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Kaminski, Sloutsky, and Heckler (2008a) published in Science a study on “The advan-
tage of abstract examples in learning math,” in which they claim that students may 
benefit more from learning mathematics through a single abstract, symbolic repre-
sentation than from multiple concrete examples. This publication elicited both enthu-
siastic and critical comments by mathematicians, mathematics educators, and policy-
makers worldwide. The current empirical study involves a partial replication—but 
also an important validation and extension—of this widely noticed study. The study’s 
results confirm Kaminski et al.’s findings, but the accompanying qualitative data raise 
serious questions about their interpretation of what students actually learned from the 
abstract concept exemplification. Moreover, whereas Kaminski et al. showed that 
abstract learners transferred what they had learned to a similar abstract context, this 
study shows also that students who learned from concrete examples transferred their 
knowledge into a similar concrete context.
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Since the end of the “new math” era, many mathematics educators take for 
granted that mathematics should be taught “from concrete to abstract” and that a 
series of well-chosen examples can facilitate students’ understanding of an under-
lying, or more general, mathematical idea. In most countries, this guiding design 
principle is currently implemented in textbooks and other educational resources in 
which examples (and counterexamples) precede formal definitions of concepts and 
statements of theorems. In Realistic Mathematics Education (RME), this idea is 
reflected in the principle of “conceptual mathematization” (de Lange, 1987; 
Gravemeijer, 1994): A general concept (e.g., the derivative of a function as the limit 
of a difference quotient) is extracted from several more concrete (and often real-
istic) instantiations (e.g., instantaneous velocity, marginal cost, slope of a curve, or 
growth rate). According to the RME philosophy, this approach significantly 
increases the chance that the new mathematical concept will be learned meaning-
fully and will be positively transferred to novel situations.

The issue of (positive) transfer of learned concepts, procedures, and solution 
methods to new situations is a persistent theme within cognitive and educational 
psychology. It was, and is, a major thematic issue in the three major general views 
of cognition, learning, and teaching (Greeno, Collins, & Resnick, 1996; Mayer & 
Wittrock, 1996). It was already intensively analyzed and discussed by associationist 
and behaviorist psychologists in the 1st decades of the previous century (see, e.g., 
Thorndike et al., 1924), for whom it involved the application of specific identical 
elements of behavior from an initially learned task to a new task. It continued to 
be a central theme in Gestalt and cognitive theories (see, e.g., Gick & Holyoak, 
1983; Wertheimer, 1959), in which transfer was viewed as the (metacognitively 
driven) recognition and use of previously learned concepts, principles, or specific 
or general problem-solving methods in new situations. And it was problematized 
and reconceptualised by adherents of the situative and sociohistoric perspective, 
for whom it involves an “attunement” to the affordances and constraints of the 
material artifacts and social environments that are invariant between learning and 
transfer situations (Greeno, Smith, & Moore, 1993; Lobato, 2003).

Although these views differ in their descriptions of exactly what transfers, how 
transfer occurs, why its occurrence is so difficult, and how transfer can be optimally 
enhanced through instruction, they all emphasize, in one way or another, the impor-
tance of the selection of the examples to which students are exposed during the 
learning process. Accordingly, the role of “exemplification” (i.e., the use and 
analysis of examples, illustrations, occurrences, and instances of a concept as a 
particularly powerful tool for teaching and learning) continues to be a central 
research topic in the mathematics education community (Bills et al., 2006; Watson 
& Mason, 2002).

Recently, the discussion on the role of “practical” examples for learning math-
ematics was (re-)opened in several countries, both in the mathematics education 
communities and in society more broadly. The immediate cause was a series of 
papers by Kaminski, Sloutsky, and Heckler (2005, 2006a, 2006b, 2008a, 2009), 
among which is a much-discussed one in Science (Kaminski et al., 2008a). These 
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papers were mostly based on Kaminski’s (2006) dissertation, in which students’ 
need for concrete instantiations to learn abstract concepts was explicitly questioned. 
Based on controlled experiments with undergraduate students, Kaminski et al. 
(2008a) came to a conclusion, which goes against what is now often taken for 
granted in the mathematics education community:

If a goal of teaching mathematics is to produce knowledge that students can apply to 
multiple situations, then presenting mathematical concepts through generic instantia-
tions, such as traditional symbolic notation, may be more effective than a series of 
“good examples.” This is not to say that educational design should not incorporate 
contextualized examples. What we are suggesting is that grounding mathematics 
deeply in concrete contexts can potentially limit its applicability. Students might be 
better able to generalize mathematical concepts to various situations if the concepts 
have been introduced with the use of generic instantiations. (p. 455)

In a “math wars” climate, the publication in Science received widespread attention 
in newspaper articles (e.g., Chang, 2008; “Les exemples,” 2008; “Abstracte wiskunde,” 
2008), in our view, dramatically overstating its relevance to K–12 educational practice 
(cf. infra) but boosting the public debate on how mathematics should be taught and 
learned. In the specialized scientific circuit, several critical comments on Kaminski’s 
work were published (e.g., Jones, 2009a, 2009b; Podolefsky & Finkelstein, 2009), but, 
as far as we know, these critiques were never supported by new empirical data. In this 
article, we elaborate on two main elements of critique, and we provide empirical 
evidence to substantiate them. First, we argue for why the comparison made by 
Kaminski et al. (2008a) is basically unfair. Second, we query about what the students 
actually learned of the abstract examples. To support these two elements of critique 
empirically, we set up a replication and extension study.

In the first part of this article, we describe Kaminski et al.’s (2008a) central 
experiment and its basic conclusions. Next, we elaborate on two major elements of 
critique, given by other commentators, which motivated our replication and exten-
sion study. Then, we report the design and main results of our empirical study. 
Finally, in the light of the expressed critiques and of our new empirical data, we 
discuss the limited generalizability and utility of Kaminski’s—and thus also our—
study for mathematics education practice. In particular, we re-examine the validity 
of Kaminski’s main claim that students may benefit more from learning mathe-
matics through a single abstract, symbolic representation than from multiple 
concrete examples of a to-be-learned concept.

KAMINSKI’S CENTRAL EXPERIMENT

Kaminski et al. (2008a) addressed the question of whether learning a mathemat-
ical concept starting from multiple concrete instantiations is the most efficient route 
to promoting transfer of knowledge. They doubt the “taken for granted” belief that 
well-chosen concrete contexts can facilitate students’ understanding of an under-
lying abstract mathematical concept, because “instantiating an abstract concept in 
concrete contexts places the additional demand on the learner of ignoring irrelevant, 
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salient superficial information, making the process of abstracting common struc-
ture more difficult than if a generic instantiation were considered” (Kaminski, 
2006, p. 114). More concretely, they tested the “hypothesis that learning a single 
generic instantiation (that is, one that communicates minimal extraneous informa-
tion) may result in better knowledge transfer than learning multiple concrete, 
contextualized instantiations” (Kaminski et al., 2008a, p. 454). Therefore, a series 
of experiments was conducted. 

Four of these experiments are reported in Kaminski et al. (2008a), but here, we 
focus on the first—and central—experiment, which is the subject of the commen-
tators’ main critiques. This experiment consisted of two phases. In the first phase, 
80 undergraduate students from an introductory psychology course learned either 
an abstract (or “generic”) instantiation of a mathematical concept, or one or more 
concrete instantiations of that concept. At the end of this phase, a learning test was 
administrated. In the second phase, which took place immediately after the first 
one, participants were tested on a (mathematically) isomorphic transfer domain. 
The targeted mathematical concept was that of a group of order 3: a set of three 
elements with an operation that satisfies the properties (or axioms) of closure, 
associativity, existence of identity, and existence of inverses. All groups with three 
elements are isomorphic, which means that, from a mathematical point of view, 
there exists only one such group (and this group is commutative and cyclic). This 
fact was not explicitly taught to the participants (and it is not likely that this or other 
facts about finite groups were part of their prior knowledge). In the abstract-
instantiation condition, participants learned to combine arbitrary symbols (flag, 
diamond, and circle) that were inscribed on a tablet discovered on an archaeological 
dig (e.g., see Figure 1, first row: Circle followed by diamond yields flag). In one 
of the concrete-instantiation conditions, participants learned to combine 1/3, 2/3, 
and full liquid cups in a way that the result is the left-over or “remainder” (e.g., see 
Figure 1, second row: a 2/3-filled cup followed by a 2/3-filled cup yields a 1/3-filled 
cup). Immediately after the learning phase, during which some students worked 
with the abstract instantiation and others with one or more concrete instantiations, 
all participants were engaged in the same transfer task about a fictitious children’s 

A combination of and fills one container and left-over.

The children pointed to  , then . The winner pointed to .

Figure 1. Combination rules presented in the generic- (first row), in one of the concrete- 
(second row), and in the transfer-instantiation (third row) conditions by Kaminski et al. 
(2008b, pp. 9, 15, 26).
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game. In this game, one child pointed successively to two or more different objects 
from a set of three (ring, vase, and ladybug) and another child had to point to the 
resulting object (e.g., see Figure 1, third row: Vase followed by ladybug yields ring). 
After a short introduction, participants were told that “the game rules were like the 
rules of the system(s) they just learned and they need to figure them out by using 
their newly acquired knowledge (i.e., transfer)” (Kaminski, Sloutsky, & Heckler, 
2008b, p. 3). Kaminski et al. (2008a) found that, on the transfer task, participants 
from the abstract-instantiation condition outperformed participants from the 
concrete-instantiation condition and concluded: “If transfer from multiple instan-
tiations depends on whether the learner abstracts and aligns the common structure 
from the learned instantiations . . . then transfer failure suggests that participants 
may have been unable to recognize and align the underlying structure” (p. 455). 
This conclusion was strengthened by one of Kaminski et al.’s (2008a) follow-up 
experiments, in which students learned either an abstract instantiation or a concrete 
instantiation that was followed by an abstract instantiation. The results of that 
follow-up experiment showed that, on a transfer task, participants who learned only 
the abstract instantiation outperformed those who learned both a concrete and an 
abstract instantiation.

CRITICAL COMMENTS ON KAMINSKI’S CENTRAL EXPERIMENT

We summarize the critical comments that inspired us to set up an elaboration and 
extension study. A first group of related elements of critique refers to the unfairness 
of Kaminski et al.’s (2008a) comparison due to the role of uncontrolled variables. 
A second critique, which received less attention by other commentators so far, refers 
to what students actually learned about the to-be learned concept (a group of order 3). 
Critiques that are not directly relevant for the rationale of our empirical study are not 
developed in this part (but some of them will be addressed in our final discussion).

In order to avoid that differences in learning outcomes could be attributed to vari-
ables different from the type of instantiation, Kaminski (2006) controlled for super-
ficial similarity between the transfer task and the abstract or concrete learning task 
by asking a sample of participants (not those in the central experiment) to read 
descriptions of the learning and transfer domains and then indicate a level of simi-
larity. For both learning conditions, average ratings of similarity were rather low 
(around 3 on a scale from 1 to 5), and no significant differences in similarity were 
found. Although agreeing on the absence of superficial similarity between the 
learning domains and the transfer domain, several authors (cf. infra) point to 
substantial differences in similarity at a deeper level.

One of those substantial differences refers to the presence or absence of a 
physical referent. In the concrete learning domain, the symbols represent physical 
quantities and the operation of combining these symbols has a physical connotation 
as well. Both the transfer and abstract learning domain lack this physical interpre-
tation: Here symbols are arbitrary and are combined in ways purely governed by a 
set of formal rules (Jones, 2009a, 2009b). Hence, only abstract learners had the 
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experience of performing purely formal operations with meaningless symbols, 
necessary for success in the transfer test. As Podolefsky and Finkelstein (2009) 
suggest, those students have learned to ignore potential links to prior knowledge, 
whereas concrete learners got the message that prior knowledge counts: The quan-
tities that appeared in the learning task could be used as a sense-making aid. So, 
plausibly, concrete learners struggled when they had to discern patterns in a transfer 
domain in which any physical interpretation was impossible. A related critique 
(Cutrona, 2008; Deprez, 2008; Deprez et al., 2010; McCallum, 2008; Mourrat, 
2008) refers to the supporting role of numbers in the concrete learning domain, 
whereas numbers are absent in the transfer and abstract learning domains.

The link with numbers has an important repercussion in terms of what is probably 
learned in the different learning domains. Whereas in the transfer task and in the 
abstract learning domain the targeted concept truly is that of a mathematical group, 
the examples in the concrete learning domains primarily aim at modular addition. 
As Cutrona (2008) remarks, these “examples seem geared to teaching the broader, 
generalized concept that includes mod 4, mod 5, and so on” (p. 1632). Modular 
addition is a richer concept (i.e., less general, having more structure) than that of 
a group. For systems of order 2 and 3, both concepts coincide, but already for order 
4, two different groups exist: the group based on addition modulo 4 (in symbolic, 
additive notation: the set {n, a, b, c} in which n denotes the identity or neutral 
element, equipped with a commutative and associative binary operation, +, satis-
fying a + a = b, a + a + a = c,1 and a + a + a + a = n) and the group of symmetries 
of a (nonsquare) rectangle (the set {n, a, b, c} with a commutative and associative 
binary operation, +, satisfying a + a = n, b + b = n, a + b = b + a = c). With increasing 
order, these concepts depart further and further from each other (except for prime 
orders). Even if modular addition and groups coincide for order 3, they have a 
different “look and feel,” or, as argued by Cutrona (2008), the examples in the 
concrete and abstract learning domains serve different goals.

According to McCallum (2008), this difference in targeted object can be translated 
into an uncontrolled structural difference. In the transfer and abstract learning 
domain, the underlying structure can be described as follows. One of the elements 
in the group is the identity and the other two behave symmetrically: Adding each to 
itself yields the other and adding the two of them yields the identity. In symbolic 
notation, we have a group {n, a, b}, for which a and b satisfy the following relations: 

	 a + a = b 	 (1.1) 

	 b + b = a, and 	 (1.2) 

	 a + b = b + a = n. 	 (1.3)

Here, the group is presented by two generating elements a and b. Relations 1.1 to 
1.3 are exactly the rules in Kaminski’s (2006) summary at the end of the learning 
phase. In the concrete learning domains, the same rules are given. Hence,  

1The associative law guarantees that expressions with three or more terms also are well defined.
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superficially, the structure is exactly the same. However, the quantities or numbers 
in these domains implicitly communicate a different underlying structure, in which 
the symmetry between the elements a and b is broken. Now we have the group 
{n, a, b}, for which 
	 a + a = b and 	 (2.1) 

	 a + a + a = n. 	 (2.2)

This alternative structure stresses the cyclic nature of the group, that is, it is gener-
ated by only one of its elements (which is related to addition modulo 4 discussed 
in the previous paragraph: A finite group is cyclic if and only if it results from 
modular addition). From a mathematical point of view, the two structures are 
equivalent (for systems of order 3, not for higher order): It is easy to prove that (2.2) 
also holds in the first system and that (1.2) and (1.3) are also valid in the second 
one. The structural difference does not lie in the total set of relations but in those 
chosen to act as the basic ones from which the other can be deduced. Plausibly, 
participants in Kaminski et al. (2008a) focused on these basic relations and failed 
to notice the other ones. Hence, we have different dominant mathematical patterns 
in the two domains. Probably, the cyclic nature of the group was not noticed by 
abstract learners, but this did not harm them in the transfer test, because the transfer 
and abstract learning domain share the same dominant pattern. Similarly, concrete 
learners may have failed to observe relations (1.2) or (1.3), but now, the conse-
quences were more serious: It may account for their difficulties to recognize the 
dominant mathematical pattern in the transfer test.

The baseline in these elements of critique is that Kaminski’s comparison is not 
fair and the results are not surprising, given the greater deep level similarity 
between the transfer and abstract learning domain (Jones, 2009a, 2009b; Mourrat, 
2008). Apart from the concrete–abstract distinction, other, uncontrolled, variables 
may have played an important role. A change in learning and/or transfer domains 
without altering their concrete–abstract nature may give different results. According 
to Jones (2009a, 2009b), a number of possible alternative instantiations of a group of 
order 3 (e.g., rotations of an equilateral triangle, permutations of a set of three elements) 
could have been chosen for a transfer task, some of which might have led to better 
performance for the concrete-instantiation group than for the abstract-instantiation 
one. Another “addition modulo 3” context seems to be an obvious candidate here.

Besides the first group of critical comments referring to the unfairness of Kaminski’s 
comparison, a second—but related—vulnerable element in Kaminski’s work inspired 
us to conduct a new empirical study. So far, no clear information on what participants 
in the two learning conditions actually learned about the to-be-learned concept (a group 
of order 3) has been provided. With only multiple-choice data available, it seems quite 
impossible to know how these participants perceived the three objects and the opera-
tions in the abstract and concrete instantiations (see also Jones, 2009a). In other words, 
the Kaminski et al. (2008a) study does not provide strong empirical evidence that the 
participants in the abstract learning condition actually learned the abstract concept of 
a group instead of just memorizing and mapping symbols and combination rules. The 
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latter is not improbable. Indeed, the number of specific rules is limited: only 3 for a 
group of order 3. Moreover, some of the rules defining the group structure (e.g., 
commutativity and associativity) have an “evident” character for participants who are 
accustomed to calculating with numbers (which also may have contributed to partici-
pants’ relatively good scores on the abstract learning and on the transfer test). So, it is 
likely that these combination rules did not even attract participants’ attention during 
the learning phase. For similar reasons, it also remains unclear what the participants 
in the concrete-instantiation condition actually learned: Did they learn the group 
concept, arithmetic modulo 3, how to apply acquired rules, or even something else?

To substantiate empirically the two previously mentioned elements of critique, we 
designed a replication and extension study. In order to make the comparison between 
the learning groups more fair, we added an “addition modulo 3” transfer domain to 
Kaminski et al.’s (2008a) transfer domain. This new transfer domain introduced a 
context with slices of pizza (about pizza’s being 1/3, 2/3, or completely burned and 
these slices of pizza were combined in the same way as the liquids in the cups). 
Kaminski also used this pizza context, but as one of the learning domains. This addition 
enabled us to measure transfer to a new domain and, whereas Kaminski et al. discov-
ered better transfer from an abstract learning domain, we expected the analogue would 
happen from a concrete learning domain to the new transfer domain. Besides the 
multiple-choice data, we collected data from an open-ended question in order to obtain 
information on what participants actually learned from the abstract- and concrete-
instantiation conditions. Although we basically expected rule memorization by the 
abstract learners, we anticipated some learning of arithmetic modulo 3 by learners in 
the concrete-instantiation condition.

Before discussing the method and results of this study, we want to comment briefly 
on two terminological points that deserve further clarification: the nature of the 
observed transfer in Kaminski’s (2006) study and the concrete–abstract nature of the 
two transfer domains.

The main focus in Kaminski’s (2006) study is transfer. Her claim that abstract 
examples are better refers to better transfer. Jones (2009a, 2009b) argues that the more 
successful transfer by generic learners in Kaminski’s study is near transfer, that is, the 
“relatively direct use of knowledge acquired during learning” (Jones, 2009a, p. 84). 
Moreover, the transfer is short term, because there was little or no time delay between 
the learning phase and the transfer test. Finally, the transfer was prompted: Participants 
were explicitly asked to apply the rules of the system from the learning phase, and, 
thus, did not have to demonstrate spontaneous transfer. These comments clarify the 
(limited) nature of the transfer studied by Kaminski and, hence, also the transfer study 
reported in this article.

Kaminski et al. (2008a) call the children’s game transfer domain a concrete 
domain, based on the superficial characteristic that “perceptually rich elements” 
are used. However, at a deeper level it satisfies those researchers’ own definition 
of generic (or abstract): “Instantiations that communicate minimal extraneous 
details, beyond the defining structural information, are generic instantiations, while 
those that communicate more extraneous information are concrete” (p. 1). Hence, 
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it is appropriate to call it an abstract transfer domain. The newly added pizza 
transfer domain is concrete, both in Kaminski’s and in our interpretation.

METHOD

One hundred thirty undergraduate students in educational sciences participated in 
return for course credit. Like Kaminski’s experiment, our study had two phases: (a) 
training and testing in a learning domain, and (b) testing for transfer. The training 
consisted of a brief introduction to the context, an explicit presentation of the rules 
using examples, questions with feedback, some more complex examples, and a 
summary of the rules. All participants were randomly assigned to one of four experi-
mental conditions—AA, AC, CA, and CC—in which the first letter specifies the 
learning domain and the second letter the transfer domain, both of which could be 
either abstract (A) or concrete (C). The experimental materials and procedures were 
comparable to those described in Kaminski’s (2006) dissertation.

A first important difference between the design for this study and the overall design 
of Kaminski’s central experiment was that, in addition to the AA- and CA-conditions 
that were also used in Kaminski’s experiment, we included AC- and CC-conditions, in 
which a new modulo 3 addition context was presented in the transfer phase in order to 
measure transfer to a new concrete domain. The A-learning and A-transfer conditions 
were operationalized by the arbitrary symbols and their combination rules in, respec-
tively, the archaeological and children’s game context as described previously. For the 
C-learning and C-transfer conditions, respectively, the liquid cups and pizza contexts 
were introduced (see supra). Just before the test administration in the learning domain, 
a summary of key ideas—possible combinations and properties of identity and 
commutativity (“order doesn’t matter”)—was presented in both verbal and pictorial 
form. In the four experimental conditions, the tests that were administered at the end 
of the learning phase as well as the transfer tests consisted of 24 “isomorphic” multiple-
choice questions in which participants had to choose one correct answer out of two, 
three, or four alternatives (for an example of two isomorphic multiple-choice questions 
from the abstract and concrete learning tests, see Figure 2). Across the experimental 

15. Find the resulting symbol

2.) 3.)1.)

16. What is left-over when the following cups are mixed?

2.) 3.)1.)

Figure 2. Examples of multiple-choice questions as used in the A- (left) and C- (right) 
learning tests.
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conditions, training in the learning domain and the presentation of the transfer domain 
were similar.

As a second important difference between Kaminski’s and our procedures, we 
included an open-ended question immediately after the learning phase and before the 
transfer test in order to get a better idea of what students report to have learned from 
the abstract or concrete examples. A sequence of four elements was presented 
(diamond, circle, circle, circle, and 2/3, 1/3, 1/3, 1/3 filled cups in, respectively, the 
A- and C-learning conditions), followed by an arrow and a question mark (see Figure 
3). Participants were asked what should come on the place of the question mark and 
had to explain in their own words how they had arrived at their answer.

As in Kaminski’s (2006) research, training and testing happened individually on a 
computer, and the testing occurred immediately after the training. Participants 
proceeded through training and testing at their own pace (but all of them finished the 
experiment in less than 2 hours); their responses to the multiple-choice tests and to the 
open-ended question were digitally registered.

Using exactly the same procedure as in Kaminski (2006), 20 participants were 
removed from this analysis because they failed to learn: Their learning scores were 
lower than 11 (of 24). Again following Kaminski’s procedure, 5 outliers were removed 
because their learning or transfer scores were more than 2 standard deviations from 
the mean of their respective conditions. For the AA-, AC-, CA‑, and CC-conditions, 
the number of participants’ scores ultimately involved in the ANOVA was 23, 30, 28, 
and 24, respectively.

Participants’ learning and transfer test scores were analyzed (in SPSS) using two 
single-factor ANOVA’s (one on the learning scores and one on the transfer scores) with 
treatment condition as the single factor. Post hoc contrasts between conditions were 
conducted using corrections for multiple comparisons (Tukey–Kramer). As a conse-
quence of removing participants (as previously stated), variation in the different condi-
tions might no longer be homogeneous. However, Levene’s test indicated homogeneity 
of variances (p = .173 and .092 for the learning and transfer scores, respectively). A 
post hoc power analysis on the transfer scores revealed a statistical power of 72.9% 
(using a confidence level of 5%).

What should appear in place of the question mark?

Explain as precisely as possible how you have found this

Figure 3. Open-ended question included after the learning domain test in the A- (first 
row) and C- (second row) learning conditions.
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To analyze participants’ explanations of their answers to the open-ended question, 
a scoring system was developed that was applicable irrespective of the specific 
learning domain (see Table 1). Each participant explanation was categorized in one 
or more (sub)categories of the system. A score of 2 was given for an explanation 
at a general level (even if formulated awkwardly). For the abstract learning domain, 
examples of such formulations are “if you combine a flag with another symbol, 
you get that other symbol” (role of identity) or “order doesn’t matter” (commuta-
tivity). For the concrete learning domain, it means that explanations are stated in 
terms of modulo 3 calculation, making abstraction of the concrete context of liquid 
cups that are poured together (e.g., “2 + 2 = 4 – 3 = 1”). A score of 1 was assigned 
when a rule was correctly applied in at least one step of the participant’s reasoning, 
but not formulated at a more general level. Two independent raters applied this 
system to all participants’ explanations and indicated that they were unsure about 
only 4% of the cases. After a careful comparison of these cases to the detailed 
descriptions in the scoring system, full agreement between raters was reached.

RESULTS

Table 2 lists the means and standard deviations of the learning and transfer scores 
in the four conditions. With respect to the learning scores, there was a significant 
difference between groups, F(3, 101) = 5.144, p = .002. The AC-group scored 
significantly lower than the CA-group (p = .004) and the CC-group (p = .010). The

Table 1
Scoring System Applied to Explanations Given for Answer to Open-Ended Question

Category Description Subcategory Score

G (Group) Axioms of commutative 
group applied/applica-
tion of these axioms 
formally or informally 
formulated

G1: associativity
G2: role of identity
G3: role of inverses 
G4: commutativity 

2: �formulation at 
general level

1: �unambiguous 
application

0: else

M (Modulo) Properties of “modulo 
3” arithmetic applied/
application of these 
properties formally or 
informally formulated

M1: �via whole 
numbers 

M2: via fractions

2: �formulation at 
general level 

1: �unambiguous 
application 

0: else

R (Rules) One or more combina-
tion rules (almost) liter-
ally repeated 

1: yes  
0: no

N (No) No explanation/expla-
nation irrelevant or 
incomprehensible

1: �irrelevant or 
incomprehen-
sible 

0: no



120 Abstract or Concrete Examples

Table 2
Mean and Standard Deviation (Between Brackets) of Learning and Transfer Test Scores

Condition

Mean (standard deviation) test scores 
(Max = 24)

Learning test Transfer test

AA (N = 23) 17.1 (3.9) 18.1 (3.8)

AC (N = 30) 15.3 (3.5) 17.4 (4.2)

CA (N = 28) 18.5 (2.9) 12.0 (4.3)

CC (N = 24) 18.3 (3.5) 20.2 (2.4)

difference between the AA-group and the three other groups was not significant. 
With respect to the transfer scores, there also was a significant between-groups 
difference, F(3, 101) = 21.797, p < .001. The scores of the CA-group were signif-
icantly lower than those in the other three groups (p < .001 for all comparisons) and 
the scores of the AC-group were significantly lower than those in the CC-group  
(p = 0.044).Our results with respect to the two conditions that were taken from 
Kaminski et al.’s (2008a) original study (AA and CA) confirm their findings: The 
AA-group outperformed the CA-group on the abstract transfer task. So, at least for 
this type of task, if transfer to a new abstract domain is targeted, abstract instantia-
tions are indeed more advantageous than concrete instantiations. However, our 
finding that the CC-group outperformed the AC-group on the concrete transfer task 
shows that the opposite holds as well: Transfer to a new concrete domain is more 
enhanced by a concrete learning domain than by an abstract one. Finally, although 
the learning scores of the AC-group were significantly lower than those of the two 
concrete-learning-domain groups, the transfer scores of the AC-group did not 
significantly differ from those of the AA-group. This result shows that, to a certain 
extent, students who were taught in an abstract learning domain were able to deal 
with a “modulo 3” concrete instantiation of the concept of a group of order 3, even 
when the learning task provided little or no support for this. The different 
complexity of the two learning domains is also reflected in the learning scores 
themselves: Although all students learned the concept sufficiently well, the 
A-learning groups performed worse—and the AC-group even significantly 
worse—on the learning test than the C-learning groups.

Table 3 lists the ratings of the explanations participants gave for their answer to 
the open-ended question according to the scoring system presented in Table 1.

The ratings for the abstract learning domain provide little or no evidence that 
participants have learned the concept or axioms of a commutative group. Although 
participants were asked to explain as precisely as possible how they had found their 
answer, three of the four group axioms (associativity, commutativity, and role of 
the inverse) were not formulated at a general level in any of the explanations. The 
other group axiom (role of the identity) was formulated at a general level in only 
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6 of the 66 explanations, even though such formulations were provided and exem-
plified in the learning phase (e.g., “When any symbol combines with a flag, the 
result will always be the other symbol” or “The order does not change the result”). 
On the other hand, some explanations reflected a spontaneous, possibly uncon-
scious, application of the properties of identity (43/66), associativity (16/66), or 
commutativity (3/66). The high mark for identity is not surprising because its role 
can also be seen—and was rated that way, too—as just one of the combination rules. 
With respect to associativity and commutativity, it remains unclear whether 
participants “learned” these properties from the preceding abstract learning phase 
or simply were familiar with them from their prior experiences with operations in 
number systems. None of the explanations reflected modular arithmetic, which 
agrees with our expectation that learners in the abstract-instantiation condition 
would not notice the modular structure implicitly present in the learning domain. 
Finally, 62 of 66 participants (almost) literally repeated such rules when explaining 
their answer to the open-ended question. It is questionable whether these partici-
pants also learned the quintessence of the abstract group concept (a set of elements 
with an operation that satisfies specific axioms). Rather, the results seem to point 
out that they merely learned by memorizing the formal combination rules that can 
be applied to arbitrary symbols.

The ratings for the concrete learning domain show that about half the explana-
tions reflected an application of “modulo 3” arithmetic by using whole numbers 
(22/52) or fractions (5/52). Moreover, although it was not explicitly addressed in 
the learning phase, in another seven explanations the rules for modulo 3 addition 
were “formulated” without referring to the concrete liquid cups context (e.g., “The 
answer is a 2/3 filled cup because (2 + 1 + 1 + 1)/3 → 1 remainder 2” or “A cup 
with two: 2 + 1 + 1 + 1 = 5 and 5 – 3 = 2”). Pure repetitions of combination rules 
were rare in the concrete learning domain (5/52). As in the abstract domain, some 
explanations reflected a spontaneous application of the group properties of identity 
(7/52), associativity (13/52), or commutativity (2/52). Compared to the abstract 

Table 3
Ratings of Explanations Given for Answer on Open-Ended Question According to the 
Scoring System of Table 1

Learning
Score

G       M                   R          N

domain G1 G2 G3 G4 M1 M2

A
(N = 66)

2 0 6 0 0 0 0 – –

1 16 43 0 3 0 0 62 11

0 50 17 66 63 66 66 4 55

C
(N = 52)

2 0 0 0 0 7 0 – –

1 13 7 0 2 22 5 5 14

0 39 45 52 50 23 47 47 38
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domain, the identity property was reported less often, probably because this prop-
erty is self-evident here and no longer just one of the combination rules. The rela-
tive frequency of the associativity and commutativity ratings were more or less 
equal across learning domains, suggesting that the application of these properties 
is probably caused by their natural, straightforward character or by participants’ 
prior familiarity with them.

CONCLUSIONS AND DISCUSSION

Kaminski et al. (2008a) conducted a study consisting of a series of controlled 
experiments with undergraduate students, from which they concluded that the 
concept of a group of order 3 is learned better through an abstract representation 
than from concrete examples. They suggested that this conclusion is generalizable 
to concepts and methods in other areas of mathematics: 

Moreover, because the concept used in this research involved basic mathematical 
principles and test questions were both novel and complex, these findings could likely 
be generalized to other areas of mathematics. For example, solution strategies may be 
less likely to transfer from problems involving moving trains or changing water levels 
than from problems involving only variables and numbers. (Kaminski et al., 2008a, 
p. 455)

They also argue for generalizability to other age ranges: 
Because the difficulty of transferring knowledge acquired from concrete instantiations 
may stem from extraneous information diverting attention from the relevant mathe-
matical structure, concrete instantiations are also likely to hinder transfer for young 
learners who are less able than adults to control their attentional focus. (Kaminski et 
al., 2008a, p. 455)

Kaminski et al. (2008a) attracted several critical reactions. A first recurring 
element of critique refers to the unfairness of the comparison, due to the role of 
uncontrolled variables: Differences in underlying structure, in the targeted math-
ematical concept, and in the learners’ possibility to rely on prior knowledge about 
physical reality or number systems resulted in a difference in deep-level similarity 
to the transfer domain between the generic (or abstract) and the concrete learning 
domains. A second element of critique refers to what students actually learned from 
the abstract examples: the abstract concept of a group or simply the ability to 
memorize and map symbols and combination rules. It also remains unclear what 
the students in the concrete instantiation conditions learned.

To substantiate these two elements of critique empirically, we designed an inves-
tigation that was partly a replication and partly an extension of Kaminski’s study. 
First, to re-examine the transfer potential of abstract and concrete learning domains, 
we extended Kaminski’s design by including—in addition to the two conditions 
with the abstract domain as a transfer domain—two new conditions in which the 
transfer domain is a concrete one. Second, to better understand what students actu-
ally learned from the two learning domains, we gathered and analyzed participants’ 
explanations for their answers to an open-ended question.
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Our results confirm the basic finding by Kaminski et al. (2008a): Transfer to a 
new abstract domain is better enhanced by an abstract learning domain than by a 
concrete learning domain. However, through our extended design, we were able to 
show that this is only one side of the coin: Transfer in a new concrete domain is 
also enhanced more by concrete instantiations than by abstract instantiations. 
Moreover, the qualitative analysis of participants’ explanations suggested that 
students who worked in the abstract domain learned how to apply combination rules 
formally to arbitrary symbols but provided little evidence that they also acquired 
the abstract mathematical concept of group. Some students who worked in the 
concrete domain reached a higher level of abstraction by formulating combination 
rules in a context-independent manner, and most students in the concrete domain 
clearly learned a different mathematical topic, namely, addition modulo 3. These 
results pose a serious challenge to Kaminski et al.’s (2008a) affirmative conclusions 
about “the advantage of abstract examples in learning math” (p. 454).

We agree with Jones (2009b) that it is inappropriate to extrapolate Kaminski’s—
and, thus, also our—findings to the broader realm of mathematics education: The 
mathematical topic of these experiments, namely, groups of order 3, is a very 
particular one, and the “examples” used to make this topic “concrete” are quite 
artificial and far away from what (realistic) mathematics educators generally have 
in mind when they think of the introduction of more general mathematical ideas 
by concrete instantiations. Moreover, Kaminski’s (2006) and our short-term “labo-
ratory” experiments differ on crucial points from instruction that occurs in typical 
educational settings, and their effects over longer periods of time remain unex-
plored.

Understanding the abstract mathematical concept of group also has an epistemo-
logical meaning: From where does this algebraic structure with its four axioms—
these and no others—originate? Neither the concrete nor the abstract instantiations 
used by Kaminski (2006) (and by us) can shed any light on this fundamental ques-
tion. Similar to instruction in calculus, in which the derivative is often introduced 
in the context of motion, closely related to one of the historical sources of that 
concept, one could consider a meaningful educational approach (at the tertiary 
level) of the abstract group concept starting from an instantiation used historically 
by mathematicians to investigate basic mathematical problems with which they 
were faced (e.g., permutation groups in a quest for general solutions of polynomial 
equations of higher degree or symmetry groups as a classification tool for lattices 
and patterns in geometry).2

We conclude with a more specific question about the generalizability of 
Kaminski et al.’s (2008a) results. Even if Kaminski et al. have shown that one 
instructional approach to the learning of a given concept leads to better transfer 
than another, it is still unclear what the consequences of that approach are for further 
learning of related and/or more advanced concepts. Applied to the concept dealt 

2For examples of historical approaches to the teaching and learning of mathematics, see Fauvel and 
van Maanen (2000).
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with here, one can think of the mathematical objects coming next in level of 
complexity: cyclic groups of order 4 and higher (Deprez et al., 2010). Can we still 
construct an abstract learning domain for these objects in Kaminski et al.’s style? 
In fact, a much larger number of specific rules would be necessary: Instead of the 
3 rules in the case of order 3, for cyclic groups of order 4, 5, 6, 7, . . . , one would 
need 6, 10, 15, 21, . . . rules.3 Knowing from our qualitative analysis that abstract 
learners primarily relied on the set of specific rules, we conjecture that both 
learning and transfer scores of abstract learners would rapidly decline with 
increasing order of the group. In order to cope with higher-order systems, additional 
structure, beyond formal combination rules, has to be introduced. So, it would even 
be problematic to construct a successful abstract learning phase in Kaminski et al.’s 
style for the concept of a cyclic group of higher order.

Ideas for future research arise from the results of Kaminski’s and our study. 
Kaminski et al. (2008a) investigated the effect of a concrete instantiation followed 
by an abstract instantiation on an abstract transfer domain (cf. supra), but the effect 
of a combination of concrete and abstract instantiations on a new concrete transfer 
domain remains to be explored. It would also be interesting to further investigate 
empirically Jones’ (2009a, 2009b) claim that the transfer effects obtained by 
Kaminski might remain restricted to near, immediate, and prompted transfer and 
not generalize to far, long-term, or unprompted transfer. Also, replications of parts 
of Kaminski’s work in ecologically more valid educational settings, wherein 
learners’ personal mathematics-related beliefs, attitudes, and emotions (McLeod, 
1992) and the sociomathematical classroom norms and practices (Yackel & Cobb, 
1996) play a more significant role, would be worth considering.

3In the following, we calculate the number of specific rules (the Cayley table below—for a group of 
order 5—illustrates our argument). No rules are needed for operations in which the identity (n) figures 
(see the first row and the first column in the Cayley table). For the first nonidentity element, a rule is 
required for each of its combinations with the other nonidentity elements, including itself (see the 
Xs in the remaining cells in the second row in the Cayley table). This already gives k – 1 rules (for a 
group of order k). Due to the abelian (i.e., commutative) character of the group, these rules allow one 
to fill in the remaining cells in the second column of the Cayley table, as well. Similarly, for the second 
nonidentity element, k – 2 rules are required, corresponding to the Xs in the remaining cells in the third 
row of the Cayley table, and allowing one to fill in the remaining cells in the third column as well. A 
continuation of this argument shows that the total number of rules required is given by (k –1) + (k – 2) 
+ (k – 3) + . . . + 2 + 1, that is, the (k – 1)th triangular number k( k – 1)/2.

n a1 a2 a3 a4

n — — — — —

a1 — X X X X

a2 — — X X X

a3 — — — X X

a4 — — — — X
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