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Emergence of a ‘visual
number sense’ in hierarchical
generative models

Ivilin Stoianov! & Marco Zorzil?

Numerosity estimation is phylogenetically ancient and
foundational to human mathematical learning, but its
computational bases remain controversial. Here we show that
visual numerosity emerges as a statistical property of images
in ‘deep networks’ that learn a hierarchical generative model
of the sensory input. Emergent numerosity detectors had
response profiles resembling those of monkey parietal neurons
and supported numerosity estimation with the same behavioral
signature shown by humans and animals.

Many animal species have evolved a capacity to estimate the number of
objects seen!. Numerosity estimation is foundational to mathematical
learning in humans®3, and susceptibility to adaptation suggests that
numerosity is a primary visual property*. Nonetheless, the nature of
the computations underlying this “visual sense of number” remains
controversial®. Variability in object size prevents a simple solution
based on the summation of their surface area (cumulative surface
area), which is a main perceptual correlate of numerosity. A promi-
nent theory® requires object size normalization as key preprocessing
stage for numerosity estimation. Others circumvent the problem,

assuming the use of “occupied area” independent of object size’.

Figure 1 Deep network model and number-sensitive neurons.

(a) Architecture of the deep network model and sample input images
(samples with 4, 8 and 16 objects and equal cumulative area).

(b) Regression coefficients for log(numerosity) and log(cumulative area) of
neurons in the second hidden layer. Selectivity is indexed by large absolute
value of one coefficient combined with near-zero value of the other. Red,
numerosity detectors; black, cumulative-area detectors; gray, non-selective
neurons. (c) Population activity of numerosity detectors (mean activation
value) as a function of number of objects (+1 s.d. bands represent
variability across images). Inset (adapted from ref. 10): corresponding
response (mean firing rate = s.e.m.) of a number-sensitive neuron in the
monkey LIP area (red and purple represent different experimental blocks).
(d) Population activity of numerosity detectors (mean activation value),
showing invariance to cumulative area in pixels (px). (e) Spatial properties
of off-center (blue) and on-center (red) basis functions in hidden layer 1
(HL1) (samples in Supplementary Fig. 2) superimposed on the image
space (gray area). (f) Spatial selectivity of numerosity detectors in hidden
layer 2 (HL2), represented as 30 x 30 pixel plots superimposed on the
image space (light gray area). Each colored point in a neuron’s receptive
field (dark gray squares) represents an HL1 center-surround neuron.
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Here we show that visual numerosity emerges as a statistical prop-
erty of images through unsupervised learning. We used deep networks,
multilayer neural networks that contain top-down connections and
learn to generate sensory data rather than to classify it®. Stochastic
hierarchical generative models are appealing because they develop
increasingly more complex distributed nonlinear representations of
the sensory input across layers®. These features make deep networks
particularly attractive for the purpose of neuro-cognitive modeling.

The deep network had one ‘visible’ layer encoding the sensory
data and two hierarchically organized ‘hidden’ layers (Fig. 1). The
training database consisted of 51,200 unlabeled binary images
containing up to 32 randomly placed objects with variable surface
area, such as those in Supplementary Figure 1a. Crucially, learning
concerned only efficient coding of the sensory data (that is, maxi-
mizing the likelihood of reconstructing the input) and not number
discrimination, as information about object numerosity was not
provided (Supplementary Methods and Supplementary Fig. 1).
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Figure 2 Numerosity comparison task. Probability of the response “larger” as a function of the log-ratio of input numerosity and reference. (a) Numerosity
discrimination on the test dataset with 8 (diamonds) or 16 (squares) as reference, indexed by a Weber fraction of w= 0.15 (sigmoid fit). (b) Human adult
data (replotted from ref. 3) in numerosity comparison (squares, 16 as reference; circles, 32). (c) Invariance to cumulative area in pixels (px). (d) Performance
on control data sets A-D: constant object area (black), constant cumulative area (green), variable object features (purple) and variable density (red and blue).

We first sought sensitivity to numerosity information after learning
in terms of internal coding by hidden neurons, controlling for the
confounding cumulative surface area. Compressed monotonic coding
that resembles a scalar variable is the simplest number code found in
the lateral intraparietal (LIP) area of the monkey brain'?. We found
distinct populations of neurons in the second hidden layer (HL2)
that noisily estimated numerosity and cumulative area, respectively
(Fig. 1b and Supplementary Methods). The numerosity detectors in
particular showed response profiles consistent with the neurophysio-
logical data (Fig. 1c). Average activity across numerosity detectors
was well explained by log(numerosity) of the stimulus (regression
R? =0.82) and was invariant to cumulative area (Fig. 1d), suggesting
that population coding can support numerosity estimation.

We then assessed whether HL2 neurons could support numerosity
comparison>>!1, A linear classifier, fed with HL2 activity, was trained
on the image dataset to decide whether a visual numerosity was larger
than a reference number (either 8 or 16) (Supplementary Methods).
The classifier scored 93% on a novel test set of 51,200 images. This
set was also used to thoroughly assess numerosity discrimination,
which is modulated by numerical ratio in humans and animals!~>!1,
Probability of the response “larger”, plotted as a function of the log
ratio of the two numbers (test numerosity/reference), followed a clas-
sic sigmoid curve (Fig. 2a). Notably, the curves for the two reference
numbers were identical, in accordance with Weber’s law for numbers!
and in excellent agreement with human behavioral studies®%!!
(Fig. 2b). The response distributions were used to compute an index of
number discriminability (also known as number acuity>3), the inter-
nal Weber fraction!! w (Supplementary Methods). More intuitively,
2w represents the proportion by which a numerosity must differ from
the reference to be discriminable with about 95% confidence!!. The
model’s w was 0.15, which is in line with the mean values observed
in human adults®>!!. Crucially, numerosity estimation was invariant
to cumulative area (Fig. 2¢).

We also generated four more test sets to assess the model’s numer-
osity estimation ability under specific conditions, as in animal stud-
ies!>13 (Fig. 2d and Supplementary Methods). Set A contained
objects with fixed size and shape (squares of 3 x 3 pixels) for all
numerosities, set B had equal cumulative surface area (100 pixels)
for all numerosities (object size therefore decreased with increasing
numerosity), set C had objects with variable features (shape, size and
orientation) in each image and set D had two density levels for each
numerosity. The w values for these sets were 0.13,0.14, 0.14 and 0.17,
respectively. These results show that numerosity estimation in the
model, like that in animals and humans®!3, is invariant to cumulative
area, density and object features (Fig. 2¢,d).

Analyses of the network computations revealed that most of the
first hidden layer (HL1) neurons were center-surround detectors
that uniformly covered the image space (Fig. le; see examples in
Supplementary Fig. 2). Also, the numerosity detectors in HL2 were
spatially selective (Fig. 1f). They received strong input from HL1
neurons with spatially aligned receptive fields. They also received
inhibition from a few HL1 neurons that encoded cumulative area,
thereby providing a normalization signal. Thus, the numerosity
detectors encoded local, size-invariant numerosity. The popula-
tion activity of HL2 numerosity detectors was well predicted by
a linear combination of the population activity of the two types of
HL1 neuron (Supplementary Fig. 3), and it adequately supported
numerosity comparison when used as the sole input to a classifier
(Supplementary Methods). Simulations with a simplified math-
ematical model confirmed these analyses (Supplementary Methods
and Supplementary Fig. 4). We emphasize that the response
properties of the hidden neurons were not stipulated in any way
but represent an emergent property of the image data obtained
without supervision.

Unsupervised ‘deep learning’ discovered statistical features that
efficiently coded a large set of images8. Visual numerosity, a high-
order feature, was progressively extracted across hidden layers, and it
was coded invariantly from other visual properties only in the deepest
layer of a hierarchical generative model®. The emergent monotonic
encoding is consistent with single-cell recordings in monkey LIP!?
and functional magnetic resonance imaging blood oxygen level-
dependent (BOLD) modulation in the human homolog of LIP.
The model computed numerosity through the combination of local
computations and a simple global image statistic (cumulative area),
without explicit individuation and size normalization of visual objects
(compare refs. 6,15). The numerosity detectors were spatially selec-
tive, which is consistent with the properties of LIP neurons!? and with
numerosity adaptation*. Thus, local visual numerosities are invari-
ants that can support various numerosity-related estimates, and they
form the basis of a “visual sense of number”. Though the adequacy
of the proposed neural mechanism should be further tested in new
behavioral and neurophysiological studies, its relative simplicity fits
well with the long phylogenetic history of numerosity estimation'.
Future studies should also assess whether sensitivity to numerosity
can emerge when this dimension is a less salient stimulus feature
in the training data, such as in natural images. One overarching
implication of our findings is that learning a hierarchical generative
model was the key to understanding the neural mechanism under-
lying numerosity perception and thus to bridging the gap between
neurons and behavior.
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Note: Supplementary information is available on the Nature Neuroscience website.
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