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This article uses a critical evaluation of research on student misconceptions in 
science and mathematics to articulate a constructivist view of learning in which 
student conceptions play productive roles in the acquisition of expertise. We 
acknowledge and build on the empirical results of misconceptions research but 
question accompanying views of the character, origins, and growth of students' 
conceptions. Students have often been viewed as holding flawed ideas that are 
strongly held, that interfere with learning, and that instruction must confront 
and replace. We argue that this view overemphasizes the discontinuity between 
students and expert scientists and mathematicians, making the acquisition of 
expertise difficult to conceptualize. It also conflicts with the basic premise of 
constructivism: that students build more advanced knowledge from prior under- 
standings. Using case analyses, we dispute some commonly cited dimensions of 
discontinuity and identify important continuities that were previously ignored 
or underemphasized. We highlight elements of knowledge that serve both 
novices and experts, albeit in different contexts and under different conditions. 
We provide an initial sketch of a constructivist theory of learning that interprets 

Requests for reprints should be sent to John P. Smith, 442 Erickson Hall, Michigan State 
University, East Lansing, MI 48824. 
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11 6 SMITH, orSESSA, KOSCHELLE 

students' prior conceptions as resources for cognitive growth within a complex 
systems view of knowledge. This theoretical perspective aims to characterize 
the interrelationships among diverse knowledge elements rather than identify 
particular flawed conceptions; it emphasizes knowledge refinement and reorga- 
nization, rather than replacement, as primary metaphors for learning; and it 
provides a framework for understanding misconceptions as both flawed and 
productive. 

The idea that students develop misconceptions lies at the heart of much of 
the empirical research on learning mathematics and science of the last 15 
years. Following Piaget's repeated demonstrations that children think about 
the world in very different ways than do adults, educational researchers in 
the late 1970s began to listen carefully to what students were saying and 
doing on a variety of subject-matter tasks. What they heard and subsequently 
reported was both surprising and disturbing: Students had ideas that com- 
peted, often quite effectively, with the concepts presented in the classroom. 
Students did not come to instruction as blank slates. They had developed 
durable conceptions with explanatory power, but those conceptions were 
inconsistent with the accepted mathematical and scientific concepts pre- 
sented in instruction. 

In this article, we examine the misconceptions view of mathematical and 
scientific thinking and learning represented in nearly 2 decades of empirical 
research. This perspective has significantly advanced our understanding of 
learning by producing detailed characterizations of the understandings stu- 
dents bring to instruction, thereby highlighting the deep and complex 
changes involved in acquiring expertise. However, fundamental problems 
arise when most students' ideas are characterized as misconceptions. Mis- 
conceptions have generally been seen as mistakes that impede learning, a 
view that is difficult to square with the premise that students construct their 
mathematical and scientific knowledge. Further advances in understanding 
learning will depend on rethinking the role that students' conceptions of 
mathematical and scientific phenomena play in sophisticated, expert-like 
knowledge. Where misconceptions research has focused on the discontinuit- 
ies between novice students and experts, we identify and emphasize import- 
ant dimensions of continuity between them. 

The basic stance that underlies our reinterpretation is constructivism-the 
view that all learning involves the interpretation of phenomena, situations, 
and events, including classroom instruction, through the perspective of the 
learner's existing knowledge. This epistemology serves both a critical role in 
evaluating the main themes of misconceptions research and a constructive 
role as the foundation for our own theoretical proposal. Most current ac- 
counts of learning as a process of individual construction provide a general 
orientation for, but fall well short of, a theory of learning mathematical and 
scientific concepts of modest complexity (Resnick, 1987; Smith, 1990; von 
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MISCONCEPTIONS RECONCEIVED 11 7 

Glasersfeld, 1987). They do not provide sufficiently detailed accounts of how 
students' continual reconstruction of their existing knowledge may produce the 
observed intermediate states of understanding and eventual mastery of a do- 
main. The constructivist principles that we outline clarify the role of misconcep- 
tions in learning and extend constructivism beyond its basic epistemological 
premise. They conceptualize knowledge not in terms of the presence or absence 
of single elements (e.g., F = ma or conversion to common denominator) but as 
knowledge systems composed of many interrelated elements that can change in 
complex ways. This knowledge system framework makes it easier to understand 
how novice conceptions can play productive roles in evolving expertise, despite 
their flaws and limitations. 

THE IMPACT OF MISCONCEPTIONS RESEARCH 

RVO major motivations underlie our reevaluation of misconceptions research. 
The first is to acknowledge the valuable insights about subject-matter learning 
contributed by studies of students' misconceptions, which have focused atten- 
tion on what students actually say and do in a wide variety of mathematical and 
scientific domains. This work represents a fundamental advance from previous 
approaches that essentially divided student responses into two categories, cor- 
rect and incorrect (e.g., Bloom, 1976; Gagne, 1968). Those dichotomous evalu- 
ations of student responses hid from view the systematicity and underlying 
conceptual sense of student errors. Building on Piaget's studies of cognitive 
development, misconceptions research freed investigators' descriptive capabil- 
ities and legitimized their efforts to uncover structure and meaning in students' 
responses. These investigations have produced careful characterizations of 
students' conceptions in a variety of conceptual domains and their changes (or 
not) in response to experience. Although we recognize these fundamental ad- 
vances, we think it is time to move beyond simple models of knowledge and 
learning in which novice misconceptions are replaced by appropriate expert 
concepts. 

The other major motivation is the impressive impact that 15 years of miscon- 
ceptions research has had on educational research and practice in mathematics 
and science. From a handful of investigations in a small number of science 
domains in the mid-1970~~ research expanded to nearly every domain of science 
and to mathematics and computer programming as well by the mid-1980s. The 
corpus of empirical results has grown to the point that review articles of 
substantial length are required to properly survey the field (Confrey, 1990; 
Eylon & Linn, 1988). The central theoretical term misconception is widely used 
to describe and explain students' performance in specific subject-matter do- 
mains (Eaton, Anderson, & Smith, 1983; Gardner, 1991; Shaughnessy, 1992). 
Research on domain-specific learning in both classroom and laboratory settings 
is now designed and conducted under the assumption that students' misconcep- 
tions in these domains must be taken seriously (e.g., Nesher, 1987). 
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11 8 SMITH, DISESSA, ROSCHELLE 

Recent work in assessment also reflects a growing sensitivity to the importance 
of student misconceptions. In mathematics, for example, the analyses of recent 
National Assessment of Educational Progress results (Lindquist, 1989) and pre- 
liminary results born open-ended California Assessment Program (CAP) test 
items (California State Department of Education, 1989) both show that miscon- 
ceptions have a strong influence on how student learning is currently evaluated. 
Whereas only 15 years ago researchers simply separated correct responses and 
errors, it is now common, even in large-scale assessments, to actively search for 
misconceptions to explain frequent student errors. In recognition of the substantial 
impact of misconceptions on educational research and practice, we examine the 
main themes of misconceptions research. 

THE CENTRAL ASSERTIONS OF 
MISCONCEPTIONS RESEARCH 

Because we accept the empirical results of misconceptions research, the most 
sensible way to critically assess this research tradition would be to examine its 
theoretical commitments. But most misconceptions research has focused more 
on the description of students' ideas--before, during, and after instruction-and 
much less on the development of theoretical frameworks that relate those ideas 
to the process of learning.' It is possible, however, to identify general assertions 
about learning that are commonly stated in the misconceptions literature. We 
identify seven such assertions, which we state with supporting examples and 
references. 

Identifying these central assertions requires judgment, and it might be ob- 
jected that we have falsely attributed a common theory of misconceptions to a 
diverse group of researchers. We recognize the substantial theoretical diversity 
among the investigators whose work we cite as misconceptions research. Some 
researchers who have stated one or more of the central assertions will certainly 
doubt or disagree with others. Our purpose is not to evaluate the theoretical 
perspectives of individual researchers but to examine a set of assertions that is 
frequently expressed in the corpus of misconceptions literature. Those asser- 
tions collectively represent a coherent theoretical position that merits our criti- 
cal attention. 

Students Have Misconceptions 

This assertion rejects the tabula rasa view of students before instruction. 
Before they are taught expert concepts, students have conceptions that 
explain some of the mathematical and scientific phenomena that expert 

 here are some well-known exceptions to this generalization. For example, the work of 
Strike, Posner, and colleagues (e.g., Posner, Strike, Hewson, & Hertzog, 1982; Strike & Posner, 
1985) has focused precisely on providing a general model of conceptual change that can account 
for the evolution of students' understanding of science from misconceptions toward expertise. 
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MISCONCEPTIONS RECONCEIVED 11 9 

concepts explain, but these conceptions are different from the currently 
accepted disciplinary concepts presented in instruction. Because they 
regularly differ from instructed concepts and guide students' reasoning, 
education in mathematics and science must take them seriously. 

The observed differences between student ideas and corresponding expert 
concepts created the need for some theoretical terminology to characterize 
those differences. Misconceptions research, in fact, generated a wide variety 
of terms to characterize students' conceptions, including preconceptions 
(Clement, 1982b; Glaser & Bassok, 1989; Wiser, 1989), alternative concep- 
tions (Hewson & Hewson, 1984), naive beliefi (McCloskey, Caramazza, & 
Green, 1980), alternative beliefs (Wiser, 1989), alternative frameworks 
(Driver, 1983; Driver & Easley, 1978), and naive theories (McCloskey, 
1983; Resnick, 1983), as well as the standard term misconception. Though 
these terms have all asserted fundamental differences between students and 
experts, the variation among them reflects differences in how researchers 
have characterized the cognitive properties of student ideas and their relation 

2 to expert concepts. In this article, we use the most common term-miscon- 
ception-to designate a student conception that produces a systematic pat- 
tern of errors3 Instruction in mathematics and science poses problems for 
students to solve and phenomena for them to explain. Conceptions (or ideas) 
identify and relate factors that students use to explain intriguing or problem- 
atic phenomena. They also represent the knowledge, expressed in terms of 
solution strategies and their rationale, that constitutes the core solution to 
specific problems. 

Misconceptions Originate in Prior Learning 

Misconceptions arise from students' prior learning, either in the classroom 
(especially for mathematics) or from their interaction with the physical and 
social world. In Newtonian mechanics-perhaps the domain most exten- 
sively analyzed-researchers have agreed that students' misconceptions 

-- 

? h e  qualifiers, pre, mis, and alternative, each point to different presumptions about the 
nature and origin of conceptions. Likewise, belief and conception suggest unitary cognitive 
structures, whereas theory and framework embed mnceplions in larger scale structures. Expand- 
ing slightly from the misconceptions perspective, we note that distinctions between formal and 
informal knowledge (e.g., Hiebert & Behr, 1988) and expert and novice (e-g., Glaser & Chi, 
1988) also have been used to characterize and emphasize fundamental distinctions between 
student conceptions and expert concepts. In Appendix A, we present a more extensive discussion 
of how these terms arise from different epistemological orientations and frame the study of 
learning in different ways. 

'~esearchers' ability to infer explicitly the content of such hypothesized student conceptions 
from observed patterns of student errors is central to this formulation. Some uses of misconcep 
tion in the educational literature simply designate a pattern of errors and do not completely 
satisfy this definition (e.g., California State Department of Education, 1989). 
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120 SMITH, DISESSA, ROSCHELLE 

about force and motion are the result of day-to-day experiences in the 
physical world (Clement, 1983, 1987; McCloskey, 1983; Resnick, 1983). As 
Clement (1983) explains, the persistence of the "motion implies a force" 
misconception "is rooted in everyday perceptual-motor experiences with 
pushing and pulling objects" @. 337). In elementary mathematics, miscon- 
ceptions usually originate in prior instruction as students incorrectly gener- 
alize prior knowledge to grapple with new tasks (Nesher, 1987; Resnick et 
al., 1989).~ For example, in their efforts to understand the ordering of 
decimal fractions with ragged fractional parts (e.g., 3.4 and 3.671), many 
middle-school students apply prior knowledge of either whole numbers or 
common fractions (Nesher & Peled, 1986; Resnick et al., 1989; Sackur- 
Grisvard & Leonard, 1985). Students who apply whole-number knowledge 
to compare 3.4 and 3.671 ignore the decimal points and treat each as whole 
numbers, concluding that 3.671 is greater than 3.4. Other students use their 
knowledge of fractions, focusing on the size of the smallest decimal place in 
the numbers but ignoring the relative value of the digits in those locations. 
Because 3.671 has one thousandth and thousandths are smaller than tenths, 
they concluded that 3.671 is greater than 3.4. 

Misconceptions Can Be Stable and Widespread Among 
Students. Misconceptions Can Be Strongly Held and 
Resistant to Change. 

Rather than being momentary conjectures that are quickly discarded, 
misconceptions consistently appear before and after instruction in sub- 
stantial numbers of students and adults in a wide variety of subject-matter 
domains and are often actively defended. As Clement has shown for 
Newtonian mechanics and elementary algebra, the same mistaken reason- 
ing can appear in a variety of different problem contexts. "Motion implies 
a force" is held responsible for errors in student reasoning on problems 
involving swinging pendulums, coin flipping, and orbiting rockets (Clem- 
ent, 1983). Similarly, college students make the same reversal error in 
translating multiplicative relationships into equations (e.g., translating 
"there are four people ordering cheesecake for every five people ordering 
strudel" into "4C = 5S" ) ,  whether the initial relations were stated in 
sentences, pictures, or data tables (Clement, 1982a). In domains of multi- 
plication (Fischbein, Deri, Nello, & Marino, 1985), probability 
(Shaughnessy, 1977), and algebra (Clement, 1982a; Rosnick, 1981), mis- 

4 ~ e  do not mean to suggest that the origins of mathematical misconceptions are always prior 
classroom instruction and that the origins of scientific misconceptions are always everyday 
physical experiences. There are, for example, always everyday, out-of-school experiences that 
are relevant to understanding new mathematical ideas. 
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MISCONCEPTIONS RECONCEIVED 1 21 

conceptions continue to appear even after the correct approach has been 
taught. Sometimes misconceptions even coexist alongside the correct ap- 
proach (Clement, 1982a). 

Misconceptions also appear widely in the student and adult population. 
Wiser (1989) reported that middle-school students' flawed source-recipi- 
ent model of kinetic phenomena shows "a high degree of consistency 
within and between students" (p. 11). Cohen, Eylon, and Ganiel (1983) 
found that large numbers of their high school students and physics teach- 
ers harbored misconceptions about simple circuits such as "a battery 
delivers a constant current," regardless of the circuit's components. 
Tversky and Kahneman (1982) demonstrated that misconceptions about 
statistics and probability such as the representativeness heuristic and the 
law of small numbers, are commonly asserted, even by professionals. 

Perhaps most troubling is that students can doggedly hold onto mis- 
taken ideas even after receiving instruction designed to dislodge them. 
Summarizing years of misconceptions research in Newtonian mechanics, 
Clement (1987) reported, "Many preconceptions are deep seated and 
resistant to change" (p. 3). Similarly, the naive theories of motion Mc- 
Closkey (1983) ascribed to his students were "consistent across individu- 
als," "very strongly held," and "not easily changed by classroom 
instruction." This persistence does not necessarily mean that instruction 
has failed completely. It can succeed in imparting the correct concept that 
then competes with the prior misconception, as Fischbein et al. (1985) 
note in their analysis of students' notions of multiplication. 

The initial didactical models [the miswnceptions from previous instruction] 
seem to become so deeply rooted in the learner's mind that they continue to 
exert an unwnscious control over mental behavior even after the learner has 
acquired formal mathematical notions that are solid and correct. @. 16) 

Misconceptions Interfere With Learning 

Because of their strength and flawed content, misconceptions interfere 
with learning expert concepts. Hiebert and Behr (1988) interpreted a 
number of studies as showing that middle school students' numerical 
knowledge of additive relations has interfered with learning various mul- 
tiplicative relations such as proportional reasoning. The source of 
students' difficulty in learning formal notions of probability has been 
attributed to the interference of misconceptions about probabilistic 
events such as the law of small numbers (Lindquist, 1989; Shaughnessy, 
1985). For Cohen et al. (1983), misconceptions about circuits impede the 
rigorous study of electricity. Researchers in physics have reported that 
misconceptions even cause students to misperceive laboratory events and 
classroom demonstrations (Clement, 1982b; Resnick, 1983). 
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1 22 SMITH, DISESSA, ROSCHELLE 

Misconceptions Must Be Replaced 

Because misconceptions are so prevalent, learning mathematics and science 
must involve a shift away from misconceptions to expert concepts. This shift 
is often characterized as replacement: More adequate expert ideas must be 
developed and replace existing misconceptions. Learning involves both the 
acquisition of expert concepts and the dispelling of misconceptions. The 
assumption that removing misconceptions has no negative consequences 
because they play no productive role in expertise is implicit in the replace- 
ment view. 

Multiple lines of evidence show that the replacement view of conceptual 
change is frequently expressed in misconceptions literature: (a) Explicit 
statements of replacement are not uncommon, (b) explicit rejections of 
replacement are difficult to locate, (c) alternative models of change are 
either absent or undeveloped, and (d) replacement is consistent with other 
assertions about misconceptions (discussed later). These lines of argument 
and the evidence in support of them are developed in Appendix B. The 
evidence presented there shows that this assertion, despite its bold simplic- 
ity, is not simply a rhetorical straw man. 

Instruction Should Confront Misconceptions 

To neutralize the interference of misconceptions, instruction should confront 
students with the disparity between their misconceptions and expert con- 
cepts. When the disparity becomes explicit, students will appreciate the 
advantages of the expert concepts and give up their misconceptions. Re- 
searchers who developed classroom approaches to misconceptions have 
often proposed rational competition between misconceptions and corre- 
sponding expert concepts. This instruction first has students articulate their 
unconscious misconceptions and then establishes a framework for compar- 
ing the validity of the competing ideas (Champagne, Gunstone, & Klopfer, 
1985; Strike & Posner, 1985). Confrontation begins as an external, social 
interaction in the classroom, but for confrontation to succeed, the competi- 
tion between misconceptions and expert concepts must be internalized by 
students. Confrontation and replacement are therefore inextricably linked: 
Successful instructional confrontation leads to learning by replacement. 

The related metaphor of overcoming has also been used to describe the 
process of conceptual change (Brown & Clement, 1989; Shaughnessy, 
1982). Although overcoming suggests a similar competition between ideas, 
researchers who advocate it suggest how to leverage the competition so that 
students will be more likely to give up their misconceptions. Brown and 
Clement's bridging analogies establish and strengthen connections between 
expert physics concepts and other existing student conceptions, thus under- 
mining the competing misconceptions. Like interference and replacement, 
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overcoming suggests that misconceptions are strictly a hindrance to expert 
reasoning and therefore should be discarded.' 

Research Should Identify Misconceptions 

A major task for research in mathematics and science learning is to document 
misconceptions in as many subject-matter domains as possible. Though we 
have not found explicit statements of this assertion in the literature, we have 
inferred it from the character of research that appeared after early reports of 
misconceptions attracted researchers' attention. The focus of the later work 
was to identify misconceptions in yet another domain of science or mathe- 
matics. Much less emphasis was given to modeling the learning of successful 
students in those domains, to characterizing how misconceptions (and the 
cognitive structures that embed them) evolve, or to describing the nature of 
instruction that successfully promotes such learning. When we consider the 
corpus of misconceptions research, the major research effort has been to 
identify more misconceptions. 

CONFLICTS WITH CONSTRUCTIVISM 

Although constructivist principles have not been explicit in these central 
assertions, some researchers who have analyzed misconceptions have also 
advocated this general perspective on learning (Driver, 1983; Nesher, 1987; 
Resnick, 1987). Constructivism emphasizes the role of prior knowledge in 
learning. Students interpret tasks and instructional activities involving new 
concepts in terms of their prior knowledge. Errors are characteristic of initial 
phases of learning because students' existing knowledge is inadequate and 
supports only partial understandings. As their existing knowledge is recog- 
nized to be inadequate to explain phenomena and solve problems, students 
learn by transforming and refining that prior knowledge into more sophisti- 
cated forms. Substantial conceptual change does not take place rapidly, and 
relatively stable intermediate states of understanding often precede concep- 
tual mastery. 

Our central claim is that many of the assertions of misconceptions re- 
search are inconsistent with constructivism. Misconceptions research has 
emphasized the flawed results of student learning. Constructivism, in con- 
trast, characterizes the process of learning as the gradual recrafting of exist- 
ing knowledge that, despite many intermediate difficulties, is eventually 
successful. It is difficult to see how misconceptions that (a) interfere with 
learning, (b) must be replaced, and (c) resist instruction can also play the role 

' ~rown and Clement are exceptional among misconceptions researchers in attributing an 
explicit productive role, as the anchors of analogies, to some prior student ideas. Minstrel1 
(1989) and some of our own prior work (disessa, 1983) have also illustrated the productive roles 
played by student ideas about the behavior of the physical world. 
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1 24 SMITH, DISESSA, ROSCHELLE 

of useful prior knowledge that supports students' learning. If we take con- 
structivism seriously, we must either reconsider the solely mistaken charac- 
ter of misconceptions or look for other ideas to serve as productive resources 
for student learning. We now attempt to sharpen this argument by pointing to 
specific parts of the misconceptions perspective that conflict with construc- 
tivism. 

Deepening the Learning Paradox 

Some cognitive researchers have suggested that our common-sense notions 
of learning are not logically consistent (discussion in Bereiter, 1985; Fodor, 
1980). How is it possible for our existing cognitive structures to transform 
themselves into more complex forms? Fodor's answer is that it is not possi- 
ble. More powerful cognitive structures can be learned only if they existed 
in some form already. What appear to educators as the results of learning are 
simply the emergence of cognitive structures that existed in nascent form 
from birth. 

The emphasis in the misconceptions perspective on the differences be- 
tween students and experts significantly strengthens this paradox by widen- 
ing the gulf that a constructivist theory of learning must bridge. In focusing 
only on how student ideas conflict with expert concepts, the misconceptions 
perspective offers no account of productive ideas that might serve as re- 
sources for learning.6 Because they are fundamentally flawed, misconcep- 
tions themselves must be replaced. What additional relevant ideas students 
might have available remains a mystery. An account of useful resources that 
are marshaled by learners is an essential component of a constructivist 
theory, but the misconceptions perspective fails to provide one. 

Piaget's theory of cognitive development attempted to resolve this prob- 
lem without appealing to preformed and content-specific cognitive struc- 
tures (Piaget, 1971). Like Piaget, we accept that a major task for a 
constructivist theory of learning is to present a psychologically plausible 
resolution of the learning paradox. Like Bereiter (1985), we suggest that a 
convincing response depends on identifying a range of cognitive resources 
that can support the bootstrapping of more advanced cognitive structures. 
Our use of the term resources designates any feature of the learner's present 
cognitive state that can serve as significant input to the process of conceptual 
growth. Because our focus is learning mathematics and science, the re- 
sources we emphasize are students' existing understandings of their mathe- 
matical and physical worlds. 

We suggest that misconceptions, especially those that are most robust, 
have their roots in productive and effective knowledge. The key is context- 

6~ga in ,  there are exceptions to this deficit (e.g., Clement, Brown, & Zietsman's 1989 
analysis of anchoring conceptions in learning Newtonian mechanics), but such exceptions are 
rare. 
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MISCONCEPTIONS RECONCEIVED 1 25 

where and how those conceptions are used. There are certainly contexts in 
which students' existing knowledge is ineffective, or more carefully articu- 
.kt'& ,mtxb1mfira1 and jirint;,fir ~JLW~LP* is J ' I N L ~ ~ F V P S ~ ~ :  I b h m w ~  
some flawed conceptions, though sensible in the short run, may play no role 
whatsoever in more expert reasoning. But the major limitation of misconcep- 
tions research has been its examination of a restricted set of contexts in 
which students' conceptions fail while leaving unidentified a broader range 
of contexts in which they are productive. 

Is Replacement an Adequate Model of Learning? 

Much misconceptions research has suggested that learning is a process of 
replacing misconceptions with appropriate expert knowledge. Often re- 
placement is characterized as a one-for-one process. The motion implies a 
force misconception should be replaced by Newton's Second Law, F = ma, 
or following Petrie (1976), the impetus theory should be replaced by 
Newton's First Law. There are two main reasons to doubt replacement, 
either as a cognitive process or as a useful metaphor for learning: empirical 
evidence of the complexity of knowledge and learning and considerations 
of theoretical consistency. 

The plausibility of replacement depends on very simple models of knowl- 
edge. Misconceptions (and expert conceptions) are taken to be unitary, 
independent, and therefore separable cognitive elements. Learning is a pro- 
cess of removing misconceptions from students' cognitive structures and 
inserting appropriate expert concepts in their place. However, the relation- 
ship between particular conceptions and the cognitive structures that embed 
them are far more complicated than such unitary models suggest (Clement, 
1982a, 1987; Kuhn & Phelps, 1982; Schoenfeld, Smith, & Arcavi, 1993). 
Clement's studies in mechanics and multiplicative equations have shown 
that students can shift between correct and flawed approaches within the 
same problem-solving episode, which suggests that cognitive structures can 
embrace both expert concepts and misconceptions. If concepts are more like 
complex clusters of related ideas than separable independent units, then 
replacement looks less plausible as a learning process (disessa, in press; 
Smith, 1992). 

Replacement also conflicts with the constructivist premise that learning is 
the process of adapting prior knowledge. The critical question raised by 
replacement is: What prior knowledge is involved in the construction of the 
expert concepts that replace misconceptions? If we accept the mistaken 
character of misconceptions, they cannot serve as resources. The other pos- 
sibility is that students have some complementary pool of productive knowl- 
edge that can be brought into competition with misconceptions, but 
misconceptions researchers have not identified such resources within the 
novice understanding. 
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126 SMITH, DISESSA,  ROSCHELLE 

Is Confrontation an Appropriate Model of Classroom 
Learning? 

For classroom instruction to be successful in confronting misconceptions, 
teachers must present expert concepts in clear opposition to students' faulty 
conceptions. This instruction must include demonstrations and activities that 
produce counterevidence and plausible conceptual alternatives to target mis- 
conceptions. The confrontation of ideas in the classroom is then internalized 
by students as a psychological process of competition that finally results in 
the replacement of the misconception. 

There are both strengths and weaknesses in this conceptualization of 
classroom instruction. We need energetic classroom discussions in which 
students take positions, make sense of and explain problematic phenomena, 
and articulate justifications for their ideas. Activities that produce states of 
cognitive conflict are certainly desirable and conducive to conceptual 
change. However, as judged by constructivist standards, confrontation suf- 
fers from important deficits as either a phase of conceptual change or a 
model of instruction. As cognitive competition, it cannot explain why expert 
ideas win out over misconceptions. The rational replacement of one concep- 
tion with another requires criteria for judgment. As knowledge, those criteria 
must be constructed by the learner, and neither confrontation nor replace- 
ment explains the origins of such principles for choosing concepts, crucial 
data, or theories. In fact, change in how one decides in favor of one concep- 
tion over another is a complex part of conceptual development (Kuhn & 
Phelps, 1982; Schauble, 1990), and confrontation is an implausible mecha- 
nism for changing principles that decide, for example, the relevance of data 
to theory. 

Confrontation is also problematic as an instructional model. In contrast to 
more evenhanded approaches to classroom discussions in which students are 
encouraged to evaluate their conceptions relative to the complexity of the 
phenomena or problem, confrontation essentially denies the validity of 
students' ideas. It communicates to students that their specific conceptions 
and their general efforts to understand are fundamentally flawed. The meta- 
phor of confrontation is also inconsistent with the pedagogical sensitivity 
and care required to negotiate new understandings in the classroom (Yaekel, 
Cobb, & Wood, 1991). Finally, some misconceptions are powerful enough to 
influence what students actually perceive, thereby decreasing the chances 
that planned confrontation and competition will be successful (Resnick, 
1983). 

We have reached a transitional point in our analysis. With the key asser- 
tions of misconceptions research and some of its problems before us, we can 
begin to build toward a more productive theoretical perspective. First, we 
present three case analyses from our work in learning mathematics and 
physics that emphasize continuity between naive and advanced states of 
understanding. They provide important clues to how students' prior knowl- 
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edge can support the gradual acquisition of expertise-that is, how construc- 
tivist learning is possible. 

WHO THINKS CONCRETELY? 

Misconceptions and alternative conceptions approaches to science learn- 
ing have taken students' conceptions to be similar in form to expert 
knowledge but different in content. On the other hand, researchers work- 
ing within the expert-novice paradigm have focused on apparent differ- 
ences in form between students' and experts' knowledge. They have 
characterized novices' reasoning as concrete and that of physics experts 
as abstract (Chi, Feltovich, & Glaser, 1981; Larkin, 1983). Learning 
Newtonian physics means leaving the everyday world of concrete objects 
and entering the abstract world of physics through direct instruction in 
experts' concepts. Abstraction constitutes the principal barrier that di- 
vides experts from novices-a barrier surmounted only when novices 
gain new and fundamentally different knowledge of the physical world. 
This point of view therefore denies the relevance of novice conceptions 
to the heart of experts' competence.7 

Being concrete means being focused on the everyday and obvious surface 
structure of physical problem situations. So, novices classify problems in 
Newtonian mechanics that contain pulleys as pulley problems whether they 
are solved by F = ma or, alternatively, by conservation of energy (Chi et al., 
1981). Being solvable by one or another physical principle defines catego- 
ries of problems only for physicists, and these categories relate to the 
abstract, deep structures that physics instruction provides. 

Our analysis suggests that the intuitive notions of physics novices contain 
both a sense of surface structure and a sense of deep structure. The deep 
structures of intuitive physics are in no obvious way less abstract than those 
of schooled physics. They may be more familiar, but they do not relate to 
classifying problems by the familiar objects (e.g., pulleys) they contain. The 
reasons novices appear less abstract are largely methodological. The deeper 
structure that novices perceive is not normally tapped in the assessments of 

 here are at least two reasons for introducing a distinction more directly associated with 
expert-novice studies than misconceptions research per se. First, continuity from naive to 
expert ideas is  the basis both for our critique of misconceptions and for the constructivist 
theoretical proposal later in the article. To ignore a commonly cited dimension of difference 
between naive and expert knowledge would leave our argument open to the criticism that we had 
successfully questioned some distinctions but left the strongest arguments for discontinuity 
intact. More deeply, there is great commonality between the misconceptions perspective and 
expert-novice studiesspecifically that naive ideas are unlikely resources for acquiring exper- 
tise, and hence, instruction of new concepts is a necessity-that adds breadth to our argument. 
It is worth pointing to the main source of those commonalities: inattention to the positive 
characteristics of naive knowledge. 
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128 SMITH, DISESSA, ROSCHELLE 

expert-novice studies. Novices are asked to perform under conditions in 
which they are incompetent, and the questions they answer are inappropriate 
measures of their real competence. They are characterized as bound to the 
concrete, conceiving only the directly perceivable aspects of situations. Our 
alternative position is that there are many abstract elements in intuitive 
physics knowledge. People see processes like bouncing and falling that are 
independent of many surface features, and therefore, must count as abstract. 
(A bouncing pulley is a lot more like a bouncing inclined plane, in naive and 
obvious ways, than a bouncing pulley is like a floating one.) Even when 
situations are difficult, but still close to their intuitive competence, novices 
can reason abstractly using knowledge that is similar in form to that of 
experts. To see this, one must get a sense for the kind of abstract knowledge 
novices possess, the kind of problems that engage it, and the sorts of infer- 
ences it supports. 

We show that novices can exhibit expert-like behavior in explaining how 
a complex but familiar physical system works. Specifically, novices are 
willing to search for appropriate underlying mechanisms that are indepen- 
dent of salient surface representations. The heart of this analysis is that 
explanation is an everyday activity. People know that the world operates 
according to general principles and that those principles apply sometimes in 
highly nonobvious ways. We constantly explain things to ourselves and to 
each other. The terms we use in these explanations are often not evident in 
the situation and are in no clear way less abstract than physicists' terms. Put 
somewhat differently, if people had only concrete knowledge, everyday 
explanations would make no sense as an activity. 

Our method for highlighting the abstractness of intuitive physics is to put 
novices in problematic but familiar situations. There we will see hallmarks 
of abstract reasoning, including hypothetical reasoning, collecting evidence 
for the presence or absence of some abstract entity, and drawing conclusions 
from general principles. We claim that thinking about support, clamping, 
tension, pushes, and pulls are not surface descriptions of the physical world, 
no matter how quickly we recognize them in physical situations. 

Reasoning About Bicycles 

As a classroom exercise with physics-naive education graduate students, one 
of us (disessa) evolved an extended discussion and analysis of how 
bicycles work. If novices are concrete, surely these students should show 
their concreteness in such a familiar situation. The opening question was 
to ask simply how the bicycle's frame is supported-why does it not fall 
to the ground? After some encouragement that the interrogator was seri- 
ous, or after someone proposed a controversial explanation, the question 
was accepted as not only meaningful but also interesting. Students do not 
just accept the obvious fact that bicycle frames simply do not fall to the 
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ground. Like experts, they realize the need for deeper explanatory 
principles than superficial descriptions of the structure of the bicycle. 

The intuitive concept of support. Students frequently begin by artic- 
ulating the need to find the path of support from the ground to the frame of 
the bicycle. The propagation of support is, of course, a familiar idea that 
explains why the top book of a pile sits high in the air, yet its burden is felt 
by the books below, and why a scale under a pile of books feels the weight 
of a newly added book. That the concept of support is familiar hardly 
qualifies it as concrete. The very fact that the answer to this question of 
support for the bicycle is problematic implies that students do not always 
expect support to be visually evident. In the same way, physicists do not 
expect to literally see momentum propagation, even if they are quick to 
know momentum is propagating in some situations. 

There are many kinds of support. Determining which operates in a 
given situation may require as much extensive reasoning for novices as 
for experts puzzling over whether a problem will yield to one principle or 
another. Support is also intuitively a topological and causal issue in 
roughly the same way that Newtonian statics views it. Nearly the same set 
of superficial properties is stripped away to find the relevant deep struc- 
ture. Color, texture, history, ownership, temperature, and so  on, are irrel- 
evant; flexibility, rigidity, stress, and contact are the deep structure of 
support. 

Typically, students' first conjecture is that support is provided by the 
spokes directly under the hub, similar to the pile of books under the top one. 
How concrete is this attribution? A good indication is that the claim is often 
immediately withdrawn if it is pointed out that the spokes are under tension. 
The bottom spokes are pulling down on the hub, and the existence of tension, 
which is equally hidden from direct perception, contradicts presumptions of 
support. Some students know for a fact that the spokes are under tension; 
others need to be convinced. That argument can involve other considera- 
tions. For example, if you pluck a bicycle spoke, it vibrates like a rubber 
band under tension. This observation may initially need to be made by the 
interrogator, but once introduced, it is generally taken as compelling evi- 
dence of the existence of another imperceptible structure-tension. 

Hypothetical reasoning. Sometimes students propose (or respond 
positively to) a hypothetical argument against the support proposal: If sub- 
stantial pressure were put on the spokes, they would crumple. Therefore, 
they must be under tension, or at least are very unlikely to bear much burden. 
How concrete is the spindliness that students see in spokes? If it is a surface 
feature, why do they not immediately see it and disregard the possibility that 
the spokes may support the hub and frame? 
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1 30 SMITH, DISESSA, ROSCHELLE 

Reasoning by exclusion. A pause in the flow of ideas usually occurs 
at this point. By ruling out the previous possibilities, students are eventually 
left with the hypothesis that the hub of the bicycle is hanging by the top 
spokes. Initially, this is a highly counterintuitive attribution. Still, given time 
to consider the kinds of arguments described previously, most come to feel 
it is a forced conclusion. Intuitive reasoning, therefore, can draw initially 
implausible conclusions because intuitive knowledge is not so shallow or 
weak that it cannot flexibly support new ways of conceptualizing everyday 
situations. This is hardly the characteristic of a concrete, surface feature- 
bound knowledge system. 

Other intuitive abstractions. Other intuitive descriptions that often 
apply hypothetically in the physical world are invoked by students in the 
bicycle situation. The first is an alternative to the hanging theory of support: 
The hub is being locked into place by the spokes, which are pulling in all 
directions at once. This analysis, again, involves a highly nonevident causal 
attribution, though a familiar one. Pairs of opposing forces (i.e., two hands 
pushing or pulling equally on a block) seem to clamp objects rigidly in place. 
A vise is a device that depends dramatically on this mechanism. Opposing 
pulls on manacles restrain a prisoner. Yet, familiarity cannot be used to argue 
that such mechanisms are concrete, or any principle is considered concrete if 
it has a familiar instantiation. Does the image of a man jumping forward in a 
boat, which physicists instantly recognize as a case of action and reaction, 
mean that Newton's third law is a concrete principle? 

In what ways are the spokes of a wheel like hands clamping an object? 
They are the same in that opposing, equal tendencies impinge on a common 
object. Notice how much this characterization strips from the surface presen- 
tation. It removes not only all the attributes that we intuitively understand do 
not contribute to motion or rest, but also even the animacy of the cause. It is 
irrelevant that people restrain a prisoner and that spokes may restrain a hub. 
People can see the hub to be like clamping hands only by characterizing each 
as geometric configurations of invisible causal tendencies such as pulls and 
pushes. Even to see a pull (tension) in the spoke is quite an abstract accom- 
plishment because the hub never moves in response to that pull. 

We take one final example from the bicycle. Leaving aside the spokes, how 
does the bicycle tire support the rim? The intuitive model most frequently 
proposed by students is that the compression of the tire causes an increase in the 
internal pressure, which pushes up on the rim. The tire is then a kind of spring. 
Again, how concrete is this? And how tied to surface features of the situation? 
How can students possibly suggest, let alone judge, the metaphor like a spring 
unless they have an abstract model of how a spring works? 

Unfortunately, the spring model fails for the tire. The pressure in the tire 
increases only minimally in compression, not nearly enough to account for 
support. Even worse, the increase in pressure cannot be responsible for 
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support through a net increased upward force on the wheel because air 
pressure propagates around the inside of the tire and presses down on the top 
of the rim as much is it presses up on the bottom. Yet, people have abstracted 
from experience the principle that compression leads to increased pressure, 
and increased pressure can provide more support. It is exactly this abstract 
model that explains how a bicycle tire may be thought of as a spring. 

Abstract and concrete are slippery terms. We believe they are far from 
sufficiently precise to adequately classify knowledge, let alone to classify 
the people who use that knowledge. Experts appear highly concrete when 
they compulsively turn even the most abstruse ideas into a most concrete set 
of visible and manipulable entities-algebraic symbols. Concretely medi- 
ated thinking of this sort is characteristic of the highest levels of human 
activity. Similarly, novices are abstract-in addition to the ways suggested 
previously-when they apply newly learned physical concepts to situations 
without examining all the details of those situations that tell a physicist those 
concepts may not be relevant. So, it is especially important to be clear about 
what is asserted in the name of abstract and concrete. 

We claim that novices in reasoning about the physical world: 

Seek deeper explanations of the causality involved in situations than 
are immediately and superficially apparent. 
Attend extremely selectively to features of situations, ignoring (ab- 
stracting from) many surface features to focus on what they consider 
causally relevant. 
Apply principles that (a) apply hypothetically to a given situation, (b) 
are intended to identify underlying causal mechanisms (deep struc- 
ture), and (c) may be withdrawn under consideration of other argu- 
ments. 

In short, when a complex fabric of physical relationships, potential observa- 
tions, and interventions (like plucking a spoke to find out if it is under tension) 
mediate novices' determinations of how situations are causally configured, we 
believe it is appropriate to say such knowledge is abstract in the same sense that 
expert knowledge is abstract. Novices appear to think concretely when they 
have been asked to classify problems that they are unable to solve and have 
nothing but generic, noncausal descriptions to rely on. Experts are classified as 
abstract because they have the particular abstractions selected as relevant- 
those that happen to solve the problems posed in research studies. 

SHARED CHARACTERISTICS OF KNOWLEDGE 
SYSTEMS: NOVICES AND MASTERS OF 

COMMON FRACTIONS 

As the earlier references to mathematical misconceptions have shown, much 
recent research in mathematics learning has focused on how students' partial 
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1 32 SMITH, DISESSA, ROSCHELLE 

and evolving understandings differ from those of experts. This difference has 
been emphasized in analyses of many domains, including order relations 
among decimal fractions (Hiebert & Wearne, 1986, Nesher & Peled, 1986; 
Resnick et al., 1989), decimal fractions operations (Fischbein et al., 1985; 
Hiebert & Wearne, 1985, 1986), and basic notions of sampling, chance, and 
probability (Shaughnessy, 1977, 1985, 1992; Tversky & Kahneman, 1982). 
These analyses have generally asserted that the flaws in students' under- 
standings result from overgeneralized applications of prior mathematical 
knowledge-for example, using only knowledge of whole number order and 
place value to order decimals. Although many students eventually work 
through and beyond their flawed conceptualizations, mastery of these ele- 
mentary mathematical domains is neither easy, rapid, nor uniformly 
achieved (Post, Harel, Behr, & Lesh, 1988; Tversky & Kahneman, 1982). 

This case summarizes a recent study of student learning in one such 
domain: order and equivalence relations among fractions (Smith, 1990). 
Whereas the previous analysis questioned a distinction commonly used to 
distinguish experts from novices, this case points directly to properties that 
are descriptive both of the knowledge of masters of the domain and of 
novices. It focuses on the shared general characteristics of masters' and 
novices' knowledge systems, on masters' reuse of novice knowledge, and on 
shifts in the application context of key pieces of knowledge as an important 
category of learning. It suggests that these continuities may be important 
general dimensions of conceptual growth in a constructivist theory of math- 
ematics learning. 

The study compared the knowledge and reasoning of upper elementary, 
middle school, and senior high students on various tasks involving the order (>) 
and equivalence (=) of fractionsissues central to a broader understanding of 
rational numbers (Behr, Wachsmuth, Post, & Lesh, 1984; Hiebert, 1992). Stu- 
dents were asked to compare pairs of fractions, select two addends for a given 
sum from a fixed set of possibilities, generate fractions between two given 
fractions, and evaluate correct and incorrect examples of comparison reason- 
ing. Their knowledge was assessed in terms of the strategies they used to 
solve the tasks. For example, a frequent strategy for comparing 8/11 and 7/15 
was to assert that the common reference number, M, was between 8/11 and 
7/15, and to use that order relation to infer that 8/11 is greater than 7/15. Ten 
elementary students who had just been introduced to fractions in the class- 
room were taken as novices. Eight senior high students and three middle- 
school students whose reasoning was accurate, direct, flexible, and confident 
were judged representative masters of the domain. 

Fraction Knowledge in Pieces 

Two strategies for reasoning about fractions are sufficiently general to 
solve most (if not all) problems in the domain--conversion to common 
denominator and conversion to decimal. When the fractions given in a 
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MISCONCEPTIONS RECONCEIVED 1 33 

problem are converted in either way, it can be solved by applying appropriate 
whole-number or decimal knowledge. It is, therefore, not surprising that 
most textbook curricula, particularly in the middle-school years, emphasize 
these strategies almost exclusively as the appropriate methods for reasoning 
about fraction order and equivalence. 

Because one trademark of mathematical knowledge is its generality and 
because general strategies are heavily emphasized in instruction, masters 
might have been expected to rely solely on these strategies in their solutions. 
In the same way that F = ma and conservation of energy dominate experts' 
solutions of typical mechanics problems, common denominator and decimal 
conversion may dominate masters' fraction reasoning. In fact, those general 
strategies were not so widely applied as expected. Mastery depended instead 
on a wider variety of strategies, many of which are applicable to only a 
restricted class of problems. Many of these specific strategies were not 
supported in any direct way in the textbook curriculum. 

Within the restricted class of problems they could solve, these strategies 
supported very efficient and reliable solutions. Although one of three strate- 
gies was sufficient alone to solve all eight comparison problems,8 masters 
applied an average of 7.6 different strategies.g This varied strategy use was 
also relatively uniform across the 11 masters. Only 1 student used the same 
strategy on as many as four different comparisons, and only 2 others did so 
on three different comparisons. The diversity of strategy application was 
greatest on the comparison task (which also contained the largest number of 
items among the tasks) but was evident on the other tasks as well.'' 

Let us look at some specific strategies. One general resource used by 
masters was well-known numerical reference points (Behr et al., 1984). 
Because the four tasks involved only proper fractions, the relevant reference 
points were 0, M, and 1. When they compared 8/11 and 7/15, about half of 
the masters applied the strategy described previously (8111 > 7/15 because 
8/11 > M and 7/15 < M). Likewise, when they searched for addends for 516 
(the addend choices were M, 113, Vq and 1/6), they used the fact that 516 was 
close to 1 to motivate their selection of the biggest addends--% and 113. 
Both strategies produced rapid and reliable solutions without resort to time- 
consuming numerical computations. 

Similarly, when they compared 12/24 and 8/16, masters exploited the easy 
half of relationship within the components of fractions to assert their equiv- 
alence. They again avoided the more time-consuming computations required 

'1n addition to conversion to common denominator and conversion to decimal, cross multi- 
plication also solves all fraction comparisons. 

' ~ r e ~ u e n t l ~ ,  subjects applied more than one strategy to solve a single item. 
'O~he clear exception was reasoning about the betweenness. The fractions given on that task, 

315 and 517, were sufficiently close to each other so it was difficult to solve the task without 
applying a general strategy. Students' solutions reflected this situation; generally speaking, they 
either converted to common denominator or decimal or failed to solve the task. 
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1 34 SMITH, DISESSA, ROSCHELLE 

by either decimal or common-denominator conversion. Like the two previ- 
ous strategies, the efficiency of this strategy depended on its limited applica- 
bility to specific numerical situations. Although it was deployed somewhat 
more generally by some masters (e.g., to compare V4 with 6/24 and 416 with 
6/9), the payoff in efficiency and reliability is purchased at the cost of 
generality. Instead of exploiting the power of general strategies to reason 
about all fractions they confronted, masters more often used specific tools 
that were well suited to particular numerical situations, leaving the general 
strategies for situations in which there were no easy relationships to exploit. 

Despite their utility and efficiency, most specific strategies are not explic- 
itly taught. A review of representative textbook series conducted as part of 
this study revealed that very few of the specific strategies were supported in 
any direct way in the Grade 3 through eight texts. Thus, the origin of these 
specific strategies appears to lie only indirectly with instruction and must 
substantially involve the constructive activity of students. 

Given this view of mastery, how do novices in the domain compare? 
Despite limited exposure to instruction, the elementary students also applied 
a variety of strategies to solve the tasks. In terms of numbers of strategies 
applied, they rivaled the masters, averaging of seven strategies to solve eight 
comparison items. Only one student used the same strategy on all eight 
items. Their reasoning was generally organized around the mental or graphic 
manipulation of drawings of divided quantities (e.g., pie charts). The frac- 
tion 213 was represented as the fractional quantity formed by selecting two 
of three equal-sized parts of a rectangular or circular whole quantity. This 
general model supported the development of a variety of specific strategies. 
Moreover, the same general consideration-the specific numerical features 
of the given fractions-was a crucial feature of novice strategies. Novices, 
like masters, used the half of relationship to establish the equivalence of 
12/24 and 8/16 and generalized that strategy somewhat to equate V4 and 6/24 
(fourth of) and 416 and 619 (two thirds of). Masters and novices both pos- 
sessed varied resources and the disposition to select strategies that were 
maximally effective in restricted numerical contexts. 

These results indicated a fundamental similarity in the systematic charac- 
teristics of masters' and novices' knowledge. It consisted of numerous strat- 
egies, groups of which were related by a common terminology (e.g., standard 
reference numbers and parts of divided quantities). Neither group's reason- 
ing was captured very well by the general strategies typically emphasized in 
textbooks. There was a shared tendency to construct strategies that were 
tailored to solving specific classes of problems. Whenever possible, most 
novices and masters preferred to apply specific strategies, leaving the more 
cumbersome general strategies for those situations in which no specific 
strategy was effective. It is important to note that similar characterizations 
have been given for children's knowledge of natural number addition and 
subtraction (Carpenter & Moser, 1984; Murray & Olivier, 1989; Siegler, 
1987; Siegler & Jenkins, 1989). 
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MISCONCEPTIONS RECONCEIVED 1 35 

It would be a mistake, however, to discount the important differences 
between two groups. Mastering this domain is a complex achievement, 
requiring substantive conceptual changes over a period of years. Novice 
reasoning was often narrowly restricted to the manipulation of a mental 
model of divided quantity. In contrast, masters' reasoning was carried more 
efficiently on three different types of numerical relationships: (a) relations 
within and between the whole-number components, (b) numerical reference 
points, or (c) numerical conversions such as common denominator and 
decimal. From this description, masters' knowledge may appear to be quite 
different in content from novices' mental model of divided quantity, but 
knowledge of divided quantity played an important conceptual role for 
masters just below the numerical surface of their reasoning. 

Continuity in Knowledge Content: The Root of Divided 
Quantity 

On the surface, masters and novices appeared to be doing quite different 
things. Masters solved the tasks with a variety of different numerical strate- 
gies, whereas novices depended directly on their models of quantity, but a 
careful examination of masters7 reasoning indicated that their numerical 
strategies were built on a foundation of divided-quantity knowledge. This 
foundation became most visible when masters were asked to justify their 
numerical reasoning or when they encountered some difficulty in solving a 
problem. When they were asked why their numerical strategies worked, 
particularly those that were stated in terms of relations between fraction 
components, masters generally justified their reasoning in terms of divided 
quantity. For example, masters frequently solved the comparison of 7/11 and 
7/13 by asserting that "a smaller denominator makes the fraction greater," 
provided that the numerators are equal. When asked to explain that assertion, 
they appealed to the size of the parts in the respective models of quantity- 
that "11th  are larger size pieces than 13ths." The latter part of the argument 
is typical of novice reasoning. Likewise, when masters were asked to justify 
why conversion to common denominator worked, they most frequently ap- 
pealed to the fact that the quantities expressed by the fractions were invari- 
ant under the subdivisions of their parts. Their justifications involved 
coordinating the numerical steps in the conversion (e.g., raising terms by 
multiplication) with corresponding actions on divided quantity (subdividing 
the parts in the quantity equally). 

This changing role of quantity-based fraction knowledge represents a differ- 
ent form of continuity between novice and expert. Prior novice knowledge 
remained productive for masters by supporting new knowledge that was more 
efficient and reliable. This shift involved a change in role of their knowledge of 
divided quantity. When divided quantities carried the reasoning of many nov- 
ices directly, masters' reasoning was carried by numerical relationships and 
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136 SMITH, DISESSA, ROSCHELLE 

operations. Their knowledge of divided quantity, though often not directly 
apparent, remained at the basis of their knowledge system, underlying and 
justifying their more powerful numerical strategies. 

This analysis of learning is quite different from the misconceptions view. Prior 
knowledge of divided quantity is certainly not replaced by the general strategies 
emphasized in textbook curriculum. General strategies are definitely learned by 
masters and play a major role in their reasoning, but they do not displace the 
strategies that precede them. In fact, evidence suggests the opposite possibility: 
Learning the general strategies themselves may depend on prior knowledge of 
divided quantity. Instead of being displaced, prior knowledge is retained and 
s e w s  a new foundational role in developing mastery. 

Consistent with the basic premise of constructivism, this case illustrates spe- 
cific ways that students utilize their prior conceptions to learn more advanced 
knowledge. It suggests that researchers look for ways in which knowledge is 
reused and serves new functions in developing competence. It also serves as a 
reminder that surface differences between novices and masters can hide important 
similarities in the content of their domain knowledge. If no attempt is made to 
probe below the surface of the experts' knowledge, important genetic connections 
to prior states can be overlooked The result can be seriously flawed characteriza- 
tions of expertise and processes involved in learning complex mathematical ideas. 

Continuity of Form: Adjusting the Application Context 

The previous examples highlight two important dimensions of continuity 
between masters' and novices' fraction knowledge: (a) Neither group's 
knowledge was simply composed but was instead structured as complex 
systems of related elements, and (b) a major component of novices' under- 
standing was retained to play a different role for masters' understanding. A 
third dimension of continuity focuses on changes in the applicability of 
knowledge-learning to use what you already know in either wider or more 
restricted contexts. 

Some novices knew that the strategy of common-denominator conversion 
worked in the addition context. Five of the 10 students were able to correctly 
add two fractions with unlike denominators (i.e., 315 + 7/10), even though 
they could not coherently explain the necessity of converting 315 to 6/10. Of 
those 5, only 1 applied that strategy in the comparison and betweenness 
contexts. In contrast, conversions to common denominator were central to 
masters' solutions to the task of finding fractions between 315 and 517 and to 
difficult comparisons. Six of the 11 used it to solve the betweenness task, and 
7 applied it on at least one comparison item. 

General strategies like conversion to common denominator are powerful 
tools, but that power is generally harnessed incrementally, rather than all at 
once. Although extensive data were not available on this issue, one striking 
example illustrates this point. A middle-school subject, KS, used common- 
denominator conversion to find addends but failed to do so on either compar- 
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MISCONCEFTIONS RECONCEIVED 1 37 

ison or betweenness problems. He struggled to compare 315 and 517 and 
could not solve the betweenness task involving those same fractions. At the 
end of the interview, he was shown how common-denominator conversion 
solved the comparison. When he indicated that he understood and appre- 
ciated that solution, he was again asked if there were numbers between 
315 and 517. He replied that he did not think so and gave no indication that 
he saw any relation between the comparison he had just solved and the 
issue of betweenness. Consistent with this telling example, nonmasters 
generally did not immediately follow up one extension of the applicabil- 
ity of common-denominator conversion with another. 

A related example involves the strategy of reasoning about the size of the 
denominator in the comparison context. The Denominator Principle strategy 
asserts that the fraction with the smaller denominator is greatest, provided 
that the numerators are equal. Several novice students drew incorrect conclu- 
sions using the divided-quantity version of this strategy because they consid- 
ered only the size of parts indicated by the denominator in comparing 
fractions. For example, they ignored the effect of the numerators and con- 
cluded that 416 is greater than 619 because " 6 t h ~  are larger than 9ths." Their 
strategy was conceptually correct if incomplete (smaller denominators do 
indicate larger parts and therefore tend to increase fraction size), but they 
had not restricted its application to equal-numerator situations. Masters used 
the same strategy but only when they were sure that they could ignore the 
effects of the numerators, a restriction of context that was, in some cases, 
more sophisticated than it appeared. All masters learned to apply the strategy 
in the equal-numerator case, but some went on to extract more power from it 
by relaxing the standard constraints a bit to include cases in which the 
numerators were approximately equal. This generalization allowed some to 
conclude, for example, that 8/11 is greater than 7/15 because 8 is approxi- 
mately equal to 7 and 11 is greater than 15. 

We claim that learning in both of these cases involves shifts in the 
applicability of strategies more than changes in the content of the strategies 
themselves. The examples suggest that mastery is achieved, in part, by using 
what you already know in more general and powerful ways and also by 
learning where and why pieces of knowledge that are conceptually correct 
may work only in more restricted contexts. 

ROLES FOR PRIOR KNOWLEDGE IN 
SCIENTIFIC REASONING 

In this final case we return to the domain of Newtonian physics and argue 
that everyday physical conceptions are centrally involved in expert scientific 
reasoning. The main goal of the case is to illustrate three specific roles for 
prior knowledge in scientific expertise: providing raw material for formulat- 
ing scientific theory, supporting qualitative reasoning, and mapping every- 
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138 SMITH, DISESSA, ROSCHELLE 

day situations to theoretical representations. Our argument for the first role 
is historical. 

The Development of Scientific Theory 

Einstein (1950; Miller, 1986) proposed a view of scientific knowledge that 
emphasized the connection between experience and primitive theoretical 
concepts. Everyday reasoning supplies a huge store of abstractions of phys- 
ical experience that are useful in everyday life. From these everyday ideas, 
the scientist builds a set of axioms. For Einstein, the process of axiomatiza- 
tion, not induction, was the core of scientific practice. Through this process 
everyday intuitions are altered in character and structure, becoming the 
rigorous foundations of a deductive knowledge system. They must then 
conform to scientific criteria of consistency, coherence, and completeness- 
criteria not characteristic of everyday knowledge. 

There are numerous examples in the history of the physical sciences that 
illustrate this process. Einstein's special theory of relativity evolved from the 
consideration of a practically rigid rod and the use of this rod to measure 
objects. Einstein emphasized the nature of the rigid body concept as a 
prescientific notion closely related to everyday intuitions about space and 
time. (Indeed, he discussed with Piaget the possible connections between his 
own thinking and children's spatial reasoning.) His theory was generated by 
refining those intuitions into a rigorous system of axioms. Likewise, the 
curls and divergences in Maxwell's equations for electromagnetism origi- 
nated as a grid of whirlpools in a fluid separated by ball bearing idle 
wheels. Newton related his particle theory of light to the motion of tennis 
balls. In emphasizing that new theories emerge from clear conceptions 
rooted in other, older conceptual systems, Maxwell suggested (Lightman, 
1989)' 

We must, therefore, discover some method of investigation which allows the 
mind at every step to lay hold of a clear physical conception, without being 
committed to any theory founded on the physical [empirical] science from 
which that conception is borrowed. (p. 100) 

In each of these examples, theory development required selecting the right 
piece of everyday physical knowledge to reformulate as a core theoretical 
concept. Reformulation changed the systematic features of the concept by 
embedding it in a formal theory, but that did not change the fact that the 
concept began as an everyday idea. 

Supporting Qualitative Reasoning 

Research conducted within the expert-novice paradigm has emphasized 
how experts reason with concepts different from those of novices (Chi et 
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al., 1981; Larkin, 1983; Reif, 1985). But if the view that everyday experi- 
ence is refined and reused in scientific thinking is correct, we should find 
some use of everyday ideas in the reasoning of experts. We attempt to make 
this connection by reanalyzing an example of expert reasoning taken from 
Larkin's (1983) analysis of expert and novice physics problem solving. 

Larkin's analysis emphasized fundamental differences between novice 
and expert reasoning. She claimed that her expert and novice subjects 
used different representations and different concepts. Without disputing 
that experts' reasoning is different in important ways from that of nov- 
ices, we emphasize the substantial continuities between them. We also 
highlight areas in which Larkin's theoretical analysis is murky, in which 
experts' and novices' representations and concepts-at least as seen in 
this example--do not seem very different at all. In this case as before, we 
find it difficult to characterize the important differences between experts 
and novices in terms of the simple and traditional dimensions of discon- 
tinuity: concrete versus abstract, familiar versus theoretical, or surface 
versus deep. 

The problem situation is depicted in Figure 1. An expert and a novice 
were each asked, "What constant horizontal force F must be applied to the 
large cart (of mass M) so that the smaller carts (masses ml and m2) do not 
move relative to the large cart? Neglect friction." The excerpts from their 
solutions that were quoted by Larkin are reproduced. 

Novice: Well, I'm right now trying to reason why it isn't going to move. I mean 
I can see, if you accelerated it at a certain speed, the wind would push on mi so 
m2 wouldn't fall. 
(later) 
Once I visualize it, I can probably get started. But I don't see how this is going 
to work. 
Expert: Well, with a uniformly accelerating reference frame, all right? So that 
there is a pseudoforce on mi to the left. That is just equivalent-just necessary 
to balance out the weight of m2. @. 81) 

FIGURE 1 Sketch shown to novice and expert. 
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140 SMITH, DrSESSA, ROSCHELLE 

Representation. Larkin analyzed the expert and the novice solutions 
in terms of the differences between their representations of the problem. 
"[Tlhe physical representation used by the skillful experts seems profoundly 
different in content from naive representation used by the novice subjects ... 
" (p. 81). On this account, the expert solved the problem by constructing a 
problem representation that contained only abstract physical entities and 
avoided commonsense reasoning. Physical entities are the constructs of 
Newtonian theory, such as forces, accelerations, and momenta. The novice, 
on the other hand, formed a representation containing concrete familiar 
entities, which led him or her to see "a confusing collection of carts and 
ropes and pulleys" (p. 81) and impeded progress toward a solution. Larkin's 
account is consistent with the misconceptions view of learning; if students 
are to become scientists, they must replace their prior common-sense physi- 
cal conceptions with the concepts of abstract physics. 

It is possible, however, to give a different reading of these two exam- 
ples that includes some important parallels between the novice and the 
expert. Like Larkin, we focus on each subject's problem representation. 
The novice apparently felt the contradiction between his or her intuition 
that the little blocks should move down and to the right, and the stated 
information that the blocks should not move relative to the cart. To 
resolve it, he or she introduced a hypothetical influence-the wind-that 
would push toward the left on the top block. This move is a plausible 
application of everyday physical knowledge. The wind is a force that can 
occur naturally in this situation, and it can balance the force of gravity 
and prevent the block m2 from falling. We have depicted the inferred 
novice representation in Figure 2 by drawing in the force of gravity and 
the force of the wind. If these forces balance, the small carts will not 
move. 

The expert likely recognized the same problem, but instead of appealing 

Wind or 
Psuedo-force - I=', 

FIGURE 2 Novices' (and experts') problem representation. 
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MISCONCEPTIONS RECONCEIVED 1 41 

to wind resistance, he or she invoked the concept of an accelerating frame 
of reference. According to Larkin, this action is equivalent to construct- 
ing a scientific representation. However, a plausible alternative interpre- 
tation is that the accelerating frame of reference merely justified the 
transformation of one common problem situation into another. In the 
given situation, the big block is moving, and there is only the tension 
force on mi. In the transformed situation, the big block is stationary, and 
there is an additional leftward pseudoforce on mi. The important point is 
that this second situation is not more scientific, theoretical, or abstract; it 
is simply another common situation. For example, the transformed situa- 
tion is isomorphic to the problem of holding a bucket at the top of a well 
by pulling horizontally on its rope. The recognizable physics concept- 
accelerating frame of reference-serves only to justify the transforma- 
tion. 11 

An important part of expertise is the ability to transform a wide range of 
problematic situations into a smaller number of more familiar and un- 
problematic ones. In this case the transformation involved thinking of the 
given problem as a situation in which the cart is at rest, but with the 
additional force to the left on ml (i.e., the pseudoforce). This representation 
can be depicted exactly as the novice's representation (Figure 2). Thus, the 
novice and the expert may be constructing essentially the same representa- 
tion-though with different conceptual components-in which a force to the 
left on mi balances the downward gravitational force on m2. 

Concepts. The same conceptual schema, balancing, appears to play a 
crucial role in both the expert's and the novice's reasoning. Balancing is an 
abstract piece of intuitive physical knowledge that requires the correspon- 
dence of two or more elements in a system to establish an equilibrium 
(disessa, 1983, in press; Johnson, 1987). It leads both novice and expert to 
presuppose the existence of a leftward force on ml. The expert explicitly 
mentions balancing, "the pseudoforce on ml is ... just necessary to balance 
out the weight of mz," and uses it in his or her explanation, "the existence of 
the tension force and fact that the acceleration of the cart is zero (relative to 
the large cart) implies that there is some force directed to the left" (Larkin, 
1983, p. 82). Although balancing is not a core concept in Newtonian physics, 
here it stands in for that core and does essential work in solving the problem. 
The novice does not explicitly mention balancing, but his or her line of 
reasoning follows the same basic scheme: Despite the presence of gravity on 
m2, m2 does not fall. Therefore, there must be another force, such as the wind 
on ml, to maintain the stationary state. 

"di~essa (1993) focused explicitly on revised justification structure as a fundamental system 
parameter differentiating novices and experts. 
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142 SMITH, DISESSA, ROSCHELLE 

Traditional dimensions of difference? Because we argue that the ex- 
pert and the novice apply the same concept-balancing-to essentially the 
same problem representation, it might appear that we wish to equate their 
reasoning. This is not the case. The important differences between their 
solutions lie in details of how they connected balancing to the information 
given in the problem and in how accountable their solutions were to Newton- 
ian theory. But before examining these differences, we consider the possibil- 
ity that the differences are matters of abstractness, depth, or rigor. 

Both novice and expert link their analyses to familiar experiences. The 
novice explicitly generates a hypothetical force-the wind-that bridges 
between his or her experience and theory. Although the expert did not 
explicitly link the pseudoforce to sensory experience, Larkin herself pro- 
vides this connection: "the so-called pseudoforce is the 'force' that you feel 
snapping your head back in ... a car starting quickly from a stoplight" (1983, 
p. 81). It is hard to see how the expert's pseudoforce, as characterized by 
Larkin, is any more abstract than the novice's wind. Both the wind and the 
whiplash force are constructions inferred from their effects. 

Both expert and novice also rapidly simplify and reformulate the problem, 
producing a deep analysis of the situation. Neither exhaustively lists all the 
forces in the situation-such as the normal forces exerted by surfaces or the 
tension forces exerted by the strings, nor do they mention the redirection of 
the tension forces by the pulley. Considering every force acting in the cart 
system and properly solving the resulting equations would have led to a 
much more cumbersome and time-consuming solution. Instead, both focus 
on exactly two forces, the weight of mi and the retaining force exerted on 
m2. This simplification of the problem is warranted both by our experience 
with pulleys as things that redirect our pulls and by the typical textbook 
treatment of pulleys as mechanisms that redirect forces. But this simplifica- 
tion is neither capricious nor transparent; it indicates a high-level parsing of 
the confusing collection of ropes and pulleys into an functional pulley 
system. The pulley system indeed has an internal structure of many compo- 
nents, but its behavior is entirely predictable from the two mentioned exter- 
nal forces. Thus, both novice and expert seem to have used concepts 
available from everyday knowledge (pulley systems) in place of a thorough 
and exhaustive analysis of the forces involved. Both their solutions represent 
a selection of deep features that cut to the physical heart of the problem. 

Another apparent difference between novice and expert is their appeal to 
rigorous theory, but here again, the difference may be smaller than it seems. 
In our view, the expert's use of technical terms (e.g., accelerating reference 
frame) is far from an example of rigorous scientific reasoning. In Larkin's 
quoted excerpts, the novice and the expert are on equally shaky grounds in 
terms of their degrees of scientific care, completeness, and justification. The 
novice seemed aware that his or her introduction of the wind was a question- 
able move. The expert's move, however, was only barely more legitimate. 
Specifically, the expert used an inertial concept (balancing forces) in a 
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noninertial (accelerating) reference frame. This is precisely the same as 
using centrifugal forces to analyze orbits, a mistake that would certainly be 
marked wrong on a college physics exam. Physics teachers who are careful 
to distinguish textbook physics from pop physics consistently deny the 
legitimate use of centrifugal and other pseudoforces.12 But experts regularly 
engage in such sloppy reasoning when the intuitive ideas are useful and 
when their use does not undermine the possibility of developing more care- 
ful analyses, if necessary. 

Where are the differences? The wind force proposed by the novice 
is different from the pseudoforce proposed by the expert. The former is 
problematic in light of the problem statement (neglect friction), the sizes of 
carts and forces likely in such a situation, and the lack of information 
necessary to compute air resistance. Moreover, although both novice and 
expert reason from a representation in which the big block is stationary, the 
expert knows that the transformation from an accelerating to a stationary 
frame of reference has consequences for his or her analysis. We expect that 
the novice was unaware of these consequences. Thus, although neither the 
representations nor concepts were particularly different, the relationships 
between specific elements and concepts were markedly different. We expect 
these differences would allow an expert to smoothly elaborate the quoted 
"quick and dirty" analysis into a more complete analysis framed more 
carefully in Newtonian terms. In general, we expect an expert to have a large 
collection of techniques available to reduce complex situations to simpler 
ones without introducing errors. In this situation at least, the novice lacks a 
simplification technique that permits a rapid, justifiable qualitative solution. 

Mapping Physical Situations to Core Theory 

Although physics problems may appear well defined, the process of applying 
Newtonian physics to familiar situations is a complex process (Chi et al., 
1981). The skills for coping with this complexity are buried in experts' tacit 
knowledge and are not ordinarily discussed in physics classes. Chief among 
them is the process of problem formulation: mapping physical situations to 
appropriate theoretical models. The complexity of mapping situations to 
theories ultimately arises from the gap between the complexity of the real 
world and the sparseness of Newtonian theory. Consider, for example, a 

12 It is possible to define pseudoforces formally, but they are not the same class of forces that 
define Newtonian interactions. No formal treatment would bother to introduce pseudoforces; 
they are unnecessary and a distraction, except that they allow transforming some situations into 
more familiar ones. 
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rubber band. In order to reason about physical situations involving rubber 
bands, one must map the rubber band to some entity in a theoretical model. 
This mapping, however, is extremely context dependent. With a rubber band, 
one can: (a) unite the separate sections of a newspaper into a rigid body that 
can be thrown, (b) make a solid object attached to one end bob up and down, 
(c) create a musical stringed instrument, (d) open a tight jar lid, (e) store 
energy for a toy plane's propeller. 

For each of these functions, the rubber band corresponds to a different 
scientific entity. In the first case, one would likely not model the rubber band 
at all, but simply consider the rubber bandhewspaper combination as a 
single point mass. In the second, one would model the rubber band as a 
interaction force governed by Hooke's spring law. In the third, one might 
again think of Hooke's spring law, but this time in terms of the side-to-side 
vibrations of the rubber band rather than the vibrations along its length. In 
the fourth case, what is important about the rubber band is its coefficient of 
friction, and in the fifth, its energy-storing torsion. The ability to form the 
appropriate scientific representation of any problem situation involving a 
rubber band, therefore, depends on an analysis of its function in each situa- 
tion. 

In analyses of physics expertise, the knowledge involved in coordinating 
problem situations with scientific models has often been described in terms of 
applicability conditions (e.g., Chi et al., 1981; Reif, 1985). One might ask how 
such conditions can be stated. One initial possibility is that applicability is 
simply a one-to-one mapping of physical objects and properties to theoretical 
entities. In celestial mechanics, a moon is mapped to a point mass. However, this 
proposal falls apart for the rubber band, which maps one-to-many to scientific 
terms, depending on the problem situation. Another possible approach is to 
make topological distinctions, but in the newspaper and jar examples, the rubber 
band is wrapped around an object, whereas in other cases, it is attached only at 
two points. The single topological description, "attached at two points," would 
then still map to three different applications of scientific laws. So the mapping 
between problem situations and the various Newtonian models is difficult to 
state in either context-free or topological terms. 

In contrast, a set of everyday physical mechanisms comes much closer to 
solving the problem of specifying applicability. In each of the rubber band 
examples, various pieces of intuitive physical knowledge describe the mech- 
anism at work: the rubber band binds the newspaper, grips the jar lid, and 
acts a source of springiness for the bobbing object. Although a mapping 
cannot be made from the rubber band to scientific entities, it is quite easy to 
map these qualitatively distinct physical processes to scientific entities and 
laws. For example, instances of binding almost always map to a practically 
rigid body. Likewise, gripping maps to friction forces, and springiness maps 
to Hooke's law. This suggests that applicability can depend directly on our 
intuitive knowledge-knowledge that exists prior to any formal scientific 
training. 
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We have argued that there is often more similarity between expert and novice 
than meets the eye. Historically, elements of prior knowledge have played 
essential roles in the development of scientific theory. Prior knowledge has 
provided new concepts for scientific theory by abstracting objects and processes 
from everyday experience. In some cases of qualitative reasoning, intuitive 
conceptions like balancing stand in for more elaborate and precise theoretical 
formulations in problem solving. Prior knowledge of physical mechanisms 
provides the means to map the objects in problem situations to appropriate 
scientific concepts. Finally, prior knowledge supports problem formulation and 
simplification in situations that are difficult to reduce to first principles. Based 
on these examples, it seems more productive to study the roles that naive 
physical conceptions continue to play in expert reasoning than to suggest that 
the main issue in acquiring expertise is to remove and replace them. 

TOWARD A CONSTRUCTIVIST THEORY OF 
LEARN lNG 

In this final section, we identify a set of theoretical principles that represents 
a step beyond the epistemological premise of constructivism. These princi- 
ples serve as a framework for reinterpreting and reevaluating the results of 
misconceptions research and of orienting future empirical studies. Most 
important, they provide multiple ways for explaining how novice concep- 
tions, including common misconceptions, play productive roles in acquiring 
more advanced mathematical and scientific understandings. They also begin 
to provide more detailed theoretical descriptions of knowledge and learning 
processes than are found in many accounts of learning. We begin with four 
basic principles about the nature of knowledge and learning in mathematics 
and science. 

Fundamental Commitments 

Knowledge in pieces: An alternative to Y = ma in the mind. " 
Presumptions about the diversity and grain size of knowledge involved in 
mathematical and scientific expertise have typically been too few and too 
large. Traditional analyses of expert reasoning have focused the use of 
powerful, general pieces of core knowledge, such as F = ma or conversion 
to common denominator. But the mathematical and scientific knowledge of 
both experts and novices is distributed across a far greater number of 
interrelated general and context-specific components than either those anal- 
yses of expertise or textbook presentations suggests. Evidence of the dis- 
tributed nature of knowledge has been reported in various 
domains-addition of natural numbers (Siegler & Jenkins, 1989), order and 
equivalence of common fractions (Behr et al., 1984; Smith, 1990), and 
Newtonian mechanics (disessa, 1983, 1988, 1993). Success in understand- 
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146 SMITH, DISESSA, ROSCHELLE 

ing how expertise is achieved over time will depend in part on developing 
substantially more elaborate and detailed models of knowledge. 

It is the nature of mathematical and scientific knowledge that the most 
elegant and valued expression consists of very general, compact, and ab- 
stract propositions. Formal descriptions of knowledge in mathematical and 
scientific disciplines have, in turn, exerted a strong influence over what 
knowledge we want students to learn and how we expect them to learn it. 
Textbook presentations rely on similar compact, general, and abstract prop- 
ositions and procedures. The principle of knowledge in pieces expresses our 
conviction that these characterizations of disciplinary knowledge cannot 
provide adequate models of either novices' or experts' understandings if 
their real-time reasoning on nonroutine tasks is taken seriously and exam- 
ined carefully. 

In developing more adequate knowledge models, we should not limit the 
range of knowledge components we try out. Mathematical knowledge has 
been analyzed in terms of the strategies students use to solve tasks represen- 
tative of a conceptual domain (Behr et al., 1984; Siegler & Jenkins, 1989; 
Smith, 1990). In Newtonian mechanics, diSessa (1983, 1993) characterized 
prior intuitive knowledge in terms ofp-prims-minimal explanatory abstrac- 
tions of experiences in the day-to-day physical world. Many of these are 
expressed as qualitative proportionalities: "the more X, the more Y," as in 
"more effort leads to greater results" (disessa, 1993; Roschelle, 1991). There 
is growing evidence that experls also use diverse types of knowledge to find 
and appropriately apply more traditional, disciplinary forms of knowledge 
like physics principles and mathematical theorems (disessa, 1993; Rissland, 
1985). Mental constructs that explain how computer programmers construct 
and understand their programs range from plans and templates (Linn, Katz, 
Clancy, & Recker, 1992; Spohrer, Soloway, & Pope, 1989) to mental models 
(disessa, 1991; Young, 1983). As our last case analysis illustrated, experts' 
application of physical laws can depend on their knowledge of physical 
mechanisms. Both experts and novices have intuitions, abstract as well as 
concrete knowledge, and general as well as specific knowledge. 

Besides issues of number and grain size, knowledge in pieces brings some 
different dimensions to the analysis of knowledge than are typically pre- 
sumed in disciplinary models. Both misconceptions and disciplinary models 
suggest that knowledge is unitary, stable, and static, whereas richness and 
generativity are central properties of both expert and novice reasoning. 
Richness can be seen in novices' diverse ways of viewing and describing the 
world, and generativity in the inventiveness of their explanations. Similarly, 
experts are not just skilled and automatic performers. They constantly recon- 
struct the logic and breadth of their field and adapt flexibly to circumstances 
they have not encountered before. They sometimes make mistakes, but they 
can correct those mistakes fluently. A shift toward viewing knowledge as 
involving numerous elements of different types seems crucial to capture 
these features. 
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Continuity 

Constructivism demands that more advanced states of knowledge are 
psychologically and epistemologically continuous with prior states. The 
principle of knowledge in pieces provides different ways to conceptualize 
this continuity. If expert knowledge is not adequately modeled by a few 
general, abstract principles like F = ma, there are many more opportuni- 
ties for novice conceptions to play direct roles in expert reasoning. If 
students' ideas are productive in some contexts, and expert knowledge is 
more diverse than disciplinary models suggest, then the former can play 
more substantive and positive roles in learning. 

It is impossible to separate students' misconceptions, one by one, from the 
novice knowledge involved in expert reasoning. Efforts to distinguish valid 
from invalid conceptions (e.g., preconceptions as distinct from misconcep- 
tions; Glaser & Bassok, 1989) are suspect when they fail to fairly assess the 
range of application of those ideas. Persistent misconceptions, if studied in 
an evenhanded way, can be seen as novices' efforts to extend their existing 
useful conceptions to instructional contexts in which they turn out to be 
inadequate. Productive or unproductive is a more appropriate criterion 
than right or wrong, and final assessments of particular conceptions will 
depend on the contexts in which we evaluate their usefulness. Teachers 
and researchers cannot overlook the power they exercise in choosing the 
situations and tasks in which students' knowledge is assessed. Judging the 
productiveness of students' conceptions demands a broad view of appli- 
cability. 

Continuity opens new ways to conceptualize the evolution of expert 
understanding. The replacement of misconceptions gives way to knowledge 
refinement as a general description of conceptual change. Old ideas can 
combine (and recombine) in diverse ways with other old ideas and new ideas 
learned from instruction. Theories of learning that emphasize the refinement 
of prior conceptions must be informed by deep analyses of mathematical and 
scientific expertise-that is, they must know where learning is going, but 
they must also show in appropriate detail how expertise is acquired from the 
resources initially provided by more naive states. An adequate theory of 
learning must both provide richer descriptions of knowledge and explain the 
gradual transformation of that knowledge into more advanced states. 

Functionality 

Functionality, like continuity, is epistemologically fundamental to con- 
structivism. Learning is a process of finding ideas that sensibly and consis- 
tently explain some problematic aspect of the learner's world. Conceptions 
that do not work in this way (or are linked to other conceptions that do) are 
unlikely to take root, be applied in reasoning, and subsequently defended by 
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148 SMITH, DISESSA, ROSCHELLE 

students. Functionality, in turn, demands some account of success itself. 
Different sources-internal, social, and physical-must generate feedback 
on repeated efforts to act, control, and understand, and this feedback must be 
evaluated. Functionality implies that misconceptions, at least those reported 
to be widespread, carry with them some contexts of successful use. Taking 
this principle seriously rovides an excellent heuristic to discover the origins 
of novice conceptions.' The constructivist position that one learns from 
trying what one currently knows casts functionality as underlying and 
framing continuity. But functionality is also constrained by continuity: 
Judgments of the success of any conception depend on the learner's 
existing knowledge and criteria of sense making. 

A Systems Perspective 

In emphasizing the continuity principle over the simple distinctions of correct 
expert knowledge versus misconceptions, abstract versus concrete knowledge, 
and general versus specific knowledge, it may seem we have sidestepped the task 
of understanding expertise. This is not so. Instead, we argue for an analytical shift 
from single units of knowledge to systems of knowledge with numerous elements 
and complex substructure that may gradually change, in bits and pieces and in 
different ways. There are indeed substantive differences between novice and 
expert knowledge, but they cannot be assessed one element at a time. Our focus 
must expand to the level of systems. The central task of a constructivist theory of 
learning is to establish, at a fine grain of detail, how novice knowledge systems 
evolve into expert ones. 

The shift from particular conceptions to complex knowledge systems substan- 
tially changes how we evaluate individual conceptions. If they are embedded in 
complex systems, it is much easier to understand how some conceptions can fail 
in some contexts and still play productive roles overall. Some conceptions may 
come to play small but necessary roles in expert reasoning; others will become 
irrelevant without being replaced. Contexts of application may shift rather than the 
conceptions themselves, and even the descriptive vocabulary that defines contexts 
may change substantially. Overall, learning a domain of elementary mathematics 
or science may entail changes of massive scope. New elements may gradually 
come to play central roles as core knowledge, creating very large ripple effects 
through the system. System-level differences in overall stability and in the kinds 
and strength of relationships (or fragmentation) between elements are also possi- 
ble. 

Aknowledge system perspective does not limit the form of constituent elements; 
it can support diverse knowledge types, like justification, strategy, and control 
knowledge, as well as more traditional categories of concepts and principles. This 

13disessa (1993) discusses this and a range of other heuristics for discovering and developing 
adequate accounts of naive knowledge. 
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flexibility permits innovation in characterizing the diversity and complexity 
of cognition. New types of knowledge elements and subsystems may be 
necessary, such as mental models (Gentner & Stevens, 1983), aesthetics 
(disessa, 1993), p-prims (disessa, 1983), registration and qualitative cases 
(Roschelle, 1991), and domain-specific beliefs about the nature of knowledge and 
learning (Hammer, 1991; Schoenfeld, 1983, 1985). Characterizing how these ele- 
ments and subsystems, once identified, interact to produce the real-time reasoning 
and problem solving of experts and novices is a major theoretical task. 

Methodological and Pedagogical Issues 

Our central theoretical assertion-knowledge viewed as a complex system 
of numerous elements-has important methodological and pedagogical im- 
plications for future research. We highlight some of the most central very 
briefly. 

Task design. The principle of knowledge in pieces has direct im- 
plications for the design of assessment tasks. It increases the demands on 
such tasks to fairly represent the range of knowledge and reasoning in 
specific conceptual domains. Different tasks-each apparently assessing the 
same expert concept-will be required if we expect to discover the full range 
of relevant novice knowledge and characterize its properties. Students who 
view physical situations in simulations may make different predictions than 
when viewing static presentations (Kaiser, Proffitt, & Anderson, 1985) or 
think that the laws of motion in a vacuum are very different than those on 
earth (Minstrell, 1989). Changing our expectations about the character of 
novice (and expert) knowledge from a few general principles to many inter- 
related and context-specific components requires a corresponding revision 
of our assessments methods. 

Assessment must be sensitive to the breadth and generality of the novice 
knowledge system in its own terms. We must look for the competence and 
the potentially general comprehension strategies of novices as much as for 
their evident incompetencies and sensitivity to context. Simple, qualitative 
tasks, appropriately designed, have been useful in this regard, and keeping 
an eye open for unexpected knowledge is a central methodological heuristic. 
Similarly, assessing experts with tasks that are trivial and overlearned for 
them does a disservice to the justification structure, stability, flexibility, and 
generativity of their knowledge. It may be more illuminating to see how 
rusty experts rebuild their competence than to watch experts simply exercise 
it. 

lnferringknowledgeelements. Knowledge elements-the basic 
units of analysis in the complex systems perspective-are identified by 
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150 SMITH, DISESSA, ROSCHELLE 

carefully examining subjects' performance in solving nonroutine tasks that 
tap some domain-specific competence. The identification of knowledge ele- 
ments must involve some abstraction from specific responses and from the 
particular features of the task situation. DiSessa (1993) has presented a set 
of methodological heuristics for identifying and characterizing knowledge 
elements and their interrelations. More generally, future research must de- 
velop a terminology that describes the theoretical character of knowledge 
elements (i.e., their form and function in the larger system) without assum- 
ing that the familiar categories of disciplinary knowledge (theorems, princi- 
ples, etc.) will be sufficient. Theoretical invention and clarity will, in turn, 
motivate more sophisticated techniques of collecting and analyzing data. 

Targeting knowledge systems. Future research in mathematics and 
science learning should deliberately select, analyze, and empirically evalu- 
ate knowledge systems in particular domains. Some progress is possible by 
characterizing knowledge elements without specifying the properties of the 
system in which they are embedded, but other questions about knowledge 
elements can be appropriately addressed only within some system-level 
framework. Specifically, progress in characterizing application context, re- 
lations between elements, and processes of gradual change do not seem 
possible without making and testing claims about the nature of the system as 
a whole. 

Discussion rather than confrontation. Classroom discussion, when 
freed of its confrontation frame, can play an important role in learning, 
particularly when it concerns problematic situations in which students' ideas 
are strongly engaged and the impact of reformulation may be most clear. But 
the purpose of discussion changes when we conceptualize learning in terms 
of refinement rather than replacement. We still need to have students' knowl- 
edge-much of which may be inarticulate and therefore invisible to them- 
accessed, articulated, and considered. Rather than opposing those ideas to 
the relevant expert view, instruction should help students reflect on their 
present commitments, find new productive contexts for existing knowledge, 
and refine parts of their knowledge for specific scientific and mathematical 
purposes. The instructional goal is to provide a classroom context that is 
maximally supportive of the processes of knowledge refinement. 

Analytic microworlds. Constructivists have long emphasized physical 
materials that foster interactive learning and reflection (Resnick & Ford, 
1981). New computer-based efforts continue this tradition with more flexi- 
ble and interactive media. In addition to their traditional role in supporting 
learning, computer-based microworlds also offer special opportunities to 
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expose the content and form of students' knowledge and learning patterns to 
researchers. The nature and purpose of these microworlds are diverse. Some, 
like simulation environments and computer-based graphing packages, ex- 
tend what students are able to do with traditional media (Pea, 1985). Others, 
like the Envisioning Machine, have been designed to generate and support 
reasoning about particular tasks in specific conceptual domains (Roschelle, 
1992). A third class of microworlds can support students' efforts to map out 
the organization and ontology of their existing understandings in knowledge 
spaces (disessa, 1990). 

CENTRAL ASSERTIONS REVISITED 

We conclude by reviewing the core assertions of misconceptions research 
and offering a revised formulation of each one. This reinterpretation is again 
far from a rejection of misconceptions research; it accepts-indeed is built 
on-the validity of the empirical findings of that research. The fact that 
students have mathematical and scientific conceptions that are faulty in a 
variety of contexts can be reframed to highlight their useful and productive 
nature as well as their limitations. This reconceptualization is essential for 
future progress in constructivist research in mathematics and science learn- 
ing. 

Casting Misconceptions as Mistakes Is too Narrow a 
View of Their Role in Learning 

Misconceptions research has proven beyond any doubt that students' concep- 
tions of mathematical and scientific phenomena fall short, or fail altogether, 
in many tasks and situations, when judged by the norms of the mathematical 
and scientific disciplines. Yet, assessments of students' ideas that focus only 
on their mistaken qualities are equally flawed. Constructivism asserts that 
prior knowledge is the primary resource for acquiring new knowledge, but 
misconceptions research has failed to provide any account of productive 
prior ideas for learning expert concepts and has overemphasized the discon- 
tinuity between novice and expert. With only unproductive misconceptions 
as potential resources for learning, achieving more sophisticated mathemat- 
ical or scientific understandings is impossible. 

In contrast to the misconceptions focus on discontinuity, there is sub- 
stantial evidence that the form and content of novice and expert knowl- 
edge share many common features. Comparisons of experts and novices 
on the traditional dimensions of specific versus general knowledge, con- 
crete versus abstract knowledge, or intuitive versus formal knowledge 
have not been evenhanded. Novice knowledge systems, as well as more 
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expert ones, can contain both general and abstract elements and spe- 
cific and concrete components (disessa, 1993). Expert reasoning cen- 
trally involves prior, intuitive knowledge that has been reused or 
refined. These shared features provide continuity between prior and 
more advanced states and the basis for conceptualizing the complex 
and subtle changes involved in learning even elementary mathematics 
and science. Further progress in understanding knowledge and learn- 
ing will require more theoretically adequate accounts of conceptual 
change than misconceptions provides. We believe the central move is 
to start understanding knowledge as a complex system. 

Misconceptions Are Faulty Extensions of Productive 
Prior Knowledge 

We agree that the origins of misconceptions lie in prior experience and 
learning, inside and outside of classrooms. But the search for the origins of 
those misconceptions is not a matter of locating the root of an educational 
problem. Conceptions that lead to erroneous conclusions in one context can 
be quite useful in others. "Motion implies a force," although inadequate 
in many mechanical situations, provides a reasonable explanation of why 
electrical current flows in proportion to voltage. "Multiplication makes 
numbers larger" is an accurate general characterization of the effect of 
multiplication on natural numbers-a very large and frequently used, if 
restricted set of numbers. That this conception fails to adequately charac- 
terize multiplication with rational and real numbers does not relegate it 
simply to the status of a mistake. Most, if not all, commonly reported 
misconceptions represent knowledge that is functional but has been ex- 
tended beyond its productive range of application. Misconceptions that 
are persistent and resistant to change are likely to have especially broad 
and strong experiential foundations. 

Misconceptions Are Not Always Resistant to Change; 
Strength Is a Property of Knowledge Systems 

Misconceptions can be found in most domains of mathematics and science, 
but not all are stable and resistant to change. Appropriately designed inter- 
ventions can result in rapid and deep conceptual change in relatively short 
periods (Brown & Clement, 1989). Some misconceptions may persist simply 
for lack of plausible alternatives (again, see Brown & Clement, 1989); 
others, because they are part of conceptual systems that contain many useful 
elements whose breadth and utility are not immediately apparent. Under- 
standing the strength of a particular conception will depend on a character- 
ization of the knowledge system that embeds that element. 
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Interference is a biased assessment of the role of novice conceptions in 
learning. Though they may be flawed and limited in their applicability, 
novice conceptions are also refined and reused in expert reasoning. 

Learning requires the engagement and transformation of productive prior 
resources, and misconceptions, when taken as mistakes, cannot play that 
role. Alongside conceptions that appear to interfere with learning are other 
ideas that can be productively engaged and developed (e.g., Minstrel1 & 
diSessa, 1993). Given appropriate instruction, those conceptions can serve 
as anchors in the process of building a more expert-like understanding 
(Clement et al., 1989). It is, however, practically impossible to categorically 
separate novice conceptions that are fundamentally flawed (misconceptions) 
from those that support learning expert concepts. Assessments of the worth 
of novice conceptions must be indexed to specific contexts of application 
because simple shifts in application context can turn wrong answers into 
productive ideas. Learning difficult mathematical and scientific concepts will 
never be effortless, but neither will it be possible at all without the support, 
reuse, and refinement of prior knowledge. 

Replacing Misconceptions Is Neither Plausible Nor 
Always Desirable 

Replacement-the simple addition of new expert knowledge and the deletion 
of faulty misconceptions-oversimplifies the changes involved in learning 
complex subject matter. By remaining mute on the processes and the specific 
conceptual resources involved in learning, replacement is similar to tabula 
rasa models of learning in asserting that any new acquisition is possible. 
Literal replacement itself cannot be a central cognitive mechanism (Smith, 
1992), nor does it even seem helpful as a guiding metaphor (Bloom, 1992). 
Evidence that knowledge is reused in new contexts-that knowledge is often 
refined into more productive forms-and that misconceptions thought to be 
extinguished often reappear (e.g., Schoenfeld et al., 1993) all suggest that 
learning processes are much more complex than replacement suggests. Ap- 
preciating the broader applicability of some misconceptions may make even 
the goal of replacement less attractive (Smith, 1992). To avoid defaulting to 
replacement models, researchers should begin to formulate alternative learn- 
ing mechanisms that can account for the complexity of students' ideas and 
undertake research to evaluate those models. 

Instruction That Confronts Misconceptions Is Misguided 
and Unlikely to Succeed 

Instruction designed to confront students' misconceptions head-on (e.g., Cham- 
pagne et al., 1985) is not the most promising pedagogy. It denies the validity of 
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students' conceptions in all contexts; it presumes that replacement is an 
adequate model of learning; and it seems destined to undercut students' 
confidence in their own sense-making abilities. Rather than engaging stu- 
dents in a process of examining and refining their conceptions, confronta- 
tion will be more likely to drive them underground. But questioning the 
instructional effectiveness of confrontation does not imply that novice con- 
ceptions are valid in all contexts, only that their usefulness in some contexts 
must be respected. Targeting particular misconceptions for confrontation and 
replacement overemphasizes their individual importance relative to broader 
system-level issues. The goal of instruction should be not to exchange 
misconceptions for expert concepts but to provide the experiential basis for 
complex and gradual processes of conceptual change. Cognitive conflict is 
a state that leads not to the choice of an expert concept over an existing 
novice conception but to a more complex pattern of system-level changes 
that collectively engage many related knowledge elements. 

It Is Time to Move Beyond the Identification of 
Misconceptions 

Now that misconceptions are recognized as a pervasive phenomenon in 
mathematics and science learning, research that simply documents them in 
yet another conceptual domain does not advance our understanding of learn- 
ing. We now need research that focuses on the evolution of expert under- 
standings in specific conceptual domains and builds on and explains the 
existing empirical record of students' conceptions. Especially needed are 
detailed descriptions of the evolution of knowledge systems over much 
longer durations than has been typical of recent detailed studies (e.g., Con- 
frey, 1988; Schoenfeld et al., 1993). This work should include not only rich 
case studies, but also explicit theoretical frameworks of knowledge systems 
and studies that evaluate the generality of those models. 
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APPENDIX A 

Dimensions of Variability in Misconceptions Terms 

There are at least two dimensions of variability among the terms used to 
denote students' flawed mathematical and scientific conceptions. The adjec- 
tive or prefix adjoined to conception or belief indicates variation along an 
epistemological dimension. The prefix to the most common term-miscon- 
ception-emphasizes the mistaken quality of student ideas. Terms that in- 
clude the qualifier-alternative-indicate a more relativist epistemological 
perspective. Students' prior ideas are not always criticized as mistaken 
notions that need repair or replacement but are understood as understandings 
that are simply different from the views of experts. The history of theory 
change in the natural sciences is often cited in this interpretation of student 
ideas and their evolution (Kuhn, 1964; Wiser, 1989). Students' alternative 
conceptions are incommensurable with expert concepts in a manner parallel 
to scientific theories from different historical periods. A third group of terms 
occupies an intermediate position along the epistemological dimension. Pre- 
conceptions and naive beliefs emphasize the existence of student ideas prior 
to instruction without any clear indication of their validity or usefulness in 
learning expert concepts. However, researchers who have used them have 
tended to emphasize their negative aspects. 

This epistemological dimension emphasizes differences in content. The 
content of student conceptions-whether mistaken, preexisting, or alterna- 
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t i v e a r e  judged in contrast to the content of expert concepts. But these 
terms also fall out along a second dimension that distinguishes them on the 
basis of their organization. The terms conceptions and beliefs focus on 
individual ideas and do not directly implicate any larger scale cognitive 
structure that contains them. In contrast, framework and theory suggest that 
particular student conceptions are embedded in larger scale structures that 
integrate and interrelate those ideas. Thus, the psychological claims made by 
researchers with this latter theoretical perspective are stronger than those 
that focus on individual conceptions or beliefs. They must show not only that 
students have the particular conceptions but also that those ideas are system- 
atically related in a theory and framework structure. 

Despite these important variations, all terms assert differences between 
the ideas that students bring to instruction and the concepts presented in the 
classroom. We see these terms and distinctions as part of a broader pattern of 
knowledge terms that establish and maintain the split between novice under- 
standing and more expert knowledge. It is common, for example, to contrast 
the formal knowledge of instruction with the intuitive or informal knowl- 
edge that students bring to the classroom (Hiebert & Behr, 1988; Resnick, 
1986; Shaughnessy, 1977, 1985). One effect of employing lhis terminol- 
ogy-whether intentional or not-is to attribute lower status to informal 
knowledge.14 What students learn from instruction is considered formal 
knowledge. It is highly valued and attributed the stability and systematicity 
of formal theoretical systems, in which instructed knowledge might be a 
more apt term. Part of the difficulty with the distinction derives from the 
various meanings of formal. One sense of formal knowledge derives from 
formal schooling. Knowledge can be formal because the instruction that 
presents it is highly organized within the equally organized practice of 
formal schooling. Another sense of formal knowledge, however, derives 
from formal methods, which in the case of mathematics and science means 
logical, deductive methods. Likewise, Piaget's notion of formal operations 
was the model for thought that was both mathematically formal and episte- 
mologically more advanced than previous cognitive states. In contrast, infor- 
mal knowledge is generally valued only as a steppingstone to the formal. It 
may play a role in learning formal knowledge, but its ultimate role in expert 
reasoning is usually considered insignificant. In assigning differential status 
to formal and informal knowledge, this distinction asserts a fundamental 
difference between student-generated ideas and those that they acquire from 
instruction. 

A similar distinction is the contrast between experts and novices in vari- 
ous mathematics and scientific domains (Glaser & Chi, 1988). Research 

14we acknowledge those researchers who have valued students' informal knowledge in their 
studies of student learning (see Voss, Perkins, & Segal, 1991). The existence of that work, 
however, does not contradict the assertion of a status differential between what is deemed 
informal and formal. 
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conducted within this paradigm has analyzed the problem solving and rea- 
soning of established experts in various fields-physics most extensively- 
and contrasted it with that of beginning students. The results of these 
analyses emphasized fundamental differences between the two groups. Typ- 
ically, novices were shown to focus on the surface features of the objects in 
the problems, whereas experts were able to quickly penetrate to the deep 
structural features that support correct and efficient solutions. If there were 
similarities in the reasoning of experts and novices, they were rarely re- 
ported. The main impact of the expert-novice distinction was similar to the 
formal-informal distinction; it emphasized the fundamental differences be- 
tween students and experts and deemphasized any potential similarities. 

APPENDIX 6 

Replacing Misconceptions as a Model of Learning 

We have claimed misconceptions researchers have frequently understood 
learning mathematics and science as a process of removing (or unlearning) 
misconceptions and adding relevant expert concepts. Because the claim that 
replacement is a central assertion of misconceptions research is more interpre- 
tive than the other assertions-and perhaps more controversial-we offer sev- 
eral lines of argument to support our claim. 

Replacement Dominates Explicit Descriptions of the 
Learning Process 

Writing about instruction in Newtonian mechanics, McCloskey (1983) ex- 
plicitly invoked replacement: Students give up their old views for new ones. 
He suggested that the success of replacement depends on how well instruc- 
tion makes the advantages of the expert view clear to students. 

[Physics instructors] should discuss with their students their naive beliefs, 
carefully pointing out what is wrong with these beliefs, and how they differ 
from the views of classical physics. In this way students may be induced to give 
up the impetus theory and accept the Newtonian perspective. @. 319) 

G. J. Posner and colleagues, whose position has been influential among 
misconceptions and conceptual change researchers, also used replacement to 
describe the learning process. In early work, Posner and Gertzog (1982) 
suggested, "The following example from Petrie [I9761 captures the essence 
of the process [of conceptual change] as we understand it at this time." 

The process of giving up [italics added] the concept of impetus and replacing 
[italics added] it with the concept of Newtonian motion in a straight line unless 
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acted upon by external forces is an example of what I mean by conceptual 
change. (p. 205) 

Posner et al. (1982) explicitly developed their theory in terms of replace- 
ment. 

We thus express our theory of accommodation in response to two questions: (1) 
under what conditions does some central concept come to be replaced [italics 
added] by another?, (2) what are the features of a conceptual ecology which 
governs the selection of new concepts? @. 213) 

The central features of effective replacement, according to these authors, are 
rational and involve choosing a new concept to displace an old one. "Gener- 
ally, a new conception is unlikely to displace an old one, unless the old one 
encounters difficulties, and a new intelligible and initially plausible concep- 
tion is available that resolves these difficulties" @. 220). 

More recently, Strike and Posner (1985) presented a broader view that 
embraces both replacement and assimilation to existing cognitive structures: 

The important questions are the way learners incorporate new conceptions into 
current cognitive structures and the way they replace [italics added] concep- 
tions which have become dysfunctional with new ones. @. 212) 

Alternative Learning Processes Are Either Not 
Articulated or Not Emphasized 

If replacement is not the only kind of conceptual change, alternative pro- 
cesses must be identified. Along with Strike and Posner (1985), many 
researchers have proposed learning processes that involve new knowledge 
fitting in with, rather than replacing, existing conceptions. For example, 
learning has been described as reorganization or integration of prior beliefs 
with scientific ones. Yet, the nature of reorganization, restructuring, and 
integration have not been spelled out in any detail, and descriptions of 
learning are still dominated by the replacement model. 

Champagne et al. (1985) emphasized replacement in describing their 
approach to teaching mechanics, while also referring to integration. 

Certain concepts and propositions in the uninstructed students' schemata must 
be replaced [italics added] by or integrated with the concepts and propositions 
of the physics expert's schemata. (p. 77) 

The rest of the paper, however, primarily described the process of ideational 
confrontation, in which old mistaken ideas are confronted by new expert 
ones. Similarly, Snow (1989) characterized subject-matter learning as a 
two-step process that results in the replacement of misconceptions. While 
mentioning restructuring, he emphasized unlearning misconceptions. 
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[Preconceptions, alternative views, and naive theories] can all be serious im- 
pediments to learning if instruction does not detect and deal with them. The 
view of learning as restructuring and replacing [italics added] old beliefs 
implies that transition involves unlearning as much as it does learning. @. 9) 

Replacement Is Consistent With Other Assertions About 
Misconceptions 

From the assertion of interference, it is a short step to the presumption 
that old conceptions must be removed to neutralize their negative effects. 
If misconceptions are not replaced, they will continue to interfere. On the 
other hand, if learning expert concepts involves an integration with mis- 
conceptions, then the generality of interference of misconceptions is 
questioned. 

Two other central terms in the misconceptions literature, overcoming and 
confrontation, are also consistent with the replacement model. If misconcep- 
tions must be overcome, they are suppressed, presumably in favor of more 
adequate conceptions. This is tantamount to replacement. With respect to 
confrontation, we recall the threefold process leading to replacement that 
was described by McCloskey: (a) building instructed alternatives, (b) con- 
fronting existing misconceptions, and (c) accepting new ideas and rejecting 
old ones. Although unusually bold and unqualified in its statement, 
McCloskey7s position has not been unusual in its essence. 
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