
to non-faded animations, so it is unclear if the positive effects were
due to the fading process or to the presence of animations. In the
present study, we sought to fill this gap in evidence by testing
participants who learned through a concrete instantiation that was
explicitly and gradually faded into a more abstract instantiation. We
predicted that learning through this “concreteness fading” method
would be better than learning through either concrete or abstract
instantiations alone (Hypothesis 1).

Another potential limitation of previous studies is that partici-
pants have been tested immediately after learning, with little to no
time lapse between learning and transfer. There are at least two
reasons to examine performance beyond a short time lapse. First,
a short time lapse between learning and transfer does not match
standard classroom testing conditions, where major assessments
and high stakes tests are given several weeks after initial learning
(Jones, 2009). In order to justify the time and effort it takes to teach
students important concepts, transfer needs to withstand weeks,
months, and even years between learning and testing (Barnett &
Ceci, 2002). Second, a short time lapse between learning and
transfer does not give consolidation a chance to occur (McGaugh,
2000). Consolidation refers to a set of processes that stabilize
memory for a fact or event after it has been first encoded, and it
takes two distinct forms: general reduction in fragility of a memory
trace and off-line enhancement of the memory (Robertson,
Pascual-Leone, & Miall, 2004). The second of these is thought to
depend on neurophysiological changes that occur during sleep
(Robertson et al., 2004). Prior to consolidation, knowledge that is
learned through concrete materials may be at an unfair disadvan-
tage relative to knowledge that is learned through abstract mate-
rials. This is because consolidation processes—especially those
involving sleep—alter memory traces in ways that lead to more
abstract, flexible knowledge that supports generalization and
creative problem solving (Gomez, Bootzin, & Nadel, 2006; Stickgold
& Walker, 2004; Wagner, Gals, Halder, Verleger, & Born, 2004).
Thus, although knowledge gained from concrete instantiations may
start out tied to the specific learning context, it may go through
a process of abstraction in which it becomes more generalized and
transferrable, particularly if combined with additional opportuni-
ties to engage the material (e.g., homework, quizzes, tests). In the
present study, we addressed this issue by examining performance
at two time points beyond the immediate transfer test: one week
later and three weeks later. We predicted that learning through
generic instantiations would initially be superior to learning
through concrete instantiations (replication of Kaminski et al.,
2008; Hypothesis 2), but that the advantage would dissipate over
time and possibly even reverse after processes such as consolida-
tion have occurred (Hypothesis 3).
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2. Method
2.1. Participants

Participants were 80 undergraduates from a highly selective,
mid-sized private university in the midwestern United States. The
middle 50% of students admitted to this university score 680—760
on the SAT Math (compared to 580—690 for students admitted to
the university at which the Kaminski et al. (2008) study was con-
ducted). Six participants were excluded from the analysis because
their scores in the learning phase were not above chance, and one
additional participant was excluded due to experimenter error.
Thus, the final sample contained 73 undergraduates (M age = 18
years, 11 months; 43 women, 30 men). Participants identified their
own race/ethnicity as follows: 3% “African American” or “black”,
19% “Asian”, 8% “Hispanic” or “Latina/o”, and 70% “white”. Partici-
pants received either $5 or extra credit in a psychology course.

2.2. Design and materials

The experiment consisted of a learning phase followed by three
distinct transfer phases. In the learning phase, participants learned
one or more instantiations of a simple mathematical concept.
Participants were randomly assigned to one of three conditions,
which specified the type of instantiation(s) learned: generic,
concrete, or faded from concrete to generic. Although the instan-
tiations differed across conditions, the total number of questions
given during the learning phase was equated across conditions (see
learning phase below). Additionally, participants across conditions
were well matched in terms of gender, y%(2, N = 72) = 1.22, p = .54;
year in school, F (2, 70) = 0.62, p = .54; and enrollment in a STEM
(science, technology, engineering, or mathematics) major, y2(2,
N = 72) = 1.55, p = .46. After the learning phase, all participants
were presented with a transfer test that was a novel instantiation of
the learned concept at three distinct time points: immediately
following the learning phase, one week later, and three weeks later.
The learning phase and immediate transfer phase were the same as
those in Kaminski et al.’s (2008) original study. The one- and three-
week transfer phases were included to assess performance over
time.

2.2.1. Learning phase

The to-be-learned concept was that of a commutative mathe-
matical group of order 3, which is defined by a set of rules (see
Table 1). Specifically, this concept is a set of three elements and an
operation with the associative and commutative properties, an
identity element, and inverses for each element. The goal of the
learning phase was to learn the rules of the system and apply those
rules to a series of problems. Participants learned the rules in one of
three conditions: (a) generic, (b) concrete, or (c) fading, which
differed only in the type of instantiation(s) presented during the
learning phase. Fig. 1 displays the instantiation of the rules in each
condition. For each instantiation, the rules were presented one at
a time through specific examples, and questions with feedback

Table 1
Rules of a commutative group.
Rules Definition
Associativity For any elements x,y, z: [(x + y) + z =[x + (y + 2)]

Commutativity
Identity

For any elements x, y: x +y =y + X

There is an element, I, such that for any
elementx: x + I =x

For any element, x, there exists another element y,
such thatx +y =1

Inverses

were also provided. For instance, in the generic instantiation the
commutative rule was presented as follows: “The order of the two

symbols on the left does not change the result. For example, . .

—, My is the same thing as Ry, ’ —, y.” Similarly, in the first

concrete instantiation the commutative rule was presented as
follows: “The order by which two cups of solution are combined
does not change the left-over result. For example, combining =
and € has a leftover quantity of =p. And combining ©pand P has
a leftover quantity of ©p.” Participants who learned more than one
instantiation (concrete and fading conditions) were explicitly told
that the instantiations followed similar rules. In line with Kaminski
et al. (2008), they were told, “Now you will learn about a new
system. This system works the same ways as the last system you
learned. The rules of the last system are like the rules of this new
one.” After learning the rules, participants were given an oppor-
tunity to practice applying the rules on novel problems, which were
presented via a set of multiple-choice questions. Overall, partici-
pants answered 24 of these multiple-choice questions during the
learning phase (see Fig. 2 for examples of these questions). Learning
was equated across conditions, so that the same rules, questions
with feedback, and practice questions were spread across the
learning instantiations. Thus, participants who learned one
instantiation (generic condition) were given practice with 24
questions. Participants who learned three instantiations (concrete
and fading conditions) were given 8 questions over each instanti-
ation. Thus, all participants received the same total number of
questions (i.e., 24) during the learning phase.

In the generic condition, the instantiation was described as
a symbolic language in which three types of symbols are combined
to yield a resulting symbol (see Fig. 1). The combinations were
expressed as a set of six “rules” written in the form symbol 1, symbol
2 — resulting symbol. Three of these rules were accompanied by
verbal descriptions (e.g., Rule 1: The order of the two symbols on
the left does not change the result. Rule 2: When any symbol

combines with i, the result will always be the other symbol. Rule
6: The result does not depend on which two symbols combine

first.), while the other three were not (i.e., Rule 3: @@ ’ —- Ny

Rue4: @ @ — . Rule 5: . . — @). Participants were

presented with the rules and examples and then completed 24
practice questions with generic symbols. To approximate the effect
of presenting the rules in three different instantiations (as in the
concrete and fading conditions), additional summaries of the rules
were given after the 8th and 16th questions. This condition was
analogous to the “Generic 1” condition in Kaminski et al. (2008).
In the concrete condition, there were three instantiations, each
with contextualized and meaningful elements (see Fig. 1). The first
instantiation included three images of measuring cups containing
varying levels of liquid; participants needed to determine the
remaining amount after different cups were combined. For
example, @ and & fill one container and have £ remaining. The
second and third instantiations contained images of pizza slices
and tennis balls in a container respectively, and involved similar
story lines. The task for the second instantiation was to determine
the amount of burned pizza served from a restaurant where the
cook systematically burned a portion of every order. For example,

when an order foro and 0 was placed, then @ would be burned.

For the third instantiation, a tennis ball machine was producing
batches of 0, 1, or 2 balls so batches had to be combined. The task
was to determine the extra balls resulting from combining batches.

For example, if a and g were combined, then % would be

extra. After learning the rules of each instantiation, participants
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Rules for Rules for Rules for
problems 1-8 problems 9-16 problems 17-24
Generic MY isthe identity | MY istheidentity | MY is the identity
Operands | Result | Operands | Result | Operands | Result
OO0 ¢ 00 ¢ 00 o
®é¢ O 60 0 0 O
Q¢ N 06N O0¢ N
Concrete | B is the identity | @ isthe identity | (D is the identity
Operands | Result | Operands | Result | Operands | Result
PR 00| 0 &8 6
PP P2 OO |6 &8 &
D220 0| @ &8 D
Fading B istheidentity | JII isthe identity | M is the identity
Operands | Result | Operands | Result | Operands | Result
P21 1 1 @@ ¢
P22 00 |1 66|
D2 |11 |11l o | N

Fig. 1. Instantiations of a mathematical group of order 3 used in the generic, concrete, and fading conditions.

completed an 8 practice questions with the concrete images. Thus,
participants completed a total of 24 multiple-choice questions (8
with measuring cups, 8 with pizza slices, and 8 with tennis balls).
This condition was analogous to the “Concrete 3” condition in
Kaminski et al. (2008).

In the fading condition, participants started with a concrete
instantiation, which was “faded” into a generic instantiation (see-
Fig. 1). This condition was similar to the “Concrete-then-Generic”
condition used in Kaminski et al. (2008, experiment 4) with one
important distinction. In Kaminski et al.’s original Concrete-then-
Generic condition, participants first learned the concrete

443

measuring cup instantiation followed by the generic instantiation
(each in isolation). These participants were told that the generic
instantiation followed the same rules as the concrete instantiation,
but the images and symbols themselves were never linked. In our
fading condition, the concrete measuring cups and the generic
symbols were explicitly linked through fading with an intermediate
instantiation in between to bridge the two instantiations. Partici-
pants first learned the rules in the concrete measuring cup
instantiation. We selected the measuring cup instantiation because
that is the instantiation used in Kaminski et al.’s original “Concrete-
then-Generic” condition. After learning the concrete measuring cup
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-0

s )

(2) Find the resulting symbol: (Answer: * )

®¢ o6

(1) What can go in the blanks to make a correct statement? (Answer: * , .)

(3) Do the following give the same result? (Answer: yes)
~5~$~9.5’5’,’9.5.*
NOINOINO OG-

Fig. 2. Example of multiple-choice questions given in the learning phase in the generic condition.

instantiation, participants were told that the measuring cups would
now be represented by simpler symbols: I, II, [ll. Roman numerals
were used because they retain the identifiable correspondence
between their forms and referents (i.e., one line, two lines, or three
lines correspond to the level of liquid in a measuring cup), while
being stripped of all extraneous perceptual detail (e.g., shape of the
measuring cup, shading, etc.). After learning via Roman numerals,
participants were told that any symbols could be used, and they
were presented with the generic instantiation. After learning the
rules of each instantiation, participants completed an 8 practice
questions with the learned images. Thus, participants completed
a total of 24 multiple-choice questions (8 with measuring cups, 8
with Roman numerals, 8 with generic symbols).

2.2.2. Transfer phases

After completing the learning phase, all participants completed
the same transfer tests. There were three distinct transfer phases:
immediate, one-week, and three-week. The immediate transfer test
was presented immediately following the learning phase. The
transfer test included a single instantiation, which was described as
a children’s game involving three objects (see Fig. 3 for elements
used in the transfer phases). In this game, children pointed to
objects, and a child who was labeled the “winner” pointed to a final
object. The final object was specified by the rules of the game,
which were the rules of the mathematical group. Participants were
not explicitly taught the rules, but were told that the rules of the
game were like the rules they had just learned (in the learning
phase). Specifically, participants were told, “The rules of the last
system you learned are like the rules of this game. So use what you
know about the last system to help you figure out the rules of this
game” (Kaminski et al., 2008). They were also shown nine examples
from which the rules could be induced (e.g., if children point to

these objects: ‘&‘then the winner points to this object: o)

After studying the examples, participants completed a 24-question
multiple-choice transfer test. The questions on this test were
isomorphic to those given during the learning phase. Questions
were presented individually on the computer screen along with
four key examples at the bottom of the screen (for reference).
Participants did not receive any feedback about the correctness of
their answers.

The one-week transfer phase occurred approximately one week
after the learning phase. It was identical to the immediate transfer
phase in all respects except a new transfer domain was presented

(see Fig. 3). The novel transfer domain was described as a one-
player video game, in which objects appeared sequentially on the
screen, and the player’s goal was to press the appropriate button
corresponding to the correct resulting object.

The three-week transfer phase occurred approximately three
weeks after the learning phase. It was identical to the one-week
transfer phase, except the examples were no longer present at
the bottom of the screen for reference. We removed the examples
to help prevent ceiling effects on the transfer test.

2.3. Procedure

At each time point, participants were tested individually in
a quiet room, with the experimenter seated just outside to field any
technical questions. All stimuli were presented on a computer
screen in a self-paced manner. Participants recorded their
responses to all learning and transfer questions on a sheet of paper
provided by the experimenter. In an attempt to prevent partici-
pants from talking to one another about the experiment, the
experimenter explicitly asked them to refrain from discussing the
tasks with other students.

3. Results

Attrition was low, with one participant dropping out at one
week, and an additional six participants dropping out at three
weeks. Thus, total attrition was seven participants (2 abstract, 4
concrete, 1 fading). We included all possible data relevant for the
individual analyses below. Conclusions were unchanged when we
limited all analyses to participants with complete data.

Performance during the learning phase was high (M = 21.96 out
of 24, SD = 2.60). Consistent with Kaminski et al. (2008), learning
was similar across conditions (generic M = 21.32, SD = 3.70;
concrete M = 22.11, SD = 1.93; fading M = 22.50, SD = 1.50), F(2,
70) = 1.29, p = .28. Fig. 4 presents the average number correct on
the transfer test as a function of condition and transfer phase. We
first conducted the omnibus 3 (condition: generic, concrete, fading)
x 3 (transfer phase: immediate, one-week, three-week) mixed-
factor ANOVA with repeated measures on transfer phase and
number correct (out of 24) as the dependent measure. Sphericity
could not be assumed, x*(df = 2) = 33.76, so we multiplied the
numerator and denominator degrees of freedom by the relevant
Huyhn—Feldt estimate of epsilon for tests involving the repeated
factor, and we did not assume homogeneity of variance for follow-
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Immediate Transfer

One-week and Three-week
Transfer

Rules
RN

S

is the identity

& is the identity

Operands

Result

Operands Result

® o

314

é &

&

® 4

e
¢ e
X 4| ®

=~

Fig. 3. Instantiations of a mathematical group of order 3 used in the immediate, one-week, and three-week transfer phases.

up comparisons. Results revealed main effects of condition, F(2,
62) = 5.53, p = .006, »2 = .15 and transfer phase, F(1.47,
91.29) = 6.56, p = .005, ng = .10, but these main effects were
qualified by the interaction of condition and transfer phase, F(2.95,
91.29) = 2.95, p = .04, nﬁ =.09.

To test our prediction that the fading condition would be best
(Hypothesis 1), we performed a planned contrast comparing the
performance of participants in the fading condition to the perfor-
mance of participants in the other two conditions averaged over the
three transfer phases. As predicted, participants in the fading
condition (M = 22.85, SD = 1.40) performed significantly better
than participants in the other two conditions (M = 20.03,
SD =4.62),t(51.07) = 3.80, p < .001, d = 0.83. As shown in Fig. 4, the
superiority of the fading condition was evident at all three transfer
phases, even when the alpha level was adjusted using the conser-
vative Bonferroni procedure (o; = .02): immediate transfer,
t(63.29) = 385 p < .001, d = 0.81; one week transfer,
t(63.26) = 2.70, p = .009, d = 0.60; three week transfer,
t(49.47) = 3.83, p < .01, d = 0.83. However, the effect at the
immediate transfer phase was driven primarily by poor perfor-
mance in the concrete condition (M = 16.65, SD = 5.77).

To test our prediction that the generic condition would initially
be superior to the concrete condition (Hypothesis 2), we performed
a planned contrast comparing the performance of participants in
the concrete condition at the immediate transfer phase to the
performance of participants in the generic condition at the
immediate transfer phase. As predicted, participants in the
concrete condition performed significantly worse than participants
in the generic condition (M = 21.04, SD = 3.71), t(42.89) = —3.24,
p =.002, d = 0.91. Thus, although participants in our concrete and
generic conditions performed about 15% better than did partici-
pants in the Kaminski et al. (2008) study, the difference between
the two conditions was similar.

Finally, to test our prediction that the generic advantage over the
concrete would dissipate over time and possibly even reverse
(Hypothesis 3), we tested whether the difference in performance
between the generic and concrete conditions was the same at all
transfer phases (partial interaction). As predicted, the difference in
performance between the generic and concrete conditions differed
as a function of transfer phase, F(1.38, 59.25) = 4.40, p = .03. In
contrast to the generic advantage seen at the immediate transfer

(shown above), there was not a statistically significant difference in
performance at the one week transfer phase, concrete M = 19.12,
SD = 5.40, generic M = 21.21, SD = 3.51, £(43.30) = —1.64, p = .11, nor
at the three-week transfer phase, concrete M = 19.82, SD = 5.24,
generic M = 21.04, SD = 5.07, t(42.74) = —0.80, p = .43.

Given that scores were near ceiling and not normally distrib-
uted, we also performed a nonparametric analysis to ensure that
the observed effects did not depend on the method of analysis. We
first classified participants according to whether they achieved the
maximum score (24) on the transfer test. Across conditions, 27% of
participants achieved the maximum score at time 1, 33% at time 2,
and 48% at time 3. We then used binomial logistic regression to
predict the odds of achieving the maximum score at each time
point (see Agresti, 1996). To parallel the results from the ANOVAs,
two Helmert contrast codes were used to represent the three levels
of condition (1) fading condition versus the other two conditions,
and (2) concrete condition versus generic condition. Results were
consistent with the ANOVAs. Participants in the fading condition
were more likely than participants in the other two conditions to
achieve the maximum score at time 1 (10 of 22 [45%] versus 10 of 51
[20%], p = .03) and at time 3 (14 of 20 [70%] versus 17 of 45 [38%],
p =.02) (Hypothesis 1), but the difference did not reach significance
at time 2 (10 of 22 [45%] versus 14 of 50 [28%], p = .15). Importantly,
the effect sizes at times 1 and 3 were large. The model for time 1
estimates that the odds of achieving the maximum score are more
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Fig. 4. Accuracy on the transfer test as a function of condition and transfer phase.
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than three times higher after participating in the fading condition
than after participating in one of the other conditions, and the
model for time 3 estimates that the odds are six and a half times
higher. The differences between the concrete and generic condi-
tions were not significant in the nonparametric analysis at any time
point (inconsistent with Hypothesis 2), suggesting that the superior
performance of the generic condition at time 1, which was revealed
in the ANOVA, may not be robust (Hypothesis 3).

4. Discussion

Recent evidence has suggested that concrete instantiations may
be inferior to more generic, abstract instantiations, particularly
when the goal is to promote transfer (Goldstone & Sakamoto, 2003;
Kaminski et al., 2008, 2009; Sloutsky et al., 2005). This evidence has
led some to conclude that educators should avoid concrete
instantiations when teaching mathematics and science concepts
(Chang, 2008). However, results of the present study and others
(e.g., De Bock et al., 2011) suggest that such conclusions are
premature. Although participants in the generic condition initially
exhibited better transfer performance than those in the concrete
condition when transfer score was analyzed as a continuous
outcome using ANOVA (Hypothesis 2), this advantage was not
present at any other time point, nor was it present in the
nonparametric analysis at any time point (Hypothesis 3). Perfor-
mance in the concrete and generic conditions was indistinguish-
able just three weeks after initial learning, primarily due to
increased performance in the concrete condition. More impor-
tantly, participants in the fading condition exhibited the best
transfer performance overall, suggesting that concrete instantia-
tions may have some benefits for transfer in the long run, partic-
ularly if they are systematically “faded” into more abstract
instantiations (Hypothesis 1). These results force us to take another
look at the potential benefits of concrete instantiations.

Several decades ago, Bruner (1966) touted the benefits of
concreteness fading in the teaching and learning of mathematics.
According to his theory, mathematical concepts should be pre-
sented first in concrete, recognizable forms. Then, these forms
should be “varyingly refined” to strip away irrelevant details until
they are finally presented in the most economic, abstract symbolic
form. This sequence is ideal, according to Bruner, because it
increases learners’ ability to understand, apply, and transfer what
they learn. Bruner argued that it would be risky to skip the concrete
form because learners who learn only through the abstract,
symbolic form do not have a store of images in long-term memory
to “fall back on” when they either forget, or are unable to directly
apply the abstract, symbolic transformations they have learned.
Since Bruner’s time, many researchers and educators have sup-
ported the idea of starting with concrete instantiations then
explicitly “decontextualizing” or “fading” away to the more abstract
(Goldstone & Son, 2005; Gravemeijer, 2002; Lehrer & Schauble,
2002; Lesh, 1979; see also Koedinger & Anderson, 1998). Given
this rich history of support, it is surprising that the present study
was the first to experimentally test the benefits of gradually fading
instantiations of mathematical concepts from concrete, recogniz-
able forms to abstract forms that are only arbitrarily related to their
referents.

We found that the fading condition produced the best transfer
performance, particularly three weeks after the initial learning
phase. Additionally, the concrete condition produced transfer
performance that was ultimately just as good as that in the generic
condition. Taken together, these results suggest that concrete
instantiations may be beneficial for learning and transfer, particu-
larly when they are “faded” into more abstract instantiations.
Concrete materials may be particularly advantageous when

introducing learners to novel concepts because they allow such
concepts to be grounded in easily understood, real-world scenarios
(Baranes et al., 1989; Goldstone & Son, 2005; Kotovsky et al., 1985).
For example, in the present study, participants in the concrete
condition were able to learn the rules by drawing on their knowl-
edge of liquid measurements and remainders. Without these initial,
grounded representations, participants would have just been
learning to manipulate meaningless symbols (Glenberg et al.,
2004). Equally important, if these initial, grounded representa-
tions had never been “faded” into more generic, abstract repre-
sentations, then participants’ knowledge of the rules would likely
have remained context specific and tied to the measuring cups.
Through fading, participants were able to “empty” the learned
concept of its specific sensory and perceptual properties, so they
could grasp its formal, abstract properties (Bruner, 1966).

Results suggest that concrete representations can be “faded”
into more generalizable forms both during and after instruction.
During instruction, educators can design lessons and activities that
explicitly and gradually fade from concrete to abstract represen-
tations. For example, the fading condition in the present study first
introduced the concept with representations that activated real-
world knowledge (i.e., measuring cups). These concrete represen-
tations were then explicitly linked to an intermediate set of
representations that were stripped of extraneous details, but
maintained some level of iconicity (i.e., Roman numerals). Finally,
the intermediate representations were faded into more flexible,
abstract representations (i.e., arbitrary symbols). This instruction-
based fading allowed learners to take advantage of the benefits of
the grounded, recognizable concrete context, while also encour-
aging them to generalize beyond that specific context (Bruner,
1966; Goldstone & Son, 2005).

Another key aspect of the fading condition that may have
contributed to its success is that it provided learners with three
different instantiations. Researchers have long known that multiple
representations have the potential to support learning and transfer
(e.g., Ainsworth, 1999; Mayer, 2003; Scheiter et al., 2010; Sternberg,
Toroff, & Grigorenko, 1998), particularly when accompanied by
explicit prompts to compare those representations (Gick &
Holyoak, 1983). Multiple representations not only encourage
learners to extract the underlying structure of problems (Gick &
Holyoak, 1983; Jitendra, Star, Rodriguez, Lindell, & Someki, 2011),
but also support remembering because they prevent the learning
environment from becoming too constant and predictable (Bjork &
Bjork, 2011). In the present study, we tried to control for the
number of representations by using a concrete condition that
included three concrete instantiations that differed in surface form.
However, all three of these concrete instantiations embodied the
mathematical group of order 3 with remainders, so they may have
been too similar to one another for learners to extract the more
general structure (Jones, 2009). Future work should examine if
other conditions with the same number of representations (e.g.,
three random instantiations varying in abstractness, or even three
different abstract instantiations) would produce comparable
results to the three-step fading sequence.

In addition to fading through instruction, the present results
also suggest that it may be possible for concrete representations to
fade into more generalizable forms without explicit instruction, but
only over time and with additional engagement of the material.
This more gradual fading process may rely on consolidation
processes (including sleep) to alter the memory traces in ways that
led to more abstract, flexible knowledge (cf., Gomez et al., 2006). It
also may depend on the presence of multiple testing points, or
other similar opportunities to engage the material (cf, Dean &
Kuhn, 2006). We used multiple testing points in the present
study because it matches standard classroom testing conditions,
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where students repeatedly engage the same material as they learn
lessons, practice examples, take quizzes, exams, and high stakes
tests. Although we did not provide participants with feedback
during these tests, testing itself affects knowledge construction
because it provides students with an opportunity to enact retrieval
processes, which enhance learning and long-term retention (Bjork
& Bjork, 2011; Karpicke & Roediger, 2007, 2008). Critics may argue
that participants in the concrete condition could have benefited
more from this testing effect compared to other participants
because they had somewhat lower performance initially, so had
more room for improvement. Although this is an important
possibility to consider, it cannot fully explain the present results
because participants in the fading condition had the highest
performance initially and still exhibited improvements over time.

Another important caveat is that we only followed participants
for three weeks. As Barnett and Ceci (2002) argued, transfer needs
to withstand weeks, months, and even years between learning and
testing in order to justify the time and effort it takes to teach
students important concepts in school. Future studies should
investigate transfer performance after months to determine the
lasting effects of different instructional conditions. A longer time
lapse would not only shed light on the role of consolidation in the
abstraction process, but also increase the applicability to schools,
where students have to retain information for several months to
succeed on one high-stakes test per year. Extrapolating from our
data, we predict that the advantage of the fading condition would
increase over long time periods and that the concrete condition
might eventually overtake the abstract condition.

Another question remains regarding the generalizability of our
results. Our participants were highly educated adults. Research
suggests that perceptually rich, concrete representations may not
hinder the transfer performance of individuals with high knowl-
edge as much as they hinder the transfer performance individuals
with low knowledge (Goldstone & Sakamoto, 2003). Thus, it is
possible that the initial difference in transfer performance between
the concrete and generic conditions may have been larger and
longer lasting in a “community sample.” Interestingly, the present
results tentatively suggest that generalizability across learners may
be one of the advantages the fading condition has over the concrete
and generic conditions. More specifically, the standard deviation in
the fading condition was smaller than the standard deviation in the
other two conditions. This pattern suggests that the fading
condition benefits most learners, whereas the concrete and
abstract conditions benefit some learners while failing others.
Future studies should test individuals with varying levels of
education to determine how the fading process affects their
transfer performance.

Finally, it is important to note that our experiment was specif-
ically designed to replicate and extend Kaminski et al. (2008), so it
shares some of the limitations of the original study. For example, all
conditions in the study used what Schwartz and Martin (2004)
refer to as “tell-and-practice” instruction. Learning was achieved
by reading rules, seeing examples of their use, and practicing them.
Future studies should test to see if the fading process is equally
beneficial in the context of other instructional approaches, such as
the “inventing to prepare for learning” instruction (Schwartz &
Martin, 2004) or the problematizing/modeling approach
(Bransford, Franks, Vye, & Sherwood, 1989; Greer, 1997; Hiebert
et al., 1996). Additionally, the concrete instantiations presented
during learning were not the most realistic instantiations. They
were schematic, colorless images of measuring cups that had
minimal levels of perceptual detail. Because one of the arguments
in favor of concrete materials is that they activate real-world
knowledge (Kotovsky et al., 1985; Schliemann & Carraher, 2002),
this lack of realism may have reduced the benefits of the concrete

instantiations (but see McNeil et al., 2009 for evidence that lack of
realism can improve performance).

Jones (2009) identified two additional methodological limita-
tions of the Kaminski et al. (2008) study, and both apply to the
current study. First, the transfer tasks may have been more similar
to the abstract instantiation than they were to the concrete
instantiations. The concrete instantiations behave like quantities
that can be combined to form wholes and remainders. The generic
instantiation and the transfer tasks do not share this feature, as the
symbols do not represent quantities, nor are they combined.
Indeed, Jones suggested that Kaminski et al’s transfer task was
simply “another version of the generic instantiation with a different
contextualization” (p. 83). This may explain why participants in the
abstract condition outperformed those in the concrete condition on
the immediate transfer test. Second, the domain instructed (group
of order 3) is relatively narrow. That is, participants were expected
to learn how to manipulate three symbols according to given rules,
and then apply those rules to a new context with the same number
of symbols. No deeper understanding of underlying principles (e.g.,
commutative property) was tested.

The present study should not be taken as evidence against
previous work that has revealed important limitations of concrete
instantiations (e.g., Goldstone & Sakamoto, 2003; Kaminski et al.,
2006, 2008; McNeil et al., 2009). Indeed, the limitations of
concrete instantiations were shown in our first transfer phase.
However, the present results extend previous results in important
ways by showing that the abstract advantage dissipates when
concrete instantiations are faded either through explicit instruc-
tion, or over time. The current evidence suggests that knowledge
gained from concrete instantiations may start out being tied to the
particular learning context, but through explicit fading and time or
both it can become more generic in nature and thus, more trans-
ferable. Overall, the present study provides support for the
educational practice of beginning with concrete instantiations of
a concept and then “fading” away to the more abstract (e.g., Bruner,
1966; Goldstone & Son, 2005), and it suggests that concrete
instantiations should be included in the educator’s toolbox.
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