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Toward an Instance Theory of Automatization

Gordon D. Logan
University of Illinois

This article presents a theory in which automatization is construed as the acquisition of a domain-
speciSc knowledge base, formed of separate representations, instances, of each exposure to the task.
Processing is considered automatic if it relies on retrieval of stored instances, which will occur only
after practice in a consistent environment. Practice is important because it increases the amount
retrieved and the speed of retrieval; consistency is important because it ensures that the retrieved
instances will be useful. The theory accounts quantitatively for the power-function speed-up and
predicts a power-function reduction in the standard deviation that is constrained to have the same
exponent as the power function for the speed-up. The theory accounts for qualitative properties as
well, explaining how some may disappear and others appear with practice. More generally, it provides
an alternative to the modal view of automaticity, arguing that novice performance is limited by a
lack of knowledge rather than a scarcity of resources. The focus on learning avoids many problems
with the modal view that stem from its focus on resource limitations.

Automaticity is an important phenomenon in everyday men-

tal life. Most of us recognize that we perform routine activities

quickly and effortlessly, with little thought and conscious aware-

ness—in short, automatically (James, 1890). As a result, we of-

ten perform those activities on "automatic pilot" and turn our

minds to other things. For example, we can drive to dinner

while conversing in depth with a visiting scholar, or we can

make coffee while planning dessert. However, these benefits may

be offset by costs. The automatic pilot can lead us astray, caus-

ing errors and sometimes catastrophes (Reason & Myceilska,

1982). If the conversation is deep enough, we may find ourselves

and the scholar arriving at the office rather than the restaurant,

or we may discover that we aren't sure whether we put two or

three scoops of coffee into the pot.

Automaticity is also an important phenomenon in skill acqui-

sition (e.g., Bryan & Hatter, 1899). Skills are thought to consist

largely of collections of automatic processes and procedures

(e.g., Chase & Simon, 1973; Logan, 1985b). For example,

skilled typewriting involves automatic recognition of words,

translation of words into keystrokes, and execution of key-

strokes (Salthouse. 1986). Moreover, the rate of automatization

is thought to place important limits on the rate of skill acquisi-
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tion: LaBerge and Samuels (1974) claimed that beginning read-

ers may not be able to learn to read for meaning until they have

learned to identify words and letters automatically.

Over the last decade, considerable progress has been made

in understanding the nature of automaticity and the conditions

under which it may be acquired (for reviews, see Kahneman

& Treisman, 1984; LaBerge, 1981; Logan, 1985b; Schneider,

Dumais, & Shiffrin, 1984). There is evidence that automatic

processing differs qualitatively from nonautomatic processing

in several respects: Automatic processing is fast (Neely, 1977;

Posner&Snyder, 1975), effortless (Logan, 1978, 1979; Schnei-

der&Shiffrin, 1977), autonomous (Logan, 1980; Posner&Sny-

der, 1975;Shiffrin&Schneider, 1977; Zbrodoff & Logan, 1986),

stereotypic (McLeod, McLaughlin, & Nimmo-Smith, 1985;

Naveh-Benjamin & Jonides, 1984), and unavailable to con-

scious awareness (Carr, McCauley, Sperber, & Parmalee, 1982;

Marcel, 1983). There is also evidence that automaticity is ac-

quired only in consistent task environments, as when stimuli

are mapped consistently onto the same responses throughout

practice. Most of the properties of automaticity develop

through practice in such environments (Logan, 1978, 1979;

Schneider &Fisk, 1982; Schneider & Shiffrin, 1977;Shiffrin&

Schneider, 1977).

Automaticity is commonly viewed as a special topic in the

study of attention. The modal view links automaticity with a

single-capacity model of attention, such as Kahneman's (1973).

It considers automatic processing to occur without attention

(e.g., Hasher &Zacks, 1979; Logan, 1979,1980; Posner&Sny-

der, 1975; Shiffrin & Schneider, 1977), and it interprets the ac-

quisition of automaticity as the gradual withdrawal of attention

(e.g., LaBerge & Samuels, 1974; Logan, 1978; Shiffrin &

Schneider, 1977). The modal view has considerable power, ac-

counting for most of the properties of automaticity: Automatic

processing is fast and effortless because it is not subject to atten-

tional limitations. It is autonomous, obligatory, or uncontrolla-

ble because attentional control is exerted by allocating capacity;
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a process that does not require capacity cannot be controlled

by allocating capacity. Finally, it is unavailable to consciousness

because attention is the mechanism of consciousness and only

those things that are attended are available to consciousness

(e.g.,Posner&Snyder, 1975).

However, there are serious problems with the modal view.

Some investigators questioned the evidence that automatic pro-

cessing is free of attentional limitations (e.g., Cheng, 1985;

Ryan, 1983). Others found evidence of attentional limitations

in tasks that are thought to be performed automatically (e.g.,

Hoffman, Nelson, & Houck, 1983; Kahneman & Chajzyck,

1983; Paap & Ogden, 1981; Regan, 1981). The single-capacity

view of attention, in which the modal view is articulated, has

been seriously challenged by multiple-resource theories, which

argue that many resources other than attention may limit per-

formance (e.g., Navon & Gopher, 1979; Wickens, 1984).' Oth-

ers argued that performance may not be limited by any re-

sources, attentional or otherwise (e.g., Allport, 1980; Navon,

1984; Neisser, 1976). Moreover, there is growing dissatisfaction

with the idea that automatization reflects the gradual with-

drawal of attention (e.g., Hirst, Spelke, Reaves, Caharack, &

Neisser, 1980; Kolers, 1975; Spelke, Hirst, & Neisser, 1976).

Critics argue that the idea is empty unless the learning mecha-

nism can be specified.

The purpose of this article is to propose a theory of automa-

ticity that describes the nature of automatic processing and says

how it may be acquired without invoking the single-capacity

theory of attention or the idea of resource limitations. The the-

ory is first described generally, then a specific version of the the-

ory is developed to account for the speed-up and reduction in

variability that accompany automatization. The theory is then

fitted to data from two different tasks—lexical decision and al-

phabet arithmetic—and experiments that test the learning as-

sumptions of the theory are reported. Finally, the qualitative

properties of automaticity are discussed in detail, implications

of the theory are developed and discussed, and the theory is con-

trasted with existing theories of skill acquisition and automati-

zation.

Automaticity as Memory Retrieval

The theory relates automaticity to memorial aspects of atten-

tion rather than resource limitations. It construes automaticity

as a memory phenomenon, governed by the theoretical and em-

pirical principles that govern memory. Automaticity is memory

retrieval: Performance is automatic when it is based on single-

step direct-access retrieval of past solutions from memory. The

theory assumes that novices begin with a general algorithm that

is sufficient to perform the task. As they gain experience, they

learn specific solutions to specific problems, which they retrieve

when they encounter the same problems again. Then, they can

respond with the solution retrieved from memory or the one

computed by the algorithm. At some point, they may gain

enough experience to respond with a solution from memory on

every trial and abandon the algorithm entirely. At that point,

their performance is automatic.2 Automatization reflects a tran-

sition from algorithm-based performance to memory-based

performance.

The idea behind the theory is well illustrated in children's

acquisition of simple arithmetic. Initially, children learn to add

single-digit numbers by counting (i.e., incrementing a counter

by one for each unit of each addend), a slow and laborious pro-

cess, but one that guarantees correct answers, if applied prop-

erly. With experience, however, children learn by rote the sums

of all pairs of single digits, and rely on memory retrieval rather

than counting (Ashcraft, 1982; Siegler, 1987; Zbrodoff, 1979).

Once memory becomes sufficiently reliable, they rely on mem-

ory entirely, reformulating more complex problems so that they

can be solved by memory retrieval.

Main Assumptions

The theory makes three main assumptions: First, it assumes

that encoding into memory is an obligatory, unavoidable conse-

quence of attention. Attending to a stimulus is sufficient to com-

mit it to memory. It may be remembered well or poorly, depend-

ing on the conditions of attention, but it will be encoded. Sec-

ond, the theory assumes that retrieval from memory is an

obligatory, unavoidable consequence of attention. Attending to

a stimulus is sufficient to retrieve from memory whatever has

been associated with it in the past. Retrieval may not always be

successful, but it occurs nevertheless. Encoding and retrieval

are linked through attention; the same act of attention that

causes encoding also causes retrieval. Third, the theory assumes

that each encounter with a stimulus is encoded, stored, and re-

trieved separately. This makes the theory an instance theory and

relates it to existing theories of episodic memory (Hintzman,

1976; Jacoby & Brooks, 1984), semantic memory (Landauer,

1975), categorization (Jacoby & Brooks, 1984; Medin &

Schaffer, 1978), judgment (Kahneman & Miller, 1986), and

problem solving (Ross, 1984).

These assumptions imply a learning mechanism—the accu-

mulation of separate episodic traces with experience—that pro-

duces a gradual transition from algorithmic processing to

memory-based processing. They also suggest a perspective on

theoretical issues that is fundamentally different from the

modal perspective, which was derived from assumptions about

resource limitations. But are the assumptions valid? Possibly.

Each one receives some support.

The assumption of obligatory encoding is supported by stud-

ies of incidental learning and comparisons of incidental and in-

1 The concept of automaticity has not been articulated well in multi-
ple-resource theories (Navon & Gophei; 1979; Wickens, 1984). For the
most part, investigators claim that automatic processes use resources
efficiently, reiterating the main assumption underlying the modal, sin-
gle-capacity view. But they don't specify which resources are used more
efficiently. The discussion focuses on a single resource, leaving it for
the reader to decide why that particular resource should be used more
efficiently or whether the other resources come to be used more effi-
ciently as well (also see Allport, 1980; Logan, 1985b).

2 Strictly speaking, the instance theory considers performance to be
automatic when it is based on memory retrieval whether that occurs on
the 10th trial or the 10,000th. Early in practice, before subjects rely in
memory entirely, performance may be automatic on some trials (i.e.,
those on which memory provides a solution) but not on others (i.e.,
those on which the algorithm computes a solution).
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tentional learning. The evidence overwhelmingly indicates that

people can learn a lot without intending to; incidental learning

is usually closer to intentional learning than to chance. The in-

tention to learn seems to have little effect beyond focusing atten-

tion on the items to be learned (Hyde & Jenkins, 1969; Mandler,

1967). However, the assumption of obligatory encoding does

not imply that all items will be encoded equally well. Attention

to an item may be sufficient to encode it into memory, but the

quality of the encoding will depend on the quality and quantity

of attention. As the levels-of-processing literature has shown,

subjects remember the same items better when they attend to

their semantic features rather than their physical features

(Craik & Tulving, 1975). Dual-task studies show that subjects

remember less under dual-task conditions than under single-

task conditions (Naveh-Benjamin & Jonides, 1984; Nissen &

Bullemen 1987).3

The assumption of obligatory retrieval is supported by stud-

ies of Stroop and priming effects, in which attention to an item

activates associations in memory that facilitate performance in

some situations and interfere with it in others (for a review, see

Logan, 1980). The most convincing evidence comes from stud-

ies of episodic priming that show facilitation from newly

learned associates (McKoon & Ratcliff, 1980; Ratcliff & Mc-

Koon, 1978,1981). The assumption of obligatory retrieval does

not imply that retrieval will always be successful or that it will

be easy. Many factors affect retrieval time (Ratcliff, 1978), in-

cluding practice on the task (Pirelli & Anderson, 1985). The

prevailing conditions in studies of automaticity are generally

good for retrieval: The same items have been presented many

times and so should be easy to retrieve. The algorithm, if used

in parallel with retrieval, will screen out any slow or difficult

retrievals by finishing first and providing a solution to the task.

The assumption of an instance representation for learning

contrasts with the modal view. Many theories assume a strength

representation (e.g., LaBerge & Samuels, 1974; MacKay, 1982;

Schneider, 1985), and others include strength as one of several

learning mechanisms (e.g., Anderson, 1982). In instance theo-

ries, memory becomes stronger because each experience lays

down a separate trace that may be recruited at the time of re-

trieval; in strength theories, memory becomes stronger by

strengthening a connection between a generic representation of

a stimulus and a generic representation of its interpretation or

its response.

Instance theories have been pitted against strength theories

in studies of memory and studies of categorization. In memory,

strength is not enough; the evidence is consistent with pure in-

stance theories or strength theories supplemented by instances

(for a review, see Hintzman, 1976). In categorization, abstrac-

tion is the analog of strength. Separate exposures are combined

into a single generic, prototypic representation, which is com-

pared with incoming stimuli. The evidence suggests that proto-

types by themselves are not enough; instances are important in

categorization (for a review, see Medin & Smith, 1984). The

success of instance theories in these domains suggests that they

may succeed as well in explaining automatization. Experiment

5 pits the instance theory against certain strength theories.

The instance representation also implies that automatization

is item-based rather than process-based. It implies that automa-

tization involves learning specific responses to specific stimuli.

The underlying processes need not change at all—subjects are

still capable of using the algorithm at any point in practice (e.g.,

adults can still add by counting), and memory retrieval may

operate in the same way regardless of the amount of informa-

tion to be retrieved. Automaticity is specific to the stimuli and

the situation experienced during training. Transfer to novel

stimuli and situations should be poor. By contrast, the modal

view suggests that automatization is process-based, making the

underlying process more efficient, reducing the amount of re-

sources required or the number of steps to be executed (e.g.,

Anderson, 1982; Kolers, 1975; LaBerge & Samuels, 1974; Lo-

gan, 1978). Such process-based learning should transfer just as

well to novel situations with untrained stimuli as it does to fa-

miliar situations with trained stimuli.

There is abundant evidence for the specificity of automatic

processing in the literature on consistent versus varied map-

ping. Practice improves performance on the stimuli and map-

ping rules that were experienced during training but not on

other stimuli or even other rules for mapping the same stimuli

onto the same responses (for a review, see Shiffrin & Dumais,

1981). The experiments presented later in the article provide

further evidence.

The theory differs from process-based views of automatiza-

tion in that it assumes that a task is performed differently when

it is automatic than when it is not; automatic performance is

based on memory retrieval, whereas nonautomatic perfor-

mance is based on an algorithm. This assumption may account

for many of the qualitative properties that distinguish auto-

matic and nonautomatic performance. The properties of the al-

gorithm may be different from the properties of memory re-

trieval; variables that affect the algorithm may be different from

the variables that affect memory retrieval. In particular, vari-

ables that affect performance early in practice, when it is domi-

nated by the algorithm, may not affect performance later in

practice, when it is dominated by memory retrieval. Thus,

dual-task interference and information-load effects may dimin-

ish with practice because they reflect difficulties involved in us-

ing the initial algorithm that do not arise in memory retrieval.

3 The assumption of obligatory encoding is similar to Hasher and
Zacks's (1979, 1984) notion of automatic encoding of certain stimulus
attributed (e.g., frequency of presentation, location). However, Hasher
and Zacks assumed that encoding is not influenced by manipulations
of attention, intention, or strategy, whereas the instance theory assumes
only that it is obligatory. Hasher and Zacks's position was challenged
recently by evidence that encoding can be influenced by orienting tasks
and dual-task conditions. Greene (1984) and Fisk and Schneider (1984)
showed that subjects remembered the frequency of stimuli presented
during semantic orienting tasks better than the frequency of stimuli pre-
sented during orienting tasks that focused on physical or structural fea-
tures. Naveh-Benjamin and Jonides (1986) showed that subjects re-
membered the frequency of stimuli presented under single-task condi-
tions better than the frequency of stimuli presented under dual-task
conditions (also see Naveh-Benjamin, 1987). The instance theory can
accomodate these findings easily. It assumes that attention to an item
will have some impact on memory; it does not assume that all condi-

tions of attention produce the same impact.
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This theme is developed in detail in a subsequent section of the

article.

The assumption that automatic and nonautomatic process-

ing are different does not imply that they have opposite charac-

teristics, as many current treatments of autornaticity imply. Au-

tomatic processing may be well defined (having the properties

of memory retrieval), but nonautomatic processing may not be.

The set of algorithms that are possible in the human cognitive

system is probably unbounded, and it seems highly unlikely

that any single property or set of properties will be common to

all algorithms, or even to most of them. Thus, the present the-

ory does not endorse the strategy of denning automaticity by

listing dichotomous properties (e.g., serial vs. parallel; effortful

vs. effortless) that distinguish it from another specific kind of

processing (e.g., attentional, Logan, 1980; controlled, Shiffrin

& Schneider, 1977; effortful, Hasher & Zacks, 1979; strategic,

Posner & Snyder, 1975; and conscious, Posner & Klein, 1973).

Quantitative Properties of Automaticity

The theory is primarily intended to account for the major

quantitative properties of automatization, the speed-up in pro-

cessing and reduction in variability that result from practice.

The speed-up is the least controversial of the properties of auto-

maticity. It is observed in nearly every task that is subject to

practice effects, from cigar rolling to proving geometry theo-

rems (for a review, see Newell & Rosenblpom, 1981). In each

case, the speed-up follows a regular function, characterized by

substantial gains early in practice that diminish with further

experience. More formally, the speed-up follows a power func-

tion,

where RT is the time required to do the task, N is the number

of practice trials, and a, b, and c are constants. A represents the

asymptote, which is the limit of learning determined perhaps

by the minimum time required to perceive the stimuli and emit

a response; b is the difference between initial performance and

asymptotic performance, which is the amount to be learned;

and c is the rate of learning. The values of these parameters vary

between tasks, but virtually all practice effects follow a power

function.4

The power-function speed-up has been accepted as a nearly

universal description of skill acquisition to such an extent that

it is treated as a law, a benchmark prediction that theories of

skill acquisition must make to be serious contenders (see, e.g.,

Anderson, 1982; Grossman, 1959;MacKay, 1982; Newell &Ro-

senbloom, 1981).3 If they cannot account for the power law,

they can be rejected immediately. The instance theory predicts

a power-function speed-up.

The reduction in variability that accompanies automatiza-

tion is not well understood, largely because most theories ne-

glect it. The literature shows that variability decreases with

practice (e.g., McLeod, McLaughlin, & Nimmo-Smith, 1985;

Naveh-Benjamin & Jonides, 1984), but the form of the function

has not been specified; there is nothing akin to the power law.

The instance theory predicts that the standard deviation will

decrease as a power function of practice. Moreover, it predicts

a strong constraint between the power function for the mean

and the one for the standard deviation: they must have the same

exponent, c.

The predictions for the power law follow naturally from the

main assumptions of the instance theory—obligatory encod-

ing, obligatory retrieval, and instance representation. The pre-

dictions are developed mathematically in Appendix A. The re-

mainder of this section provides an informal account.

The theory assumes that each encounter with a stimulus is

encoded, stored, and retrieved separately. Each encounter with

a stimulus is assumed to be represented as a processing episode,

which consists of the goal the subject was trying to attain, the

stimulus encountered in pursuit of the goal, the interpretation

given to the stimulus with respect to the goal, and the response

made to the stimulus. When the stimulus is encountered again

in the context of the same goal, some proportion of the process-

ing episodes it participated in are retrieved. The subject can

then choose to respond on the basis of the retrieved informa-

tion, if it is coherent and consistent with the goals of the current

task, or to run off the relevant algorithm and compute an inter-

pretation and a response.

The simplest way to model the choice process is in terms of

a race between memory and the algorithm—whichever finishes

first controls the response. Over practice, memory comes to

dominate the algorithm because more and more instances enter

the race, and the more instances there are, the more likely it is

that at least one of them will win the race. The power-function

speed-up and reduction in variability are consequences of the

race.

Memory Retrieval and the Power Law for Means

and Standard Deviations

The memory process is itself a race. Each stored episode

races against the others, and the subject can respond on the basis

of memory as soon as the first episode is retrieved. The race

can be modeled by assuming that each episode has the same

distribution of finishing times. Thus, the finishing time for a

retrieval process involving N episodes will be the minimum of

N samples from the same distribution, which is a well-studied

problem in the statistics of extremes (e.g., Gumbel, 1958). Intu-

ition suggests that the minimum will decrease as N increases,

but the question is, will it decrease as a power function of N?

4 Power functions are linear when plotted in logarithmic coordinates.

Thus,

log(RT - a) = log(6) - clog(JV).

The power-function speed-up is sometimes called the log-log linear law

of learning (Newell &Rosenbloom, 1981).
5 Mazur and Hastie (1978) argued that learning curves were hyper-

bolic rather than exponential and reanalyzed a great deal of data to dem-
onstrate their point. However, (a) they analyzed accuracy data rather
than reaction times—and the theories of the power-function speed-up
do not necessarily make predictions about accuracy—and (b) the hyper-
bolic function is a power function with an exponent of -1, so it is a
special case of the power law. Consequently, Mazur and Hastie's argu-
ments and analyses do not contradict the power law.
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It would be difficult to prove mathematically that the mini-

mum of N samples from every conceivable distribution de-

creases as a power function of N, but it is possible to prove it

for a broad class of initial distributions (all positive-valued dis-

tributions). That proof is presented in Appendix A. The power-

function speed-up is a consequence of two counteracting fac-

tors: On the one hand, there are more opportunities to observe

an extreme value as sample size increases, so the expected value

of the minimum will decrease. But, on the other hand, the more

extreme the value, the lower the likelihood of sampling a value

that is even more extreme, so the reduction in the minimum

that results from increasing sample size by m will decrease as

sample size increases. The first factor produces the speed-up;

the second factor produces the negative acceleration that is

characteristic of power functions.

Intuition also suggests that variability will decrease as N in-

creases: The losers of the race restrict the range that the winner

can occupy. The more losers, the more severe the restriction,

and thus, the smaller the variability. Moreover, the same factors

that limit the reduction in the mean limit the reduction in the

range that the minimum can occupy, so the reduction in vari-

ability should be negatively accelerated like the reduction in the

mean. But does it follow a power function? And if so, is the

exponent the same as the one for the mean?

The proofs in Appendix A show that the entire distribution

of minima decreases as a power function of sample size, not

just the mean of the distribution. This implies a power-function

reduction in the standard deviation as well as the mean. Because

the mean and standard deviation are both functions of the same

distribution, the exponent of the power function for the mean

will equal the exponent of the power function for the standard

deviation.

These predictions are unique to the instance theory. No other

theory of skill acquisition or automaticity predicts a power-

function reduction in the standard deviation and constrains its

exponent to equal the exponent for the reduction in the mean.

The Power Law and the Race Between the Algorithm

and Memory Retrieval

According to the instance theory, automatization reflects a

transition from performance based on an initial algorithm to

performance based on memory retrieval. The transition may

be explained as a race between the algorithm and the retrieval

process, governed by the statistical principles described in the

preceding section and in Appendix A. In effect, the algorithm

races against the fastest instance retrieved from memory. It is

bound to lose as training progresses because its finishing time

(distribution) stays the same while the finishing time for the re-

trieval process decreases. At some point, performance will de-

pend on memory entirely, either as a consequence of statistical

properties of the race or because of a strategic decision to trust

memory and abandon the algorithm.

Does the transition from the algorithm to memory retrieval

compromise the power-law predictions derived in the preceding

section and in Appendix A? Strictly speaking, it must. The

proofs assume independent samples from n identical distribu-

tions, and the distribution for algorithm finishing times is likely

to be different from the distribution of retrieval times. But in

practice, the deviations from the predicted power law may be

small. It is hard to make general analytical predictions because

the algorithm and memory distributions may differ in many

ways. They may have the same functional form but different

parameters (the exponential case is analyzed in Appendix A) or

they may have different forms.

Any distortion that does occur will be limited to the initial

part of the learning curve. Once performance depends on mem-

ory entirely it will be governed by the power law. Before that—

during the transition from the algorithm to memory retrieval—

the proofs no longer guarantee a power law.

I explored the effects of various transitions on the power-law

predictions through Monte Carlo simulation, using truncated

normal distributions for the algorithm and the memory pro-

cess. Earlier simulations showed that the means and standard

deviations of the minimum of « samples from a truncated nor-

mal decreased as a power function of n. The current simulations

addressed whether a race against another truncated normal

with different parameters would distort the power-function fits.

The algorithm was represented by nine different distributions,

factorially combining three means (350, 400, and 450 ms) and

three standard deviations (80, 120, and 160 ms). The memory

process was represented by two distributions with different

means (400 and 500 ms) and the same standard deviation (100

ms). These parameters represent a reasonably wide range of

variation, including cases in which memory is faster and less

variable than the algorithm, as well as cases in which it is slower

and more variable. This is important because the outcome of

the race will depend on the mean and standard deviation of the

parent distributions. Other things equal, the distribution with

the faster mean will win the race more often. Also, the distribu-

tion with the larger standard deviation will win more often be-

cause extreme values are more likely the larger the standard

deviation.

The effects of 1 to 32 presentations were simulated. The simu-

lations assumed that the algorithm was used on every trial (i.e.,

the "subject" never chose to abandon it in favor of memory)

and that each prior episode was retrieved on every trial. Thus,

for a trial on which a stimulus appeared for the «th time, reac-

tion time was set equal to the minimum of n samples, one from

the distribution representing the algorithm and n - 1 from the

distribution representing the memory process. There were 240

simulated trials for each number of presentations (1-32), which

approximates the number of observations per data point in the

experiments reported in subsequent sections of the article.

The simulations provided three types of data: mean reaction

times, standard deviation of reaction times, and the proportion

of trials on which the algorithm won the race. Power functions

were fitted to the means and standard deviations simultaneously

(using STEPIT; Chandler, 1965), such that the exponent was con-

strained to be the same for means and standard deviations as

the instance theory predicts. If the race with the algorithm dis-

torts the relation between means and standard deviations, the

constrained power functions will not fit well.

Means and standard deviations. The simulated mean reac-

tion times appear in Figure 1, and the standard deviations ap-

pear in Figure 2. The points represent the simulated data and
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Figure 1. .Reaction times from simulations of a race between an algorithm and a memory retrieval process

as a function of the number of presentations of an item. (Points represent the simulated data; lines, fitted

power functions. Power functions are constrained to have exponents equal to those of power functions fitted

to the standard deviations, whichareplottedin Figure 2. Each panel portrays three algorithms with different

means—350,400, and 450 from the bottom function to the top—and the same standard deviation—80 in

the top two panels, 120 in the middle two, and 160 in the bottom two—racing against a memory process

with a constant mean—400 in the left-hand panels, 500 in the right—and standard deviation, 100 in all

panels.)

the lines represent fitted power functions, constrained to have Two points are important to note: First, the means and stan-

the same exponent for means and standard deviations. The ex- dard deviations both decreased as the number of presentations

ponents appear in Table 1. increased, and the trend was well fit by the constrained power
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Figure 2. Standard deviations from the simulated race between an algorithm and a memory retrieval pro-
cess. (Points represent the simulated data; lines, fitted power functions. Power functions are constrained to

have exponents equal to those of power functions fitted to the means, which are plotted in Figure 1. Each
panel portrays three different algorithms with different standard deviations—80, 120, and 160 from the
bottom function to the top—and the same mean—350 in the top panels, 400 in the middle, and 450 in the
bottom—racing against a memory process with a constant mean—400 in the left panels, 500 in the right—

and standard deviation, 100.)
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Table 1

Exponents of Power Functions Fitted to the Simulated Data in

Figures 1 and 2, Which Represent Races Between Various

Memory Processes and Algorithms

Algorithm
M

Memory = 400, 100:
Algorithm SD

80 120 160

Memory = 500, 100:
Algorithm SD

80 120 160

350 0.156 0.340 0.367 0.185 0.193 0.248
400 0.251 0.301 0.465 0.227 0.252 0.251
450 0.368 0.479 0.550 0.230 0.316 0.452

Note. The exponent for the 400,100 memory process is 0.302; the expo-
nent for the 500, 100 memory process is 0.309.

functions (r2 ranged from .992 to 1.000 with a median of .998;

root-mean-squared deviation between predicted and observed

values ranged from 2.38 ms to 5.93 ms, with a median of 3.81

ms). Thus, the race does not appear to compromise the power

law; the instance theory can predict power functions even when

memory retrieval must race against a faster or slower algorithm.

Second, the race distorts the form of the power function; the

exponents from the constrained fits are systematically different

from the fits to the memory process by itself. The exponents

from the race increase in absolute magnitude as the algorithm

mean increases and as the algorithm standard deviation in-

creases.

The simulated data illustrate the effects of "qualitative"

differences between the automatic and nonautomatic perfor-

mance. Each panel has three different versions of the algorithm

racing against a single version of the memory retrieval process,

and in each case, initial differences due to the algorithm disap-

pear after a few presentations. Averaged over all six panels, the

difference between the 450-ms algorithm and the 350-ms algo-

rithm decreased from 97 ms on the first presentation to 15 ms

on the 32nd presentation. If the algorithm were a memory

search process and the different conditions corresponded to

memory set sizes of 1 and 5, the initial slope of 24 ms/item (i.e.,

97/4) would approach zero (i.e., 15/4) after 32 presentations.

Another kind of "qualitative difference" can be seen by com-

paring the two panels in each row. In this case, differences that

were not there initially, emerge with practice. The conditions of

the algorithm are the same in the right and in the left panel, but

the memory retrieval process is much slower in the right panel.

Averaged over the three pairs of panels, the difference between

right and left was -1 ms on the first presentation and 84 ms on

the 32nd presentation.

The standard deviations show "qualitative differences" sim-

ilar to those observed for the means. Initial differences due to

the algorithm were substantially reduced as the number of pre-

sentations increased and memory retrieval came to dominate

performance. Averaging over conditions, the initial difference

between the 160-ms algorithm and the 80-ms algorithm de-

creased to 22 ms by the 32nd presentation.

P(algorithm first). Figure 3 presents a different perspective

on the outcome of the race, the probabilities that the algorithm

finished first. The probabilities were affected by the mean and

the variance of the algorithm, increasing as the algorithm be-

came faster and more variable. They were also affected by the

mean of the memory process, decreasing as the memory pro-

cess becomes faster.

The memory process came to dominate the algorithm rela-

tively quickly. Averaged over all conditions, the algorithm won

the race only 21%ofthetimeafterl6presentationsandl6%of

the time after 32 presentations. The speed of memory retrieval

had a large effect on the outcome: The 400-ms retrieval process

won 90% of the time after 16 presentations and 93% of the time

after 32 presentations, whereas the 500-ms retrieval process

won only 68% of the time after 16 presentations and 76% of the

time after 32 presentations.

The dominance of the memory process after such a small

number of trials is important because it suggests that memory

retrieval will eventually win the race regardless of the speed and

variability of the algorithm. Possibly, memory retrieval will

come to win the race even if the algorithm becomes faster with

practice. Thus, memory retrieval may provide a back-up mech-

anism for automatization and skill acquisition even when skill

and automaticity are acquired through other mechanisms.

Memorability and the Rate of Learning

The speed with which the memory process comes to domi-

nate the algorithm has important implications for studies of

automaticity: It suggests that automatization can occur very

quickly (also see Logan, 1988; Naveh-Benjamin & Jonides,

1984; E. Smith & Lerner, 1986). This means that it is feasible

to study automatization in a single session, as was done in some

of the experiments reported in subsequent sections of this

article.

An important question raised by the instance theory is why

automatization takes so long in other experiments. In search

studies, for example, several thousand trials spanning 10 to 20

sessions are often necessary to produce automaticity (e.g.,

Shifrrin & Schneider, 1977). The discrepancy may arise for at

least three reasons: First, the criterion for automaticity is

different in the previous studies. In Shiffrin and Schneider's

search studies, automatization was not considered to be com-

plete until the slope of the search function reached zero (but

see Cheng, 1985; Ryan, 1983). From the present perspective,

automatization may never be complete, in that each additional

instance will have some effect on memory, even if its effect does

not appear in the primary performance data (also see Logan,

1985b). The present perspective also suggests there may be a

shift in the direction of automaticity after only a few trials, and

this shift may be a more important phenomenon to study than

the zero slope addressed by Shifrrin, Schneider, and others (also

see Logan, 1979,1985b).

Second, differences in the apparent rate of automatization

may be artifacts of the way the data are plotted. Instance theory

argues that means and standard deviations should be plotted as

a function of the number of trials per stimulus because each

trial potentially adds a new instance to memory. But data are

usually plotted against sessions, disregarding the number of tri-

als per stimulus. Consequently, a task with more stimuli per ses-

sion (and thus fewer trials per stimulus) will appear to be
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Figure 3. Probability that the algorithm finished first in the simulated race between an algorithm and a
memory retrieval process. (Each panel portrays three algorithms with different means—350, 400, and
450—and the same standard deviation—80 in the top two panels, 120 in the middle two, and 160 in the
bottom two—racing against a memory process with a constant mean—400 in the left-hand panels, 500 in
the right—and standard deviation, 100 in all panels.)

learned more slowly than a task with fewer stimuli per session Third, differences in the rate of automatization may reflect

(and thus more trials per stimulus), even if the rate of learning the memorability of the stimuli. According to instance theory,

per stimulus is equal. stimuli that are easy to remember will show evidence of auto-
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maticity relatively quickly, whereas stimuli that are hard to re-

member will take a long time to show evidence of automaticity.

It may be that the letter arrays studied by Shiffrin, Schneider,

and others are hard to remember. By contrast, the simulations

so far have assumed that each and every encounter with a stimu-

lus is encoded and retrieved.

The effect of memorability can be modeled by slowing down

the retrieval time or by varying the probability that a stimulus

will be encoded and retrieved. Most likely, memorability has

both effects (Ratcliff, 1978), but it is interesting to consider

them separately. The effects of slowing down retrieval can be

seen in Table 1: The learning rate, as measured by the power-

function exponent was slower for the 500-ms memory process

than for the 400-ms memory process when they both raced

against the same algorithm.

The effect of varying retrieval probability is to slow the rate

of learning by reducing the effective number of traces in the

race. Reaction times and standard deviations will still decrease

as a power function of n, but with a smaller exponent, reflecting

a slower rate of learning.6

These analyses suggest that there may be no discrepancy be-

tween the rate of automatization predicted by instance theory

and the rate observed in typical studies of automaticity. It may

be possible to observe automatization in a single session, as was

suggested earlier, as long as the number of stimuli is small and

the stimuli themselves are easy to remember (also see Logan,

1988; Naveh-Benjamin & Jonides, 1984; Smith & Lerner,

1986).

Conclusions

The theoretical analyses in this section showed that the quan-

titative properties of automaticity can be accounted for by an

instance theory that assumes that subjects store and retrieve

representations of each individual encounter with a stimulus.

According to the instance theory, automatization reflects a shift

from reliance on a general algorithm to reliance on memory for

past solutions. Thus, automatization reflects the development

of a domain-specific knowledge base; nonautomatic perfor-

mance is limited by a lack of knowledge rather than by the scar-

city of resources.

The power-function speed-up is a statistical consequence of

the main assumptions (obligatory encoding, obligatory re-

trieval, and instance representation), and the theory makes new

predictions about the reduction in variability. Standard devia-

tions should decrease as power functions of the number of trials,

and the exponents should be the same as the exponents for the

means.

What is interesting about the speed-up is that none of the

underlying processes change over practice. The algorithm stays

the same and so does memory retrieval. Moreover, stimuli are

encoded in exactly the same way at every point in practice—

each trial results in the encoding and storage of a processing

episode. All that changes is the knowledge base that is available

to the subject.

It remains to be shown that the instance theory can account

for experimental data; that is the purpose of the next section.

Fitting Theory to Data

One of the basic premises of the instance theory is that non-

automatic processes need not have anything in common, except

that they are replaced by memory retrieval as practice pro-

gresses. In keeping with that premise, the instance theory was

fitted to data from two very different tasks, lexical decision and

alphabet arithmetic. The lexical decision task is fast, relatively

effortless, and possibly parallel, whereas the alphabet arithme-

tic task is slow, very effortful, and clearly serial. According to

the instance theory, after sufficient practice, both tasks should

be performed in the same way—by retrieving past solutions

from memory. This prediction was tested indirectly, by examin-

ing the fit of power functions to the means and standard devia-

tions of reaction times in both tasks and by looking for evidence

of item-specific learning in both tasks. The theoretical analysis

in the preceding section makes the strong prediction that both

means and standard deviations should decrease as power func-

tions of the number of trials with the same exponent, c. The

theoretical analysis also predicts that learning should be item-

based; subjects learn specific responses to specific stimuli, and

what they learn should not transfer well to different stimuli.

These predictions are tested in Experiments 1 -4. Experiment

S pits the instance theory against certain strength theories.

Experiment 1

Experiment 1 involved a lexical decision task. Subjects were

presented with strings of four letters, and their task was to indi-

cate as quickly as possible whether or not the letter string was an

English word. The experiment was intended to resemble typical

studies of the development of automaticity, in which subjects

are exposed to the same items repeatedly throughout practice.

Subjects made lexical decisions on the same set of 10 words and

10 nonwords until each word and nonword was presented 16

times. In this paradigm, the average lag between successive pre-

sentations is held constant over repetitions, but the degree of

nonspecific practice on the task increases with the number of

repetitions. To control for nonspecific practice, subjects per-

formed another 16 blocks of lexical decisions, but 10 new words

and 10 new nonwords were used in each block. Further details

of the procedure and the results of analyses of variance (AN-

OVAS) on the mean reaction times and standard deviations are

presented in Appendix B.

6 If the original power function has an exponent of c and some propor-
tion p of the n episodes are stored and retrieved, then when performance

is plotted against n, the data will follow a power function with an expo-
nent k < c. That is,

n* = (prif.

Taking logs of both sides yields

k\ogn = c(logp + logn),

and solving for k yields

k = c[(h>gp + logn)/logn].

K must be less than c because (logp + log«)/logn is less than one.
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Figure 4. Reaction times to old and new words and nonwords as a func-
tion of the number of presentations in the lexical decision task of Exper-
iment 1.

The mean reaction times for new and repeated items are pre-

sented in Figure 4. There was some evidence of a general prac-

tice effect, which reduced reaction times for new items slightly

over blocks. However, the specific practice effect was much

stronger: Reaction times to repeated items decreased substan-

tially over blocks, both absolutely and relative to the new-item

controls. These effects were apparent for nonwords as well as

words.

The means and standard deviations for repeated items appear

in Figure 5, the means in the top panel and the standard devia-

tions in the bottom. The points represent the observed data;

the lines represent power functions fitted to the data under the

constraint that the mean and standard deviation should have

the same exponent. Words and nonwords were fitted separately.

The estimated parameters for the power functions and mea-

sures of goodness of fit (r2 and root-mean-squared deviation, or

rmsd) appear in Table 2. Table 2 also contains parameters and

goodness-of-fit measures for power functions fitted to means

and standard deviations separately, to give some idea of the

effect of constraining the exponent.

The data were well fit by power functions. Moreover, the con-

strained fit was almost as good as the unconstrained fit; rmsds

were within 2 ms.

The contrast between repeated words and new words suggests

that the repetition effect may be instance- or item-based, as the

instance theory predicts. Process-based learning predicts no

difference, yet a difference was observed. The repetition effect

for nonwords is harder to interpret. Nonword reaction times

could have decreased because subjects responded to them by

remembering what they did when they last saw them, or be-

cause subjects responded to them by default (i.e., by failing to

find evidence that they were words), and the default response

became faster as the word decisions became faster. The present

experiment does not allow us to decide between these alterna-

tives. That was a major reason for investigating other schedules

of repetition.

Experiment 2

Experiment 2 was intended to resemble typical studies of rep-

etition effects in implicit and explicit memory: Subjects per-

formed several blocks of lexical decision trials. Within each

block of trials, some words and nonwords are presented once,

some twice, some 4 times, some 6 times, some 8 times, and some

10 times. In this paradigm, the average lag between successive

repetitions is confounded with the number of repetitions (being

shorter the greater the number of repetitions), but the degree of

nonspecific practice is relatively constant over number of repe-

titions. Also, old nonwords are mixed together with new and

old words, so there should be no benefit for nonwords if subjects

respond to nonwords by default.

The mean reaction times are plotted in the top panel of Fig-

ure 6, and the standard deviations are plotted in the bottom

LEARNING: POWER FUNCTION FIT

6 B 10 12

NUMBER OF PRESENTATIONS

A Word* XNoiword*

LEARNING: POWER FUNCTION FIT

E 100
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Figure 5. Reaction times (top panel) and standard deviations (bottom
panel) as a function of the number of presentations in the lexical deci-
sion task of Experiment 1. (Points represent the data; lines represent
the best-fitting power function. Power functions for means and standard
deviations were constrained to have the same exponent.)
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Table 2

Parameter Estimates From Constrained and Separate Fits of Power Functions to Means and Standard Deviations

of Reaction Times in the Lexical Decision Tasks of Experiments 1-3

Experiment 2:
Experiment 1: Learning

Parameter

ART
BRT
C
ASD
BSD
r2

rmsd

Word

485
101

0.749
81
43

0.996
8.9

Nonword

482
216

0.563
46

157
0.994

12.2

Repetition

Word

478
106

1.033
84
47

0.998
5.6

Nonword

Constrained fits

518
143

1.078
95
76

0.998
5.6

Experiment 3:
Mea

Word

501
87

1.622
88
54

0.996
9.5

in lag 12

Nonword

541
141

0.702
89
84

0,996
10.2

Experiments:
Mean lag 24

Word

518
95

0.816
86
64

0.996
8.6

Nonword

574
115

0.880
99
75

0.996
9.6

Separate fits

ART
BRT
CRT
ASD
BSD
CSD
r1

rmsd

482
103

0.698
85
41

1.063
0.996

8.9

409
280

0.327
75

140
0.970
0.996

10.9

479
105

1.061
82
48

0.919
0.998

5.6

511
148

0.940
102
72

1.601
0.998

5.1

500
88

1.571
88
54

1.748
0.996

9.5

540
142

0.687
90
84

0.724
0.998

10.2

573
115

1.069
61
85

0.387
0.998

8.3

573
115

0.859
100
75

0.928
0.996

9.6

Note. ART = asymptote for mean reaction time; BRT = multiplicative constant for mean reaction time; ASD = asymptote for standard deviation;
BSD = multiplicative constant for standard deviation; C = exponent fitted to means and standard deviations simultaneously; CRT = exponent
fitted to means separately; CSD = exponent fitted to standard deviations separately; r2 = squared correlation between observed and predicted
values; rmsd = root mean squared deviation from prediction.

panel. The points represent the observed data, and the lines rep-

resent fitted power functions constrained such that means and

standard deviations have the same exponent. As in Experiment

1, the constrained power-function fit was excellent for both the

means and the standard deviations. The parameters of the con-

strained power functions and measures of goodness of fit appear

in Table 2. Table 2 also contains parameters and measures of

goodness of fit for power functions fitted to the means and stan-

dard deviations separately. Again, the constrained fit was nearly

identical to the separate fit.

These results confirm the conclusion from Experiment 1:

that the repetition effect is specific to individual stimuli be-

cause repeated and new stimuli were mixed randomly in each

block. Thus, subjects could not have adjusted speed-accuracy

criteria, and so forth, in anticipation of repeated stimuli, as

they could have in the previous experiment. Significantly, this

conclusion applies to the nonwords as well as the words: Sub-

jects responded to repeated nonwords faster than they re-

sponded to new words, so they could not have sped up their

reaction times to repeated nonwords by default responding.

Thus, the data suggest that subjects remembered their previ-

ous encounters with specific nonwords and with specific

words, as instance theory predicts. It remains possible, how-

ever, that the benefit from repeated presentations could be an

artifact of the shorter lag between successive repetitions for

stimuli that are repeated more often. Experiment 3 was in-

tended to address that issue.

Experiment 3

In Experiment 3, the number of repetitions was manipulated

by varying the number of blocks in which a word or nonword

appeared. Some words and nonwords were presented in only 1

block, others in 2 consecutive blocks, and others in 4, 8, and 16

consecutive blocks. Thus, the lag between successive presenta-

tions was held constant, like the first experiment, but old and

new items were mixed randomly, like the second experiment.

In addition, the mean lag between successive presentations

was varied between subjects to see whether the confounding of

lag with repetitions in Experiment 2 was likely to have affected

the results. One half of the subjects had a mean lag of 12 items

between successive presentations, and the other half had a mean

lag of 24 items (see Appendix B for further details of the proce-

dure).

The data from the mean lag 12 group are presented in Figure

7; the data from the mean lag 24 group are presented in Figure

8. In each case, the top panel contains the mean reaction times

and the bottom panel contains the standard deviations. The

points represent the observed data, and the lines represent con-

strained power functions fitted to the means and standard devi-

ations. Mean lag had no significant effects on performance, nei-

ther main effect nor interactions (see Appendix B). For both lag

conditions, reaction times and standard deviations decreased

with repetition, as the instance theory predicts. The constrained

power functions fitted the data very well, almost as well as the
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ations of reaction times that was predicted by the instance the-

ory. The means and standard deviations both decreased as

power functions of practice, and the functions had the same

exponent. This was confirmed in each experiment. It was true

for words and for nonwords, and it was true for three different

schedules of repetition. The constraint between the means and

the standard deviations amounts to predicting co-occurrence of

different properties of automaticity, which has been a conten-

tious issue in the recent literature (see Kahneman & Chajzyck,

1983;Paap&Ogden, 1981;Regan, 1981 vs. Logan, 1985b; Jon-

ides, Naveh-Benjamin, & Palmer, 1985); it will be discussed in

detail in a subsequent section.

Second, Experiments 1-3 indicate that the repetition effect is

specific to individual stimuli, as the instance theory predicts.

This was evident in the contrast between repeated items and

new-item controls in Experiment 1 and in the contrast between

REPETITION; POWER FUNCTION FIT
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Figure 6. Reaction times (top panel) and standard deviations (bottom
panel) as a function of the number of presentations in the lexical deci-
sion task of Experiment 2. (Points represent the data; lines represent
the best-fitting power function. Power functions for means and standard
deviations were constrained to have the same exponent.)

separate fits (see Table 2 for parameter values and measures of

goodness of fit).

These results indicate that the benefit from repetition is spe-

cific to individual stimuli because the repeated stimuli that

showed benefit were mixed randomly with new stimuli. As in

Experiment 2, this was true for nonwords as well as words,

which suggests that subjects remembered individual encounters

with specific nonwords as well as words. Unlike the previous

experiment, there was no confound between lag and the number

of presentations, so the increased benefit with multiple repeti-

tions was not an artifact of lag. Indeed, the null effect of mean

lag suggests that lag is not an important variable when varied

within the limits of Experiments 1-3.

Discussion of Experiments 1-3

Experiments 1-3 support several conclusions: First, they

demonstrate a constraint between the means and standard devi-

NuneeR OF PRESENTATIONS
AUord» XNonuord*

MEAN LAG 12: POWER FUNCTION FIT

0 2 4 6 e 10 12 14 16

NUMBER OF PRESENTATIONS

A Words XNonwords

Figure 7. Reaction times (top panel) and standard deviations (bottom
panel) as a function of the number of presentations for the mean-lag =
12 condition of the lexical decision task in Experiment 3. (Points repre-
sent the data; lines represent the best-fitting power function. Power
functions for means and standard deviations were constrained to have

the same exponent.)
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Figure 8. Reaction times (top panel) and standard deviations (bottom
panel) as a function of the number of presentations for the mean-lag =
24 condition of the lexical decision task in Experiment 3. (Points repre-
sent the data; lines represent the best-fitting power function. Power
functions for means and standard deviations were constrained to have

the same exponent.)

repeated and new items in Experiments 2 and 3. This specificity

of learning rules out process-based theories that explain autom-

atization and skill acquisition in terms of the development of

general procedures that deal with new stimuli as effectively as

old ones (e.g., Anderson, 1982; Rabbitt, 1981). Such theories

may apply in other domains, but they are not appropriate in the

present situation.

Third, Experiments 1-3 demonstrate that nonwords as well

as words can benefit from repetition. This suggests that the rep-

etition effects are based on memory for specific episodes rather

than adjustments to semantic memory (e.g., Feustal, Shifrrin,

& Salasoo, 1983; Jacoby & Brooks, 1984; Salasoo, Shifrrin, &

Feustal, 1985). It also suggests that repetition effects may derive

from the acquisition of associative information rather than item

information. If repetition affects item-specific familiarity, sub-

jects would not be able to discriminate words from repeated

nonwords; if words showed benefit relative to controls, non-

words should show a cost (e.g., Balota & Chumbley, 1984).

Experiment 4: Alphabet Arithmetic

Experiment 4 examined practice effects in an alphabet arith-

metic task. Subjects were asked to verify equations of the form

A + 2 = C, B + 3 = E, C+4 = G, and £> + 5 = 7. Subjects

typically reported that they performed the task by counting

through the alphabet one letter at a time until the number of

counts equaled the digit addend, and then comparing the cur-

rent letter with the presented answer. For example, E + 5 = K

would involve counting five steps through the alphabet (F, G,

H, I, J), comparing the J with the given answer, K, and respond-

ing false. Consistent with subjects' reports, the time to verify

alphabet arithmetic equations increases linearly with the digit

addend (i.e., with the number of counts). The slope of the func-

tion is typically 400-500 ms per count, with an intercept of

1,000 ms (Logan & Klapp, 1988).

This experiment was intended to provide a test of the instance

theory that was very different from the lexical decision tasks

reported earlier. Reaction times in alphabet arithmetic are

nearly an order of magnitude longer than reaction times in lexi-

cal decision, and the practice effects extend over several ses-

sions. It was also intended to mimic children's acquisition of

addition, which involves a transition from a serial counting al-

gorithm to memory retrieval (e.g., Ashcraft, 1982; Siegler,

1987; Zbrodoff, 1979). Presumably, with enough practice, adult

subjects would learn to perform the alphabet arithmetic task by

memory retrieval instead of counting.

Subjects were trained on 10 letters from one half of the alpha-

bet (either ./J through J, or .K through T). Each letter appeared

with four different addends (2, 3, 4, and 5) in a true equation

and in a false equation. False equations were true plus one (e.g.,

A + 2 = D) or true minus one (e.g., A + 2 = B); the kind of false

equation varied between subjects. Thus, each subject experi-

enced a total of 80 different problems during training (10

letters X 4 digit addends X true vs. false). Each problem was

presented 72 times; 6 times per session for 12 sessions. There

were 480 trials per session. Further details of the procedure can

be found in Logan and Klapp (1988).

The means and standard deviations of the reaction times are

plotted in Figures 9 and 10. Figure 9 contains data from true

responses, and Figure 10 contains data from false responses.

The data are plotted in logarithmic coordinates so that the

power functions (solid lines) fitted to the data (points) will ap-

pear as straight lines. The instance theory predicts that the line

for mean reaction times should be parallel to the line for the

standard deviations. The slope of the line is the exponent of the

power function in linear coordinates, and the theory predicts

that means and standard deviations will have the same expo-

nent. The functions fitted to the data in Figures 9 and 10 were

constrained to have the same exponent for the mean and stan-

dard deviation, so the lines are parallel. The question is whether

the points depart systematically from the parallel lines. Param-

eters of the fitted power functions and measures of goodness of

fit are presented in Table 3.

In evaluating the fits in the figures, it is important to note that
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data; lines represent fitted power functions constrained to have the same exponent for means and standard

deviations, parallel lines in log-log plots.)

the log scale introduces systematic distortions. Differences are

exaggerated at low values of the variable and compressed at high

values. Consequently, low values will appear to fit less well than

high values. The standard deviations, which range from 162 ms

to 1,408 ms, will appear to fit less well than the means, which

range from 816 ms to 4,285 ms. Objectively, the means were

fitted better than the standard deviations, but the difference was

not as large as it appears in the figures.

The power functions fit the data reasonably well for addends

of 2, 3, and 4. The functions for means and standard deviations

appear parallel, as they should in log-log plots if they both de-

crease as power functions with the same exponent. Indeed, the

constrained fits were as good as separate fits for all addends (see

Table 3). Thus, the predictions of the instance theory are con-

firmed in the arithmetic task as well as in the previous lexical

decision tasks.

The fits were not perfect, however. The power functions for

addends of 2, 3, and 4 tended to overestimate the last few pre-
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sentations. The deviation was much worse for addend = 5

equations, where a discontinuity appeared in the learning

curves at about 24 presentations; learning seems faster after the

discontinuity than before. This discontinuity, which is inconsis-

tent with the instance theory, cannot be accounted for easily by

any current theory of skill acquisition. Most theories of skill

acquisition predict a power-fimction learning curve, which is

continuous. Thus, the evidence against the instance theory is

also evidence against its competitors.

The discontinuity reflects a strategy shift reported by

many of the subjects. Several subjects reported deliberately

learning the 5s because they were the most difficult problems.

Typically, subjects developed mnemonics for the 5s, which

allowed them to respond on the basis of memory. For ex-

ample, when I tried the experiment as a pilot subject, I used

psychologists names as mnemonics: I remembered A + 5 =

F as A. F. Sanders, E + 5 = J as E. J. Gibson, and G + 5 =

L as Gordon Logan. These mnemonics provided anchor
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Table 3
Parameter Estimates From Constrained and Separate Fits of Power Functions to Means and Standard Deviations
of Reaction Times in the Alphabet Arithmetic Task ofExperiment 5

Parameter

True equations: Addend False equations: Addend

ART
BRT
C
ASD
BSD
r2

rmsd

ART
BRT
CRT
ASD
BSD
CSD
r1

rmsd

384
2052
0.317

0
828

0.968
59.4

133
2246

0.251
30

889
0.383
0.974

54.9

195
2770
0.255

0
893

0.960
82.0

30
2892

0.228
106
817

0.332
0.960

80.9

0
3643

0.238
0

1144
0.908
148.9

5
3679

0.241
112

1099
0.303
0.908
149.2

0
4816
0.327

75
1346

0.867
206.3

0
4834
0.328

76
1334

0.321
0.869
206.3

357
2371
0.327

0
903

0.960
72.3

0
2630

0.245
76

889
0.416
0.962

69.9

362
3110

0.324
0

1158
0.960

87.4

98
3307

0.274
0

1088
0.547
0.964

84:7

29
4065
0.282

0
1249

0.949
116.1

97
3976

0.269
0

1274
0.290
0.949
115.3

0
5037

0.319
10

1513
0.895
193.9

0
5028

0.319
0

1470
0.301
0.896
193.5

Note. ART = asymptote for mean reaction time; BRT = multiplicative constant for mean reaction time; ASD = asymptote for standard deviation;
BSD = multiplicative constant for standard deviation; C = exponent fitted to means and standard deviations simultaneously; CRT = exponent
fitted to means separately; CSD = exponent fitted to standard deviations separately; r2 = squared correlation between observed and predicted
values; rmsd = root mean squared deviation from prediction.

points for subjects, which made it easier for them to learn

the 4s.
One might model the addend = 5 data with two learning

curves, one reflecting the inefficient mnemonic strategy from
Trials 1-24 and another reflecting the more efficient strategy
from Trials 25-72.1 fitted separate power functions to the data
before and after the 24th trial. As before, means and standard
deviations were fitted simultaneously with the constraint that
they have the same exponent. The fits were much better than
the previous ones. For true responses, rmsd decreased from 206
ms to 90 ms; (or false responses, it decreased from 194 ms to

88ms.
Thus, the addend = 5 data may be inconsistent with a strict

interpretation of the instance theory, in which neither the algo-
rithm nor the memory process changes over practice, but they
are consistent with a more general view of instance theory,
which interprets automaticity as a transition from an algorithm
to a memory process. There seem to have been two transitions
in the addend = 5 condition, one to an inefficient memory pro-
cess and another to a more efficient one, reminiscent of the pla-
teaus described by Bryan and Harter (1899).

One final piece of evidence deserves comment. Logan and
Klapp (1988) reported data from subsequent sessions of the ex-
periment that bear on the instance theory. In particular, they
ran a 13th session in which subjects were tested on the un-
trained half of the alphabet (e.g., subjects trained on A-J were
tested on K-T, and vice versa). Reaction times increased sub-
stantially, compared with the previous session, and the slope of
the function relating reaction time to the magnitude of the ad-
dend, which had been close to zero on the previous session, in-
creased to about 400 ms/count. This suggests that subjects

learned specific responses to specific stimuli during training,
which is consistent with instance- or item-based learning and
inconsistent with process-based learning.

To summarize, the predictions of the instance theory were
supported in the alphabet arithmetic task as they had been in
the lexical decision task of Experiments 1-3. Specifically, the
training data showed that the means and standard deviations of
reaction times decreased as power functions of practice with
the same exponent (appearing parallel in log-log plots) and the
transfer data showed that learning was item-based rather than

process-based.

Evidence of Separate Instances

The fits in the previous experiments provide evidence that is
consistent with the instance theory, but they do not uniquely
support it. Most theories of skill acquisition predict a power-
function reduction in the mean (e.g., Anderson, 1982; Cross-
man, 1959; MacKay, 1982; Newell & Rosenbloom, 1981), so
the fits to the means are not unique. The fits to the standard
deviations, constrained to have the same exponent as the
means, were predicted by the instance theory and no other. But
the fits do not disconfirm predictions of the other theories; the
other theories simply made no prediction. Furthermore, the ev-
idence that automaticity is specific to the stimuli experienced
during training may rule out process-based theories of automa-
tization, but it does not uniquely support instance theory.
Strength theories, which assume that practice strengthens con-
nections between generic stimuli and generic responses, can
also predict item-based learning (e.g., Anderson, 1982;
MacKay, 1982; Schneider, 1985).
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The instance theory can be distinguished from strength theo-

ries by demonstrating the existence of separate memory repre-

sentations of each encounter with a stimulus (see, e.g., Hintz-

man, 1976). According to the instance theory, each prior epi-

sode is represented in memory, whereas strength theories

represent past history by a single strength measure, casting

aside the details of individual episodes. The difference between

these representational assumptions can be seen clearly in a va-

ried-mapping design, in which subjects give different responses

or different interpretations on different exposures to the same

stimulus. Varied mapping typically produces little or no evi-

dence of learning (e.g., Schneider & Shiffrin, 1977).

According to the instance theory, each exposure would result

in a separate trace. At retrieval time, there are two possibilities:

All of the separate traces could be retrieved, but they would

yield inconsistent or incoherent information about how the cur-

rent stimulus should be interpreted, so the subject should ignore

them and respond on the basis of the algorithm. Alternatively,

the current instructional set and the current stimulus could act

as a compound retrieval cue and retrieve only those episodes

that were encoded in the context of the current instructions. In

the first case, there would be no evidence of learning; in the

second case, there would be less learning than would be ob-

served in consistent-mapping control conditions.

By contrast, in some versions of strength theory (e.g., Schnei-

der, 1985), the different interpretations in varied mapping can-

cel one another out, resulting in no net gain in strength, and

thus, no evidence of learning. Subjects would have no choice

but to rely on the algorithm. Other versions of strength theory

might be constructed in which strength accrued separately to

each interpretation. As with instance theory, the retrieved inter-

pretations would conflict with each other, so the subjects should

ignore memory and rely on the algorithm.

The instance theory can be distinguished from the first ver-

sion of strength theory by transferring subjects to a frequency-

judgment task, just as instance theories of memory were distin-

guished from strength theories by frequency judgment tasks

(e.g., Hintzman, 1976). Instance theory predicts that subjects

trained under varied interpretation conditions should be just as

sensitive to the frequency with which individual stimuli were

presented as subjects trained under consistent interpretation

conditions, because both groups of subjects would encode rep-

resentations of each encounter with a stimulus. By contrast,

strength theory would predict that subjects trained under varied

interpretation conditions would be less sensitive to frequency

information than subjects trained under consistent interpreta-

tion conditions because there is no separate episodic trace rep-

resenting each encounter with the stimulus.

In other words, instance theory predicts a dissociation be-

tween repetition effects and frequency judgments as measures

of memory after varied-interpretation training, whereas certain

strength theories predict no such dissociation.

Experiment 5

To test the dissociation, four groups of subjects were trained

in the paradigm from Experiment 3 (i.e., some stimuli were pre-

sented in 1 block, others in 2, 4, 8, or 16 consecutive blocks),

and then transferred to a frequency judgment task. Two groups

were trained under consistent interpretation conditions, and

two groups were trained under varied interpretation conditions.

To manipulate the consistency of interpretation, subjects were

shown three kinds of stimuli: words, pronouncible nonwords,

and unpronouncible nonwords. Subjects could interpret these

stimuli under lexical decision instructions, distinguishing be-

tween words and nonwords, or under pronunciation decision

instructions, distinguishing between pronouncible and unpro-

nouncible letter strings. Logan (1988) showed that alternating

between these interpretations over successive presentations im-

paired learning, relative to consistent-interpretation controls.

One consistent-interpretation group performed lexical deci-

sions on each training trial, and the other performed pronuncia-

tion decisions. The two varied-interpretation groups alternated

between lexical decisions and pronunciation decisions over suc-

cessive presentations of the stimuli. One group began with lexi-

cal decisions, and the other began with pronunciation decisions.

In the transfer task, all four groups saw new stimuli as well as

the stimuli they were trained on, and were asked to estimate

the frequency with which each stimulus had appeared during

training. Further details of the method can be found in Appen-

dix C.

Training results. The training data are presented in Figure

11 as benefit scores. Benefit was calculated by subtracting reac-

tion time for second and subsequent presentations of a stimulus

from reaction time for the first presentation of a stimulus, in

order to remove differences due to the initial algorithm and fa-

cilitate comparisons of learning effects between conditions.

Benefit scores for consistent-interpretation lexical decision sub-

jects and for varied-interpretation subjects who began with lexi-

cal decision are presented in the top panel of Figure 11. Benefit

scores for consistent-interpretation pronunciation subjects and

for varied-interpretation subjects who began with pronuncia-

tion decisions are presented in the bottom panel of Figure 11.

The error rates are presented in Appendix C.

The lexical decision subjects showed more benefit for consis-

tent interpretations than for varied interpretations. The differ-

ence was largest for pronouncible nonwords, intermediate for

words, and smallest for unpronouncible nonwords. The pro-

nunciation subjects showed less clear-cut results: Consistent in-

terpretation produced an advantage over varied interpretation

only for pronouncible nonwords, and even that difference di-

minished after 10 or 11 presentations. These conclusions were

confirmed by ANOVA, reported in Appendix C.

The results of the lexical decision group are sufficient for the

present purpose, which is to determine whether there is a disso-

ciation between repetition effects and frequency judgments as

measures of memory following training with varied interpreta-

tion. If there is a dissociation, then frequency judgments follow-

ing lexical decisions ought to be just as accurate for varied-in-

terpretation subjects as for consistent-interpretation subjects; if

there is no dissociation, then frequency judgments should be

less accurate for varied-interpretation subjects than for consis-

tent-interpretation subjects.

Transfer results. The average frequency estimates for each

group are presented in Figure 12. The left-hand panels present

the data from consistent- and varied-interpretation lexical deci-
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Figure 11. Benefit scores as a function of the number of presentations
for consistent (solid lines) and varied (broken lines) interpretations of
words (boxes), pronouncible nonwords (triangles), and unpronouncible
nonwords (stars) in the lexical decision task (top panel) and pronuncia-

tion task (bottom panel) of Experiment 5.

sion subjects; the right-hand panels present the data from con-

sistent- and varied-interpretation pronunciation subjects. The

top panels present frequency estimates for words, the middle

panels present estimates for pronouncible nonwords, and the

bottom panels present estimates for unpronouncible nonwords.

Frequency estimates from subjects trained with varied inter-

pretations were very close to the estimates from subjects trained

with consistent interpretations. If anything, they were a little

more accurate. Thus, in the lexical decision subjects, at least,

there was a dissociation between frequency estimates and repe-

tition effects as measures of memory. These conclusions were

confirmed by ANOVAS, reported in detail in Appendix C.

Conclusions

The results from the lexical decision subjects showed a disso-

ciation between repetition effects and frequency judgments as

measures of memory: Consistency of stimulus-to-interpreta-

tion mapping had strong effects on lexical decision perfor-

mance, but had negligible effects on frequency judgments. This

dissociation was predicted by the instance theory, on the as-

sumption that subjects encode separate representations of each

encounter with each stimulus. It would not be predicted in a

straightforward manner by strength theories in which strength-

ening one interpretation weakens the other, resulting in no net

gain in strength (e.g., Schneider, 1985).

It is possible, however, to have a theory in which multiple

exposures to a stimulus are represented both as a strength value

and as separate episodic traces. That sort of theory could ac-

count for the present results, with the strength values underly-

ing the repetition effects and the separate traces underlying the

frequency judgments. However, the theoretical development of

the instance theory showed that separate traces can produce

repetition effects, so it would not be clear whether the strength

values or the separate traces were responsible for the repetition

effects. A more parsimonious interpretation would be that there

are only separate traces in memory, which produce both the

repetition effect and the frequency judgments. The onus would

be on the strength theorists to show that strength values did in

fact underlie repetition effects.

General Discussion

The experiments tested the instance theory in three ways:

First, they tested the power-law predictions and found that, as

predicted, means and standard deviations of reaction times de-

creased as power functions of the number of trials with the same

exponent (Experiments 1-4). Second, the experiments deter-

mined whether learning was item-based, as the instance theory

predicts, or process-based, as the modal view predicts. The data

supported the instance theory: Subjects learned specific re-

sponses to specific stimuli and did not transfer well to new stim-

uli (Experiments 1-4) or to new approaches to old stimuli (Ex-

periment 5). Third, Experiment 5 tested the instance theory

against certain strength theories, asking whether subjects retain

separate representations of each stimulus even if they don't use

them to support performance. The data showed evidence of

separate representations, as the instance theory predicts.

The success of the theory in these three tests suggests that

it should be taken seriously in studies of skill acquisition and

automaticity. The remainder of this section discusses implica-

tions of the instance theory for current issues and controversies.

Instance Theory and the Properties of Automaticity

The instance theory provides a new perspective on many of

the qualitative properties that distinguish automatic and nonau-

tomatic processing. In some cases, the properties derive from

the assumptions about representation and retrieval from mem-

ory. In other cases, the differences occur because automatic and

nonautomatic processing are based on different processes. Fac-

tors that affect the initial algorithm need not affect the memory

retrieval process, and vice versa. In the remainder of this sec-

tion, these principles are applied to several of properties of au-

tomaticity.
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Figure 12. Estimated frequencies of occurrence as a function of actual frequencies of occurrency for consis-

tent (solid lines) and inconsistent (broken lines) interpretations of words (top panels), pronouncible non-

words (middle panels), and unpronouncible nonwords (bottom panels) after training on the lexical decision

task (left panels) and the pronunciation task (right panels) of Experiment 5.

Autonomy

Phenomenal experience and experimental data suggest that
automatic processing is autonomous, in that it can begin and
run on to completion without intention (for reviews, see Kah-
neman & Treisman, 1984; Logan, 1985b; Zbrodoff & Logan,
1986). Instance theory accounts for the autonomy by assuming
that memory retrieval is obligatory; attention to a stimulus is
sufficient to cause the retrieval of all of the information associ-
ated with the stimulus, whether or not the subject intends to
retrieve it.

The major evidence for the autonomy of automatic process-

ing comes from Stroop and priming studies, in which an irrele-
vant stimulus influences the processing of a relevant stimulus
(but see Zbrodoff & Logan, 1986). For example, subjects are
slower to name colors when the colors form words that repre-
sent irrelevant color names (BLUE in red ink; Stroop, 1935),
and subjects make lexical decisions faster if the target word
(e.g., DOCTOR) is preceded by a related word (e.g., NURSE)
than if it is preceded by an unrelated word (e.g., BUTTER;
Meyer & Schvaneveldt, 1971). The modal interpretation of
such effects is that the irrelevant stimulus activates its memory
representation and that activation speeds or slows responses to
related stimuli—in other words, the irrelevant stimulus re-
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trieves response-related information from memory. The

modal interpretation also assumes that activation is not only

obligatory but also is independent of intention and attention;

it occurs whether or not the subject attends to the stimulus or

intends to process it (e.g., Logan, 1980; Neely, 1977; Posner &

Snyder, 1975).

Two recent findings are difficult to reconcile with the modal

view. First, Francolini and Egeth (1980) and Kahneman and

Henik (1981) showed that Stroop interference was stronger

when subjects attended to the irrelevant stimulus. Kahneman

and Henik showed subjects two words (e.g., MOST and BLUE),

one of which was colored (e.g., red) and one of which was black.

The task was to name the color of the colored word (in this case,

red). The irrelevant color word (BLUE) interfered with color

naming much more when it was colored, and hence was at-

tended, than when it was black, and hence unattended. Franco-

lini and Egeth (1980) found similar results in a numerical

Stroop task in which subjects counted red letters or digits and

ignored black ones; irrelevant digits interfered more when they

were red, hence attended, than when they were black, and hence

ignored.

Second, M. Smith (1979; M. Smith, Theodor, & Franklin,

1983) and Henik, Friedrich, and Kellogg (1983) showed that

Stroop and priming effects can be completely eliminated by

manipulating the way in which the subject processes the irrele-

vant stimulus. M. Smith and her colleagues showed that prim-

ing effects could be eliminated if subjects treated the priming

stimulus as a letter string and not as a word (i.e., by searching

for a letter within it vs. making a lexical decision). Henik et al.

showed that Stroop effects could be eliminated in the same way.

Both sets of results are difficult to deal with in the modal

interpretation of Stroop and priming effects because an irrele-

vant stimulus is supposed to activate its memory representation

whether or not the subject attends to it or intends to process it.

Instance theory can account for the attention effects (i.e., Fran-

colini & Egeth, 1980; Kahneman & Henik, 1981) with its as-

sumption that attention is sufficient to cause associated infor-

mation to be retrieved from memory. Attention may not be nec-

essary, but it is sufficient, which means that (a) information at

the focus of attention may be more strongly activated than in-

formation outside the focus, and therefore may provide stronger

retrieval cues, and (b) information at the focus will be more

likely to activate its memory representation than information

outside the focus.

Instance theory would interpret the intention effects (i.e.,

Henik et al., 1983; M. Smith, 1979; M. Smith et al., 1983) as

retrieval effects: The instruction to process the irrelevant stimu-

lus in a different way leads subjects to use different retrieval

cues in conjunction with the stimulus, to retrieve the required

information from memory. The effects on subsequent process-

ing will depend on what was retrieved and how it is related to

the subsequent task. If subjects make a lexical decision about

the prime, then information about the meaning of the prime

will be retrieved and available to influence a subsequent lexical

decision. But if subjects search for a letter in the prime, infor-

mation about letters will be retrieved, which may not affect a

subsequent lexical decision.

Stroop and priming studies are interesting because they focus

on a different sense of automaticity than the practice studies

that were addressed by the instance theory. Stroop and priming

studies are concerned with the activation of memory represen-

tations, whereas practice studies are concerned with the use of

activated memory representations in the performance of tasks.

Stroop and priming studies consider a stimulus to be processed

automatically if it retrieves anything from memory, whereas

practice studies consider a stimulus to be processed automati-

cally only if it retrieves something useful from memory. The

different senses are apparent in interpreting control conditions

in the different paradigms: In Stroop tasks, neutral (noncolor)

words are assumed to activate their memory representations

automatically even though the activation has no effect on color

naming. But in practice studies, varied-mapping control stim-

uli are not considered to be processed automatically, even

though they may retrieve information from memory (cf. Exper-

iment 5).

It is tempting to think of Stroop-type automaticity as one

component of the automaticity addressed in practice studies be-

cause memory retrieval is the first step in performing a task

automatically. One could imagine a progression from one type

of automaticity to the other, as a small number of stimulus ex-

posures may cause enough memory activation to produce

Stroop and priming effects but not enough to provide a reliable

basis for performing the task. However, Stroop and priming

effects do not provide a pure measure of memory retrieval.

Memory retrieval affects performance by interacting with a

subsequent decision process, just as it does in practice studies

(e.g., Logan, 1980). The intentional and attentional effects de-

scribed earlier suggest that the appearance of Stroop and prim-

ing effects depends on the relation between retrieval cues and

decision processes, just as practice effects do. Thus, one need

not expect Stroop and priming effects to appear sooner than

practice effects. It may be possible to relate the two senses of

automaticity theoretically, but that does not mean that their

empirical manifestations will be related in a straightforward

manner.

Control

Phenomenal experience suggests that automatic processing

is closely controlled. Behavior on "automatic pilot" is usually

coherent and goal-directed (Reason & Myceilska, 1982); skilled

practitioners are better than novices even though they perform

automatically (Logan, 1985b). Experimental data also suggest

that automatic processing is closely controlled. Skilled activities

such as speaking and typing can be inhibited quickly in re-

sponse to an error or a signal to stop, often within a syllable or

a keystroke after the error or stop signal (Ladefoged, Silverstein,

&Papcun, 1973;Levelt, 1983; Long, 1976; Logan, 1982; Rab-

bitt, 1978). Thoughts may be harder to inhibit than overt ac-

tions (Logan, 1983, 1985a), but even they can be controlled by

deliberately thinking of other things (Wenger, Schneider, Carter,

& White, 1987).

By contrast, the modal view is that automatic processing is

not well controlled. Shiffrin and Schneider (e.g., 1977) explic-

itly distinguish between automatic and controlled processing,
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and the idea is implicit in other approaches (e.g., LaBerge &
Samuels, 1974; Posner & Snyder, 1975). The main motivation
for the modal view on control is the evidence that automatic
processes are autonomous. But autonomy does not imply lack
of control. A process is autonomous if it can begin and run on
to completion without intention (Zbrodoff & Logan, 1986);
that does not mean it cannot be initiated and guided to comple-
tion intentionally.

According to the instance theory, automatic processes are
used intentionally. Automaticity exploits the autonomy of the
retrieval process, harnessing it so that it provides information
that is relevant the person's goals. Thus, automatic processes
are controlled. The retrieval process can be controlled by ma-
nipulating retrieval cues or stimulus input, or both, and the sub-
sequent decision process can be inhibited before it results in an
overt response. Automatic processing may be a little harder to
control than algorithm-based processing, but only because it
tends to be faster and allows less time for an act of control to
take effect. It may be controlled differently, but it is controlled
nonetheless (for related views, see Logan, 1985b; Neumann,
1984).

Effortlessness

Phenomenal experience and experimental data also suggest
that automatic processing is effortless (see Jonides, 1981; Lo-
gan, 1978, 1979; Posner & Snyder, 1975; Shiffrin & Schneider,
1977). Typical treatments of automaticity assume that process-
ing capacity or cognitive resources are severely limited and that
automatization is a way around the capacity limitations. By
contrast, the instance theory does not assume any capacity limi-
tations; novice performance is limited by a lack of knowledge
rather than by scarcity of processing capacity or resources. Sub-
jects perform slowly at first because they have no other way to
perform the task. As their knowledge base builds up with prac-
tice, they have the choice of responding on the basis of the algo-
rithm or on the basis of memory retrieval. Presumably, they do
not switch to memory retrieval until it is faster than the algo-
rithm and at least as reliable.

The major experimental evidence for effortless automatic
processing comes from dual-task experiments that show that
practiced subjects suffer less interference from a concurrent
task than do unpracticed subjects (e.g., Bahrick & Shelley,
1958; Logan, 1978, 1979). The usual interpretation is that the
practiced task requires fewer resources than the unpracticed
task. That may be the case, but instance theory would suggest
that the reduction in dual-task interference occurs because of
the shift from the algorithm to memory retrieval: Because
memory retrieval and the algorithm are different processes,
tasks that interfere with the algorithm will not necessarily inter-
fere with memory retrieval. The reduction in interference may
occur only because experimenters choose concurrent tasks that
interfere with the initial algorithm; if the concurrent task does
not interfere with the algorithm, another concurrent task is
chosen. So the reduction in interference may be an artifact of
the experimenter's choice of procedures rather than a general
reduction in resource demands. Indeed, instance theory sug-
gests that it may be possible to find an increase in dual-task

interference with practice, in cases in which the concurrent task
interferes with memory retrieval but not with the initial algo-
rithm. Thus, instance theory predicts a shift in dual-task inter-
ference rather than a reduction in dual-task interference (also
see Logan, 1985b).

Alternatively, instance theory would predict a reduction in
dual-task interference with automatization because automati-
zation provides subjects with more ways to do the task. Initially,
they have only one way to perform the task—following the in-
structed algorithm—so a concurrent task that interferes with
the algorithm must affect their performance. After automatiza-
tion, however, they can use the algorithm or rely on memory
retrieval. If the concurrent task interferes with the algorithm,
they can use memory retrieval; if it interferes with memory re-
trieval, they can use the algorithm. In either case, their perfor-
mance need not suffer. The general point is that automatic per-
formance can be more flexible than nonautomatic perfor-
mance, providing the subject with ways to avoid dual-task
interference (also see MacKay, 1982).

Another major line of evidence that automatic processing is
effortless comes from search studies that manipulate the num-
ber of items in the memory set, the number of items in the dis-
play, or both. Initially, reaction time increases linearly with the
number of memory set or display items, but after considerable
practice, the slope approaches zero (for a review, see Schneider
& Shiffrin, 1977). The initial linear increase is interpreted as
evidence that unpracticed search is effortful—search is as-
sumed to be serial in order to minimize the momentary load on
capacity—and the zero slope at the end of practice is interpreted
as evidence that search has become effortless or capacity free.

There are many criticisms of this interpretation (e.g., Cheng,
1985; Ryan, 1983), but the basic findings can be handled easily
by instance theory: Initially, performance depends on a search
algorithm in which subjects try to find the probe item in the
memory set or the memory item in the display. Several different
algorithms could be used for the task, most of which would pro-
duce the linear increase in reaction time with memory set size
or display size (see Townsend & Ashby, 1983). After practice,
subjects retrieve the appropriate response directly from mem-
ory, without searching, when given a probe or a multi-item dis-
play as a retrieval cue (cf. Ryan, 1983; Schneider, 1985). This
scheme provides a natural account of memory search; whether
it can work for visual search is not immediately clear (i.e., visual
search may train an automatic attention response, which is not
part of the instance theory; Shiffrin & Schneider, 1977). The
principle here is the same as in dual-task studies: Factors that
affect the algorithm, such as display size or memory set size, do
not necessarily affect memory retrieval.

Instance theory accounts for the phenomenal experience of
effortlessness during automatic performance by suggesting that
memory retrieval is often easier than the algorithm. Indeed,
subjects would not be expected to switch from the algorithm to
memory retrieval until memory retrieval was quick and effort-
less.

Unconsciousness

The evidence that automatic processes are unconscious is
primarily phenomenal—we cannot easily introspect on the
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things we do automatically. Traditional views have some diffi-

culty dealing with this aspect of automaticity because con-

sciousness is not an easy concept to express in the information-

processing language that dominates current theorizing (e.g.,

Carr et al., 1982; Marcel, 1983; Posner & Snyder, 1975). I sus-

pect that the attribution of unconsciousness to automatic pro-

cessing stems from the belief that automatic processing is pro-

cessing without thinking. In everyday language, for example, we

say that we solved a problem automatically when the solution

springs to mind without much thought or when it is the first

thing that occurs to us. Instance theory can capture this intu-

ition by specifying precisely what it means to think about a solu-

tion (i.e., to compute a solution by applying an algorithm) and

what it means to find a solution without thinking (i.e., to re-

trieve a solution from memory), and both of them can be ex-

pressed easily in information-processing language.

Another reason for believing that automatic processing may

be unconscious is that algorithms may involve a series of steps

or stages on the way to a solution, each of which may be intro-

spected upon, whereas memory retrieval is a single-step process

(e.g., the resonance metaphor of Hintzman, 1986, and Ratcliff,

1978, or the holographic retrieval process described by Eich,

1982, and Murdock, 1982, 1983). Thus, automatic processes

may not be available to the "mind's eye" long enough to provide

conscious evidence of their inner workings.

Poor Memory

Phenomenal experience suggests that automatic processing

results in poor memory for what was processed. When dis-

tracted, we may start up from a stop light, shift gears, and attain

cruising speed on "automatic pilot," and then find we have no

memory of having done so (also see Reason, 1984). There have

not been many experimental tests of memory for things pro-

cessed automatically, but the few that exist support the poor-

memory hypothesis.

For example, Kolers (1975) investigated acquisition of skill

at reading spatially transformed text (rof elpmaxe) and found

that memory for transformed texts was better than memory for

normal texts. He attributed the difference to the automaticity

of normal reading. He showed as well that memory for trans-

formed text declined as subjects acquired skill. Thus, his results

suggested that subjects can remember stimuli they process au-

tomatically, although not as well as stimuli they processed algo-

rithmically.

Fisk and Schneider (1984) had subjects search for exemplars

of target categories in a series of words presented one after the

other. One experiment examined memory early in practice,

during controlled processing; the other examined memory fol-

lowing automatic processing. The results were clear: Subjects

remembered much more accurately in Experiment 1 than in

Experiment 2. In fact, there was little evidence of memory for

some stimuli (novel distractors) in Experiment 2, which led Fisk

and Schneider (1984) to conclude that automatic processing left

no traces in memory.7 However, automaticity was confounded

with dual-task conditions: Experiment 1 used only single-task

conditions, and Experiment 2 used only dual-task conditions

(i.e., the category search task performed concurrently with a

difficult digit search task). Thus, either automaticity or the

dual-task conditions (or both) could have impaired memory in

Experiment 2. One cannot tell from their experiments which

was the important factor. The literature suggests that dual-task

conditions may have been responsible: Recent evidence indi-

cates that dual-task conditions at encoding severely impair

memory (Naveh-Benjamin & Jonides, 1986). Nissen and Bul-

lemer (1987) presented data suggesting that subjects cannot re-

member stimuli processed in dual-task conditions. And Kol-

ers's (1975) data suggested that subjects can remember stimuli

processed automatically. They may not remember well, but

they do remember.

Typically, poor memory for stimuli processed automatically

is interpreted as an encoding deficit—encoding is either cursory

or not done at all. By contrast, the instance theory interprets it

as a retrieval effect. The theory assumes that events are encoded

in the same way on each trial, whether it be the 10th or the

10,000th. In each case, a separate trace is created to represent

the event. However, the traces may have a different impact on

retrieval, depending on how many other traces there are in

memory and depending on the retrieval task. The impact of

trace i + 1 relative to trace;' will decrease as;' increases, follow-

ing a kind of Weber function. Adding one trace to zero makes

more of a difference than adding one trace to 10 or one trace to

1,000.

The nature of the retrieval task is also important. Some re-

trieval tasks, like recognition and recall, require subjects to

identify one trace out of many. Other retrieval tasks, like the

kind used in studies of automaticity and categorization (e.g.,

Hintzman, 1986; Medin & Schaffer, 1978), allow subjects to re-

spond to the whole set of retrieved traces without focusing on

any one in particular. In the former, competitive retrieval tasks,

the other traces can interfere with retrieval of the one desired

trace, for example, by adding noise to the decision process. The

task is like finding a particular tree in a forest; the more dense

the forest, the harder it is to find. Performance should get worse

as the task becomes automatic and more traces are added to

memory. By contrast, in the latter, cooperative retrieval tasks,

the different traces serve the same purpose, working together for

a common goal. The task is like finding a forest; the more trees

there are, the easier it is to find. Performance should get better

as the task becomes more automatic and more traces are added

to memory.

The distinction between competitive and cooperative re-

trieval tasks is well illustrated in the frequency paradox in recog-

nition versus lexical decision:8 Low-frequency words are recog-

nized better than high-frequency words, but low-frequency

words produce slower lexical decisions than high-frequency

7 The poor memory for novel distractors may be a result of shallow
processing and incongruity rather than automaticity. The targets were
very familiar and the distractors were new, so a simple familiarity judg-
ment would allow accurate performance. Subjects may not interpret
the distractors beyond deciding they are unfamiliar, and that would not
produce good memory. Also, memory is typically worse for no items
than for yes items, possibly because no items are not congruent (Craik

&Tulving, 1975).
* I would like to thank Tom Can- for providing this example.
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words. This paradox occurs because the tasks require different

retrieval processes: Recognition requires subjects to discrimi-

nate one particular exposure to a word from all other exposures

to the word. High-frequency words have more exposures than

low-frequency words, so a single exposure is harder to discrimi-

nate. By contrast, lexical decision requires subjects to discrimi-

nate any exposure to the word from no exposure. High-fre-

quency words have more exposures, so more of them are likely

to be retrieved, making the discrimination easier.

Instance Theory and Issues in Automaticity

The instance theory provides new perspectives on the diagno-

sis of automaticity and the relation between automaticity and

categorization. The perspectives are described in this section.

Diagnosing Automaticity

Much of the interest in automaticity comes from studies that

attempt to determine whether specific processes, such as letter

encoding (Posner & Boies, 1971), lexical access (Becker, 1976),

and abstraction of superordinate categories (Barsalou & Ross,

1986), are automatic. The processes are often acquired through

experience outside the laboratory, so the assessment of automa-

ticity is an absolute judgment; the process is either automatic

or not automatic. Researchers often assess the properties of au-

tomaticity and consider a process to be automatic if it possesses

some or all of the properties.

However, the diagnosis of automaticity is fraught with prob-

lems: Different researchers use different lists of properties and

disagree on the necessity and sufficiency of the properties they

list. For example, Posner and Snyder (1975) list only 3 proper-

ties, whereas Hasher and Zacks (1979) list 5, and Schneider,

Dumais, and Shiffrin (1984) list 12. Hasher and Zacks (1979)

have argued that all properties must be present in a truly auto-

matic process, but others are less restrictive. To make matters

worse, some researchers have questioned the agreement be-

tween properties, showing for example, that an obligatory pro-

cess may be effortful (Kahneman & Chajzyck, 1983; Paap &

Ogden, 1981; Regan, 1981).

Automaticity is also difficult to diagnose absolutely from the

perspective of instance theory, because instance theory does not

assume that any of the properties are necessary or sufficient.

Automaticity is denned in terms of the underlying process—

automatic performance is based on memory retrieval—and not

in terms of necessary and sufficient properties. As described

earlier, many of the properties may be characteristic of automa-

ticity, but no property or set of properties define it. To deter-

mine whether a process is automatic, one must determine

whether it is based on memory retrieval, and that is difficult to

do because there are no accepted criteria for deciding whether

something is based on memory retrieval.9

Instance theory suggests that automaticity is both absolute

and relative. It is absolute in that performance may sometimes

be based entirely on memory retrieval and sometimes entirely

on the algorithm. It is relative in that performance may be based

on memory retrieval on some proportion of the trials. It may be

possible to estimate the proportion without knowing which tri-

als were memory-based and which were algorithm-based. Auto-

maticity is also relative in that memory strengthens progres-

sively throughout practice, and it is appropriate to say that per-

formance is more automatic after 10,000 trials than after 1,000

trials, even if both performances are entirely memory-based.

Each trial has the same impact on memory regardless of the

number of trials that went before it. Thus, instance theory sug-

gests there are no limits on the degree of automaticity that may

be attained; automaticity may never be complete.

It is easier to judge automaticity relatively than absolutely:

The more automatic the performance, the faster it should be,

the less effortful, the more autonomous, and so on (also see Lo-

gan, 1985b). Assessments of relative automaticity can be made

most confidently when two performances of the same task are

compared, preferably at two different levels of practice. One

would expect practice to make a task more automatic, and the

more practiced task is likely to be more automatic. It is more

difficult to assess the relative automaticity of two different tasks.

For example, one task may appear less effortful than another

because its algorithm is easier, not because its performance is

based more on memory retrieval. However, many of these prob-

lems may be minimized and sometimes avoided by a careful

task analysis (e.g., Jonides et al., 1985).

Automaticity and Categorization

The instance theory of automaticity bears a strong resem-

blance to instance theories of categorization (e.g., Hintzman,

1986; Jacoby & Brooks, 1984; Medin & Schaffer, 1978). In-

stance theories of categorization argue that subjects decide the

category membership of a test stimulus by comparing it with

the instances stored in memory and assigning it to the category

containing the most similar instances. These theories are sim-

ilar to the instance theory of automaticity in that both assume

that (a) performance depends on retrieval of specific instances

from memory and (b) the retrieval process is cooperative, com-

paring all of the available traces with the test stimulus. The theo-

ries are also similar in that they focus on learning; both automa-

ticity and categorization are acquired abilities.

Studies of automatization differ from studies of category

learning in that there is an initial algorithm that allows subjects

to perform accurately until memory retrieval can take over. In

category learning, there is no algorithm to "bootstrap" perfor-

mance. Performance is inaccurate until the category is well

learned. Studies of category learning are also different in that

the stimuli presented to subjects are usually very similar to each

other and subjects are expected to exploit the similarities in

forming categories and in generalizing to new instances. Studies

of automatization, by contrast, often use easily discriminable

stimuli (e.g., words or letters) and rarely test for generalization

to new instances (but see Salasoo et al., 1985; Schneider & Fisk,

1984). Finally, studies of category learning usually involve sub-

' It may be possible to diagnose instance-based automaticity by show-
ing better transfer to trained instances than to untrained ones. That
requires knowing something about the subject's history with the task
and materials, which is often not easy in practice.
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stantially less practice than do studies of automatization—one

session versus 10 or 20.

None of these differences seem very fundamental. Category

learning studies could use orienting tasks to allow accurate ini-

tial performance, and studies of automatization could vary

stimulus similarity and test for generalization and transfer. Cat-

egory learning studies could investigate practice effects over the

range used in studies of automatization, and studies of automa-

tization could focus on the effects of initial practice (e.g., Exper-

iments 1-3). The differences could be viewed as guidelines for

future research to bring the different areas closer together. As a

result, automaticity might come to be viewed more as a general

cognitive phenomenon and less as a special topic in the psychol-

ogy of attention.

The current version of the instance theory of automaticity

would need to be changed in order to deal with the effects of

stimulus similarity. The current version assumes that each repe-

tition of the same stimulus produces exactly the same trace and

that each different stimulus produces an entirely different trace.

There is no cross talk between nonidentical traces to produce

the effects seen in the studies of category learning. To account

for those effects, I would have to make more detailed assump-

tions about how the trace is represented and how the retrieval

process works (cf. Hintzman, 1986). That is an important di-

rection for future work, but it is beyond the scope of this article.

The close relations between categorization and automatiza-

tion envisioned by instance theory contrast sharply with the

views of Shiffrin and Schneider (1977; also see Schneider &

Shiffrin, 1985), who argued that automatization was more than

categorization. The main evidence for their claim is a visual

search experiment in which subjects were trained to detect let-

ters from one set in arrays made from another set of letters.

After several sessions of practice, during which performance

improved dramatically, Shiffrin and Schneider switched sets:

Subjects now had to detect the former distractor letters in arrays

made from former targets. If automaticity depended only on

categorization, there should be good transfer because the dis-

crimination between targets and distractors is essentially the

same. However, transfer was abysmal. Performance was as bad

as it was on the initial practice session and took the same num-

ber of training sessions to reach pretransfer levels.

Shiffrin and Schneider (1977) argued that automatization

affected the targets' ability to attract attention. Well-practiced

targets elicit an automatic attention response, which pulls atten-

tion away from its current focus. In the transfer task, the former

targets would pull attention away from the current targets (for-

mer distractors), causing failures of detection. Extensive post-

transfer practice would be necessary to build up the automatic

attention responses to the current targets. Other studies pro-

vided further evidence for automatic attention responses, so

Shiffrin and Schneider concluded that there was more to auto-

maticity than categorization; automaticity involved categoriza-

tion and the automatic attention response.

I do not deny the automatic attention response or its impor-

tance in some cases of automaticity. However, it is not the only

mechanism of automaticity; I argue that memory for instances

is another. The automatic attention response may be specific to

visual search tasks, in which the subject must focus spatially on

a target item. There is a cost associated with filtering out the

distractors (Kahneman, Treisman, & Burkell, 1983), and sub-

jects may learn to overcome that cost. I suspect that the auto-

matic attention response may not be important in tasks that

do not require spatial filtering, such as the lexical decision and

alphabet arithmetic tasks studied earlier. For those tasks, cate-

gorization (and hence, retrieval of instances) may be enough.

Karlin and Bower (1976) and Jones and Anderson (1982) pre-

sented data suggesting that categorization may be sufficient for

automatization in memory search.

Categorization has many properties that are important in au-

tomaticity. In particular, categorizing an item makes available

a host of facts associated with category membership, permitting

inferences that go beyond the given perceptual information

(Murphy & Medin, 1985). When this happens quickly and

effortlessly by a single act of memory retrieval, it captures the

essence of automaticity.

Perhaps the main motivation for distinguishing between au-

tomaticity and categorization is the fear that categorization is

somehow more fundamental; if automaticity is like categoriza-

tion, then it is epiphenomenal (e.g., Cheng, 1985). I believe this

fear is ungrounded. Automaticity and categorization are both

fundamental constructs, reflecting different aspects of the same

learning process, namely, the storage and retrieval of instances.

Process-Based Versus Instance-Based Learning

The instance theory assumes that there is no change in the initial

algorithm or in the memory process as practice progresses. All

that changes with practice is the data base on which the memory

process operates. This assumption makes the theory easy to ana-

lyze and simulate, but it is unlikely to be true in general. The mem-

ory process may change through forgetting or through changes in

attention (e.g., the addend = J condition in Experiment 4). Or the

algorithm may change through process-based learning. There is

some evidence of process-based learning in the literature (Pirolli &

Anderson, 1985; E. Smith & Lerner, 1986) and even in the present

experiments. For example, the new-item control condition in Ex-

periment 1 showed some improvement with practice even though

none of the stimuli were repeated.

Possibly, what appears to be process-based learning may ac-

tually reflect a different sort of instance-based learning. Sub-

jects may be reminded of a better way to approach the task by

retrieving an example of an approach that was successful on

a similar problem in the past (see Ross, 1984). Thus, process

changes may reflect a discrete shift to a different strategy rather

than a gradual evolution or refinement of a single process. Al-

ternatively, subjects may parse their experience into instances

in a different way than the experimenter imagines. In a category

judgment task, for example, a subject who is asked to decide

whether a trout is a fish may encode the trial as another instance

offish rather than the first instance of trout (cf. Barsalou & Ross,

1986), and show learning that depends on the number of pre-

sentations offish rather than trout.10 It may be difficult to sepa-

101 would like to thank Eliot Smith for suggesting this hedge. It may
account for two aspects of Schneider and Fisk's (1984) data that seem
troublesome for instance theory: (a) the null effect of number of in-
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rate these variations of instance-based learning from true pro-
cess-based learning, but the issue is important and the results
may be worth the effort. Whatever the outcome, we would learn

something important about the strategies people use in acquir-
ing and utilizing knowledge.

Retrieval of instances may play an important role in process-
based learning. Even when subjects learn an algorithm, the con-
ditions necessary for instance-based learning are satisfied—
subjects may have no choice but to encode and retrieve specific
instances. One could imagine interactions between instance-
based and process-based learning in which retrieval of instances
helps eliminate ineffective variations of the process (they would
be less likely to finish before memory retrieval) and execution
of the process helps eliminate ineffective memory retrievals.

Relations to Other Theories of Skill

Acquisition and Automaticity

Several existing theories predict a power-function speed-up
from assumptions that differ substantially from the instance
theory. Many of the theories addressed different tasks and pro-
cesses than the instance theory addresses, and few of them deal
with automaticity directly. In this section, I compare those theo-
ries with instance theory, but I do not intend to argue that in-
stance theory is more correct or more accurate than the other
theories. Instead, I view the theories as addressing different situ-
ations, and some theories may fit some situations better than
others; it seems likely to me that humans can learn in more than
one way. Choice among theories is something like choice among
statistical tests. One considers the assumptions of the statistical
model and determines whether they can be satisfied in a given
situation. If so, one uses the test; if not, one chooses another test.
Analysis of variance, for example, is not wrong or inaccurate
because it cannot deal with data from Bernouli trials; it is sim-
ply inappropriate. When two different tests can be used on the
same data, one can ask which is more powerful and more accu-
rate, as in comparisons between parametric and nonparametric
statistics; but first, one must be sure that the assumptions fit the
situation.

Grossman

Grossman (1959) proposed a theory of skill acquisition in
which subjects sampled methods for performing a task until
they found the fastest one. He assumed there was a pool of possi-
ble methods and that subjects would select one at random for
each performance of the task. Afterward, they compared the
speed of the method they selected with their average speed over
several trials, and if the method was faster, they increased the
probability of selecting it for the next trial. In the long run, the
fastest method would have the highest probability of being se-
lected. The theory predicts a power-function speed-up because
it is easier to find a faster method early in practice than later on.

Grossman's (1959) theory applies to situations in which there

stances (4 vs. 8 per category) on the rate of learning and (b) the success-
ful transfer to new instances (ranging from 60% to 90%).

are several different methods for performing a task and subjects
know or have available all of the different methods when they
first begin the task. There is no provision for learning new meth-

ods or improving old ones as practice progresses. In this respect,
it differs from the instance theory, which assumes that subjects
acquire new methods (i.e., memory for past solutions) that
strengthened over practice (i.e., by accumulating similar in-
stances). Grossman's theory may account well for the acquisi-
tion of motor skills, like cigar rolling or typing, but it would not
account for the lexical decision and alphabet arithmetic tasks
described earlier, which involve developing and strengthening
new methods.

Newell and Rosenbloom

Newell and Rosenbloom (1981; Rosenbloom & Newell, 1986)
proposed a theory based on the idea of chunking. They argued
that subjects acquire responses to stimulus patterns or chunks,
which they can execute the next time the pattern occurs. They
assumed that subjects learned patterns at several different lev-
els, some encompassing single elements, some encompassing
several elements, and some encompassing the whole stimulus.
They argued that the smaller patterns recur more frequently
than the larger patterns (e.g., moving a single pawn vs. opening
a chess game), so subjects will have more opportunities to mani-
fest their learning the smaller the pattern. This principle ac-
counts for the power-function speed-up: Subjects benefit from
having learned the smaller patterns early in practice because
they recur often. Later on, they will have learned most of the
smaller patterns and will benefit no more from subsequent oc-
currences. Subjects will tend to benefit from larger patterns later
in practice because they recur less often and because there are
more of them to be learned. Thus, early learning will be rapid,
as the smaller patterns are acquired and utilized, and later learn-
ing will be relatively slow, as the larger patterns are gradually
learned and gradually utilized.

Newell and Rosenbloom's theory differs from the instance
theory in that it assumes that there is no strengthening of the
response to an individual chunk once it is learned. Their theory
applies best to situations in which the stimuli are highly pat-
terned, allowing chunks to be formed at many different levels.
It would not apply well to the lexical decision and alphabet
arithmetic experiments reported earlier because the tasks could
not be performed by breaking the stimuli down into chunks and
responding to chunks at different levels. None of the component
letters predicted which response to make; subjects had to re-
spond to the stimuli as wholes.

MacKay

MacKay (1982) proposed a theory in which learning occurs
by strengthening connections between nodes in a network that
describes the representation underlying perception and action.
His theory produces the power-function speed-up in two ways:
First, the connections are strengthened in proportion to the
difference between the current strength and the maximum pos-
sible strength. The proportion is constant over learning, which
means that changes in strength will be greater early in learning
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than they will be later on. Second, MacKay assumed that the

representation was hierarchical and that the higher nodes were

smaller in number and farther from their maximum strength

than the lower nodes. Thus, early learning would be dominated

by large changes in the strength of a few higher nodes, and later

learning would be dominated by small changes in the strength

of all nodes.

MacKay's (1982) theory differs primarily from the instance

theory in that it is a strength theory. It assumes that practice

strengthens connections between generic stimuli and generic re-

sponses, whereas the instance theory accounts for strengthening

by encoding and retrieving separate representations of each en-

counter with a stimulus. MacKay intended his theory to apply

to behavior that is more complex than the behavior to which

the instance theory has been applied (i.e., generating sentences

vs. performing lexical decisions), but that is not a major differ-

ence. It should be possible to decide between his theory and

mine empirically, with experiments like the present Experi-

ment 5 (also see Hintzman, 1976).

Anderson

Anderson (1982, 1987) proposed a theory of skill acquisition

that has several different learning mechanisms. Some involved

translating verbal instructions into procedures for performing

a task, others involved generalizing and differentiating existing

procedures, and one involved simple strengthening. The most

important mechanisms in the present context are composition

and strengthening.

Composition involves collapsing a series of steps into one by

combining adjacent procedures. The amount of practice neces-

sary to reduce a complex procedure to a single step depends on

the number of steps and on the probability of combining adja-

cent steps. The more steps and the lower the probability of com-

bining, the longer it will take. Composition reduces the number

of steps by a constant proportion on each iteration of the proce-

dure, producing rapid learning early in practice and slower

learning later on.

Strengthening involves increasing the speed with which pro-

ductions are executed. It operates mainly on composed produc-

tions, increasing the strength on each exposure by a constant

proportion. Strengthening and composition work together to

produce the power-function speed-up. The other learning

mechanisms may contribute something to the speed-up, but

composition and strengthening are the major contributors.

Anderson's (1982,1987) theory differs from the instance the-

ory in being much more detailed and embedded in a very pow-

erful theory of general cognition. Some of its learning mecha-

nisms are stimulus-specific, like those of instance theory, but

others are more general, providing process-based learning.

Thus, Anderson's theory would apply better than the instance

theory to situations in which people learn general procedures

rather than specific responses to specific stimuli. Anderson's

composition process will work only when the structure of the

task allows adjacent steps to be collapsed. It is unlikely to work

in the lexical decision experiments reported above, in which

one single-step process was replaced by another. Nor is it likely

to work in alphabet arithmetic or arithmetic in general. Sub-

jects did not learn to count by twos, then fours, and so on; in-

stead, they switched from counting by ones to remembering.

Schneider

Walter Schneider has been developing a theory of automatiza-

tion for several years (Schneider, 1985; Schneider & Detweiler,

1987). Schneider's theory involves two kinds of learning, prior-

ity learning, which attracts attention to display positions that

are likely to contain targets, and association learning, which

connects stimuli directly to responses. The mechanism underly-

ing both kinds of learning is proportional strengthening; after

each successful trial, priority and associative strength are both

increased by an amount proportional to the difference between

their current strength and the maximum possible strength. The

power-function speed-up is a consequence of proportional

strengthening.

Schneider's theory differs from the instance theory in specific

details. Schneider was concerned with the microstructure of

skill acquisition and made what he considered to be physiologi-

cally plausible assumptions about the underlying representa-

tions and the processes that operate on them. So far, he has ad-

dressed automatization only in tasks that combine visual and

memory search, developing a detailed model of initial perfor-

mance on those tasks. It is not obvious how his theory would

deal with other tasks at the same level of detail (e.g., lexical deci-

sion and alphabet arithmetic).

Schneider also interpreted the properties of automaticity

differently than I do, having taken a more conventional posi-

tion. For example, he characterized nonautomatic processing

(which he called controlled processing) as "slow, generally serial,

effortful, capacity-limited, [and] subject-controlled" (Schnei-

der, 1985, p. 476), whereas I argue that there may be no charac-

teristics common to all or even to most instances of nonauto-

matic processing. He assumed that controlled processing is nec-

essary for learning; there is no further learning once processing

is automatic. By contrast, I assume that learning occurs on each

trial, whether processing is automatic or not. It may be harder

to find evidence of learning once processing is automatic, for

reasons I described earlier, but each trial continues to lay down

a separate trace.

Finally, Schneider's theory differs from the instance theory in

assuming two learning mechanisms instead of one. His associa-

tion-learning mechanism is similar to the learning mechanism

in the instance theory, but there is nothing in the instance the-

ory corresponding to his priority learning mechanism. I believe

priority learning is important primarily in visual search, in

which targets must be discriminated from simultaneously pre-

sented distractors. Association learning (or instance learning)

should be sufficient to account for situations that do not require

such discrimination (e.g., memory search, lexical decision, and

alphabet arithmetic).

Despite these differences, Schneider's theory is similar to the

instance theory in assuming that automatization reflects a tran-

sition from algorithm-based processing ("controlled" process-

ing) to memory-based processing. The language may be very

different, but the underlying idea is basically the same. The most

fundamental differences lie in the assumptions about strength-
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ening; his is a strength theory, and mine is not. One could distin-

guish between the theories empirically, with experiments that

distinguish strength theories from instance theories (e.g., Ex-

periment 5; also see Hintzman, 1976).

Concluding Remarks

The purpose of this article was to present an alternative to

the modal view of automatization as the gradual withdrawal of

attention. The instance theory accounts for many of the facts

addressed by the modal view without assuming any resource

limitations, attentional or otherwise. Novice performance is

limited by a lack of knowledge rather than by a lack of re-

sources. The theory accounts for the power-function speed-up

that is perhaps the most stable and least controversial property

of automatization. In doing so, it predicted a power-function

reduction in the standard deviation and a constraint between

the mean and standard deviation (same exponent), which was

confirmed in each experiment.

An important feature of the theory as developed so far is that

it accounts for the facts of automaticity by assuming that only

the knowledge base changes with practice. This assumption

may strike many readers as implausible, but it accounts for a

surprising amount of variance in a number of learning tasks.

The theory may be viewed as a null hypothesis against which to

evaluate competing theories that assume changes in the under-

lying processes with practice. The main point of the fits to ex-

perimental data is that there may not be much variance left for

competing theories to explain.
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Appendix A

Formal Analysis of the Power-Function Speed-Up

The instance theory assumes that (a) each encounter with a stimulus
is encoded into memory, (b) all prior encounters with a stimulus are
retrieved when the stimulus is encountered again, (c) each encounter is
stored and retrieved independently, and (d) the subject can respond as
soon as the first trace is retrieved from memory. Assuming further that
the distribution of retrieval times is the same for each of the n traces,
reaction times can be modeled as the minimum of«independent sam-
ples from the same distribution. The purpose of Appendix A is to show
that reaction times will decrease as a power function of sample size,
which leads to the prediction that means and standard deviations de-
crease as power functions of practice with the same exponent. Also ad-
dressed is the race between the algorithm and memory retrieval, exam-
ining the effect of the algorithm on the power-function speed-up and the
number of trials required for memory to dominate the algorithm.

The distribution of minima from an arbitrary distribution can be
written as a function of the initial distribution. The cumulative distribu-
tion function is

and the probability density function is

(Gumbel, 1958, p. 76). However, it is difficult to derive general predic-
tions for changes in the mean and standard deviation with sample size,
«, that would be true for every initial distribution. Instead, we derived
specific predictions for two initial distributions, the exponential and the
Weibull, and we derived general predictions for the class of positive-
valued distributions by working backward from the asymptotic distri-
bution of minima.

The exponential was chosen for the initial derivation because it is easy
to work with; the entire model can be expressed with exponential distribu-
tions. However, predictions from the exponential model deviate systemati-
cally from empirical data, so aspects of the model were explored in a partic-
ular generalization of the exponential, the Vifeibull distribution. The
Weibull was chosen for three reasons: First, with appropriate parameter-
ization, it resembles reaction-time distributions; second, it avoids the devi-
ation from the data found with the exponential model; and third, as dis-
cussed in the final section, it turns out to be an important asymptotic
distribution of minima from positive-valued distributions.

The Exponential Distribution

The exponential distribution is commonly used in models of memory
retrieval because of its empirical success and analytical tractability
(Murdock, 1974; Ratcliff, 1978). Its distribution function is

F(t) = I - exp[-wt],

and its density function is

From Equation Al, the distribution function for the minimum of n
samples from the same exponential distribution is

Fj(0 = 1 — exp[~nutf],

and from Equation A2, the density function is

fi(t) = «exp[-(n - l)wt]wexp[-wt]

= (nw)exp[-Hw?].

Thus, the distribution of minima from an exponential distribution is
itself an exponential distribution, with a rate constant n times larger
than the rate constant for the initial distribution.

The mean of the distribution decreases as a power function of n with
an exponent of—1:

f, = (iw)-1 = (n-'XH--1). (A3)

Since the standard deviation of an exponential distribution equals the
mean, Equation A3 implies that the standard deviation also decreases
as a power function of n with the same exponent, — 1. This was the
prediction tested in Experiments 1-4. The exponential model makes a
stronger prediction, that the mean equals the standard deviation. Later,
the results are generalized to other distributions so that the exponent
need not equal -1, and the mean need not equal the standard deviation.

The exponential distribution permits an easy analysis of the race be-
tween the algorithm and memory retrieval. In general, the distribution
of the minima from two distributions,^;) and/*(<), is

If the distribution of finishing times for the algorithm, f^t), and the
memory process, fm(t), are exponential, then

= (w. + mvjexp[-(wa + nwm)t].

The parameters of the resulting distribution are the sums of the parame-
ters of the parent distributions. The mean (and the standard deviation)
of the resulting distribution,

T, = (». + nwmrl, (A4)

decreases as n increases. If the mean for the algorithm is the same as the
mean for memory, then the mean and the standard deviation of the
resulting distribution decrease as a power function of n + 1 with an
exponent of -1. To the extent that the algorithm mean differs from the
memory mean, this relation will be distorted. However, the distortion
will decrease as «increases and memory wins the race more often. At
some point, memory will win virtually all the time.

The probability that the algorithm will win the race can be derived
easily if the underlying distributions are exponential. If so, memory re-
trieval and the algorithm can be viewed as simultaneous Poisson pro-
cesses with rates w, and nwm, respectively. Then the probability that the
algorithm finishes first is

/"(algorithm ftrst) = wj(w, + «»„),

which decreases rapidly as n increases. If the mean for the algorithm
equals the mean for the memory process, then the probability that the
algorithm finishes first equals 1 /(n + 1); it decreases as a power function
of« + 1 with an exponent of—1.

In summary, the instance theory can be modeled as a race between
two exponential distributions, one representing finishing times for the
algorithm and one representing finishing times from a memory process
with n independent traces. That model predicts (a) a power-function
reduction in mean reaction time, (b) a power-function reduction in the
standard deviation of reaction times, and (c) a common exponent for
means and standard deviations. These predictions are not compromised
much by the race with the algorithm, provided that the mean for the
algorithm is reasonably close to the mean for memory retrieval.

The exponential distribution imposes severe restrictions on the pre-
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dictions, namely, that the exponent of the power function equals -1 and
that the mean equals the standard deviation. These restrictions create

problems for the model. Most exponents from empirical power func-
tions are less than 1 in absolute magnitude (Newell & Rosenbloom,
1981), and the reduction in the mean rarely equals the reduction in
the standard deviation (see Experiments 1-4). How can the exponential

model deal with these problems?
One possibility is to relax (and make more realistic) the assumption

that each and every encounter with a stimulus is stored and retrieved.
If instead, each encounter was stored and retrieved with probability p,

the observed power function would be

Taking logs of both sides yields

Solving for k yields

fclogn = -(logp + logn).

k = -(logp + log«)/logn,

which is less than 1 if p is less than 1 (since logs of proportions are
negative), and it decreases as p decreases (since logs of proportions in-
crease in absolute magnitude as the proportion decreases); it predicts

slower learning, the lower the probability of storage and retrieval, which

is reasonable.
Thus, the exponential model, supplemented by the (reasonable) as-

sumption of imperfect storage and retrieval, predicts power functions
with exponents less than 1 in absolute magnitude, which is commonly
observed (Newell & Rosenbloom, 1981). However, the exponential

model still predicts an identical reduction in the mean and standard
deviation, which is not generally observed (see, e.g., Experiments 1-4).

Weibull Distribution

The Weibull distribution is a generalization of the exponential distri-

bution. Its distribution function is

F(t) = 1 - expHt/af],

and its probability density function is

/(«) = (cAOO/ar 'expH'W

Iff = 1, the Weibull reduces to an exponential distribution with rate
parameter I/a. The Weibull is a flexible distribution. The parameter c
determines its shape, ranging from exponential when c = 1 to normal
looking when c = 5. Intermediate values produce density functions that
resemble reaction time distributions — truncated on the left, with a long

tail on the right Thus, the Weibull may provide a reasonable approxi-
mation for retrieval times from a variety of processes.

From Equation A 1 , the distribution function for the minimum of n
samples from the same Weibull distribution is

FM = ( - {exp[-(I/an}"

= 1 - exp[-«n"W]

Thus,

and

f, = »-"'f

a, = n '"<T.

The distribution of minima from a Weibull distribution is itself a
Weibull distribution. As sample size increases, the distribution of min-

ima contracts as a power function of sample size with an exponent of
- 1/c. Thus, the mean and the standard deviation and all of the quan tiles
of the distribution should decrease as power functions of n with the

same exponent, - 1/c. Experiments 1-4 tested the equality of the expo-
nents for means and standard deviations.

The Weibull imposes less severe restrictions on the predicted power

functions than does the exponential. The exponent must be the same
for the mean and standard deviation, but it is not fixed at any particular
value. Since c is 1 or larger in most applications, the exponents of power
functions, — 1/c, should be I or less, as is commonly observed (Newell

& Rosenbloom, 1981). Moreover, the mean of a Weibull is not equal to
the standard deviation.

So far, a power-function speed-up and reduction in standard deviation

has been predicted from two specific initial distributions. The next sec-
tion attempts to generalize these results to the class of positive-valued
distributions, of which the exponential and Weibull are members.

Stability Postulate

The power law can be generalized further by working backward from
the asymptotic distribution of the minimum. Most readers will be famil-
iar with the normal distribution as the asymptotic distribution of sums
or averages; by the central limit theorem, the distribution of sums or
averages from an arbitrary initial distribution will converge on the nor-

mal distribution as sample size increases, regardless of the form of the
initial distribution. As it turns out, there are three distributions that are
asymptotic in that sense for minima. The distribution of minima from
an arbitrary initial distribution will converge on one of the three asymp-
totic distributions as sample size increases (Gumbel, 1958). Which of

the three it converges on depends on rather general properties of the
initial distribution (whether the extremes are limited or unlimited).

Only one asymptotic distribution—the third—is relevant to reaction
time data because it applies to random variables with only positive val-
ues. Interestingly, the third asymptotic distribution is the Weibull.

Proving that the asymptotic distribution of minima follows the power
law is important because it implies that minima from any positive-val-
ued distribution will eventually conform to the power law as sample size
increases. At some point, the initial distribution will converge on the

asymptote and what is true of the asymptotic distribution will be true
of samples from the initial distribution. Before the distribution con-
verges, the power law may be approximately correct.

The power-law predictions derive from the stability postulate, which
was used initially by Frechet (1927) and Fisher and Tippett (1928) to
derive the three asymptotic distributions (Gumbel, 1958). The follow-
ing proof is a condensed version of one given by Gumbel (pp. 157-

162). It deals with the maximum rather than the minimum to simplify
calculation, but the results apply to the minimum as well as the maxi-
mum; what is true oft for the maximum is true of—/ for the minimum.

According to the stability postulate, a distribution is stable with re-
spect to its maximum (or minimum) if the distribution of maxima

(minima) sampled from it retains the same form as the initial distribu-
tion as sample size increases, changing only in its scale or in translation
of its origin. As shown earlier, the exponential and Weibull are stable in
this sense. Analogous to Equation A2, the distribution function for the
maximum of n independent samples from the same distribution is

FM = F"(t).

The stability postulate states that the probability that the largest value
is / or less after n samples is equal to the probability of a linear function

oft derived from the initial distribution. That is,

(AS).
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where aa and bn are both functions of n, the sample size. For the third
asymptotic distribution, (is negative with a maximum of zero (for the
minimum, r is positive with a minimum of zero). The additive constant,
bn, drops out, and Equation A5 reduces to

F"(t) = (A6)

Equation A6 implies that raising F(t) to the mth power is the same as
multiplying tbyan; that is,

F m"(t) = F(amant).

But from Equation A6,

This implies the functional equation:

"m = ama,.

The solution to Equation A7 is a power function,

«„ = if,

because

Consequently,

and

fit)" =

f, = iTT,

For the third asymptotic distribution, c is positive. Thus, the scale of
the distribution contracts as a power function of n, the sample size,
whether we are dealing with the maximum (in which case, 1 is negative
and bounded above at zero) or the minimum (in which case, t is positive
and bounded below at zero). This means that all quantiles of the distri-
bution of minima should decrease as a power function of n, and all the
power functions should have the same exponent, -c. In particular, the
mean and the standard deviation should both decrease as power func-
tions of n with the same exponent, —c.

Gumbel (1958) then derived the form of the three asymptotic distri-
butions, showing that the third is a Weibull distribution. But that is
beyond the requirements of this article. The important point for now is
that an arbitrary distribution that is bounded on the left (i.e., has only
positive values) will converge on the Weibull distribution as sample size
increases. There may be departures from the power law for small sample
sizes, before the distribution of minima reaches asymptote, but after-
ward the distribution will contract following the power law.

Appendix B

Method and Results From Experiments 1-3

The details of the method and results from the lexical decision experi-
ments are reported in this section.

Experiment 1

Method

Subjects. In all, 24 subjects were tested. Some subjects came from
introductory psychology courses and received course credit for partici-
pating; some were volunteers and were paid $4 for participating.

Apparatus and stimuli. The stimuli were four-letter words and non-
words. The words were common nouns selected from the Kucera and
Francis (1967) frequency norms. The words ranged in absolute fre-
quency from 7 to 923 per million, with a mean of 56.05. The nonwords
were constructed by replacing one letter of each word. In most cases,
the nonwords were pronouncible.

The stimuli were displayed on a point-plot CRT (Tektronix Model
604, equipped with P31 phosphor), controlled by a PDF 11/03 com-
puter. They were displayed as uppercase letters, formed by illuminating
about 20 points in a 5 X 7 matrix. They were displayed at the center of
the screen. Viewed at a distance of 60 cm (maintained by a headrest),
each word and nonword subtended 2.67° X .57° of visual angle.

Each trial began with a fixation point exposed in the center of the
screen and a 900-Hz warning tone. The tone and fixation point were
presented for 500 ms, followed immediately by the word or nonword
for that trial, which was also presented for 500 ms. After the word or
nonword was extinguished, a 1,500-ms intertrial interval began.

Subjects responded by pressing the two outermost telegraph keys in
a panel of eight mounted on a moveable board that sat between the
headrest and the CRT.

Procedure. Subjects were told that on each trial they would see a word

or a nonword and that their task was to indicate whether a word or a
nonword had appeared. They were told to respond as quickly as possible
without making more than 10% errors. One half of the subjects pressed
the right-most key of the panel of eight to indicate that they saw a word
and pressed the left-most key to indicate that they saw a nonword,
whereas the other half did the opposite. Subjects were not told anything
about the schedule of stimulus repetitions or even that some stimuli
would be repeated.

There were two main conditions, the experimental condition, in
which the same set of words and nonwords were exposed repeatedly, and
the control condition, in which new words and nonwords were shown on
each trial. Each condition involved blocks of 20 trials, 10 with words
and 10 with nonwords. In the experimental condition, a set of 10 four-
letter words and 10 four-letter nonwords were chosen randomly from
the population of 340 stimuli. Each word and nonword was shown once
per block in a different random order in each block, for a total of 16
blocks. Thus, the lag between successive repetitions varied from 1 to 40,
with a mean of 20.

In the control condition, a different set of 10 four-letter words and 10
four-letter nonwords was chosen randomly without replacement from
the set of 340 stimuli for each of the 16 blocks. Each control stimulus
appeared in only one block and never appeared in the experimental
blocks.

A different random sampling of stimuli was prepared for each subject,
and the order of trials within blocks was randomized separately for each
subject.

Results

An ANOVA on the reaction-time data revealed the following effects:
The main effect of number of presentations was significant, F(15,
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Table Bl

Error Rates From Lexical Decision Task in Experiment I

Condition

Presentation

1
2
3
4
5
6
1
8
9

10
11
12
13
14
15
16

Old word

.05

.05

.02

.02

.03

.02

.02

.04

.03

.03

.04

.03

.04

.04

.03

.03

Old nonword

.11

.07

.07

.07

.05

.05

.05

.04

.06

.02

.06

.04

.05

.05

.03

.04

New word

.08

.07

.08

.10

.04

.04

.05

.09

.07

.10

.10

.08

.06

.05

.07

.08

New nonword

.06

.06

.04

.09

.05

.05

.08

.07

.08

.05

.05

.05

.04

.03

.04

.05

Table B2

Error Rates for the Lexical Decision Task in Experiment 2

345) = 7.52, p < .01, MS, = 6,809.85, as was the main effect of control

versus experimental conditions, F(l, 23) = 31.15, p < .01, MS, =

52,687.35, and the main effect of word versus nonword, F(l, 23) =
43.11, p< .01, MS, - 31,748.23. Presentations and conditions inter-
acted significantly, F(l5, 345) = 2.92, p < .01, MS, = 7,186.63, reflect-

ing the extra benefit from repeating specific stimuli in the experimental
condition. Presentations and word versus nonword interacted signifi-
cantly, F( 15,345) = 4.23, p < .01, MS, = 2,177.17, reflecting the greater

effect of repetition with nonwords than with words. In addition, there
were significant interactions between conditions and word versus non-
word, F(l, 23) = S.59,/7 < .01, MS, = 7,904.85, and between presenta-

tions, conditions, and word versus nonword, F( 15,345) = 1.84, p < .05,
MS,= 2,306.41.

An ANOVA on the standard deviations revealed a significant main

effect of the number of presentations, f\ 15,345) = 3.44, p < .01, MS, =
5,011.76, and a significant main effect of control versus experimental
conditions, F(l, 23) = 29.30, p < .01, MS, = 19,509.57. In addition,

there were significant interactions between presentations and condi-
tions, F( 15,345) = 2.32, p < .01, MS, = 5,407.23, and between presen-
tations and word versus nonword, F(15, 345) = 2.46, p < .01, MS, =

3,656.31.
The error rates are presented in Table Bl. Several subjects had error

rates of zero in many cells of the design, so no statistical analysis was
attempted. Note, however, that error rates tended to be lower for re-
peated items than for new items and lower for words than for nonwords.

Experiment 2

Method

Subjects. In all, 26 subjects were recruited from the population sam-

pled in Experiment 1.

Apparatus and stimuli. Apparatus and stimuli were the same as in
Experiment 1.

Procedure. The procedure was the same as in Experiment 1, with the
following exceptions: In each block of the experiment, one word and
one nonword were presented once, one was presented twice, one 4

times, one 6 times, one 8 times, and one 10 times, for a total of 62 trials.
The lag between successive repetitions varied randomly. The mean and
range of lags decreased as the number of repetitions increased.

Presentation

1
2
3
4
5
6
7
8
9

10

Word

.06

.02

.02

.01

.02

.02

.01

.02

.00

.01

Condition

Nonword

.05

.04

.03

.03

.03

.02

.02

.03

.03

.02

A different sample of words and nonwords was selected for each

block, for a total of 10 blocks. A different random sample of stimuli was

used for each subject, and the order of trials within blocks was random-
ized separately for each subject.

Subjects were instructed as in Experiment 1.

Results

An ANOVA on the reaction times revealed a main effect of number of
presentations, f\9, 225) = 65.41, p < .01, MS, = 961.51; a main effect
of word versus nonword, F(l, 25) = 60.77, p < .01, MS, = 5,276.15;

and an interaction between presentations and word versus nonword,
F(9, 225) = 5.28,p < .01,MS, = 650.99.

An ANOVA on the standard deviations revealed a main effect of num-

ber of presentations, F(9, 225) = 12.37, p < .01, MS, = 1,279.93, a
main effect of word versus nonword, F(l, 25) = 14.65, p < .01, MS, =
2,955.69, and a significant interaction between them, F(9, 225) = 2.11,

p <. 05, MS,= 1,118.63.

The error rates are presented in Table B2. Again, no statistical analy-
ses were attempted, but the error rates tended to decrease with repeti-
tion and tended to be lower for words than for nonwords.

Table B3

Error Rates From Lexical Decision Task in Experiment 3

Presentation

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Lag

Word

.06

.02

.03

.03

.01

.02

.03

.04

.01

.02

.02

.01

.04

.02

.02

.01

= 12

Nonword

.07

.04

.05

.04

.03

.04

.03

.05

.02

.05

.05

.02

.05

.02

.07

.02

Word

.06

.02

.02

.02

.01

.04

.03

.02

.02

.02

.02

.03

.03

.02

.03

.04

Lag = 24

Nonword

.04

.03

.04

.04

.04

.04

.03

.04

.02

.02

.02

.02

.01

.02

.03

.01
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Experiment 3

Method

Subjects. In all, 32 subjects from the population sampled in the previ-
ous experiments served in Experiment 3. A total of 16 subjects served in
the mean-lag-12 condition and 16 served in the mean-lag-24 condition.

Apparatus and stimuli. Apparatus and stimuli were the same as in
the previous experiments.

Procedure. The procedure was the same as in the preceding experi-
ments with the following exceptions: Each word and nonword appeared
once in each block of trials. Some words and nonwords appeared in
only 1 block, others appeared in 2 successive blocks, others appeared in
4,8, and 16 successive blocks. The mean lag and the range of lags was the
same for each number of repetitions. The mean lag was varied between
subjects by manipulating the number of stimuli in each repetition con-
dition presented in a single block of trials. One half of the subjects (16)
had a mean lag of 12; only one stimulus from each repetition condition
occurred in each block, except for the 16-repetition condition, in which
two words and two nonwords occurred in each block. Each subject ex-
perienced four sets of 16 blocks of 12 trials. The other half of the sub-

jects (16) had a mean lag of 24; two stimuli from each repetition condi-
tion were presented each block, except for the 16-repetition condition,

in which four words and four nonwords were presented each block.
Each subject experienced two sets of 16 blocks of 24 trials.

Each subject received a different random sample of the 340 stimuli,
and the order of stimuli within blocks was randomized separately for
each subject.

Results

An ANOVA on the reaction times revealed a significant main effect of
repetition, J=(15,450) = 11.70, p<.01, MS, = 2,333.58; forword versus
nonword, F( 1,30) = 78.29, p < .01, MS, = 13,943.47; and for the inter-
action between them, ̂ 15,450) = 2.44,p<. 01, MS,~ 1,086.01. There
was no significant effect of mean lag, F(l, 30) < 1, MS, = 218,538.63,
and no interaction between lag and number of presentations, F{\5,

450) < 1, MS, = 2,333.58, or between lag and word versus nonword,
F(l, 30) = 1.27, MS, = 13,943.47.

An ANOVA on the standard deviations revealed a significant main
effect of repetition, F(15,450) = 5.47, p < .01, MS, = 3,003.22, and a
significant effect for word versus nonword, F(l, 30) = 11.46, p < .01,
MS, = 5,307.10. No other effects were significant.

The error rates appear in Table B3. No statistical analyses were at-
tempted. Error rates tended to decrease with repetition and to be lower
for words than for nonwords.

Appendix C

Method

Details of Method and Results for Experiment 5

Subjects. A total of 48 subjects from an introductory psychology
class served as subjects to fulfill course requirements.

Apparatus and stimuli. The apparatus was the same as that used

in Experiments 1-3. The stimuli were five-letter words, pronouncible
nonwords, and unpronouncible nonwords. The words were nouns se-
lected from the Kucera-Francis (1967) norms to match exactly the dis-
tribution of log frequencies of the four-letter words used in Experiments
1-3. The average absolute frequency was 75.27 per million, with a range
of 8 to 787. There were 340 words in total. The nonwords were made
by substituting letters in the words, making a total of 340 pronouncible
and 340 unpronouncible nonwords. Pronouncibility was determined
by consensus of three native speakers of English,

Procedure. In the training phase, subjects saw words, pronouncible
nonwords, and unpronouncible nonwords. Some of them were pre-
sented in only 1 block, others in 2 consecutive blocks, others in 4 consec-

utive blocks, others in 8 consecutive blocks, and others in 16 consecutive
blocks. Altogether, there were 16 stimuli of each type presented once
and 8 stimuli of each type presented 2,4, 8, and 16 times. Each block
involved a total of 48 trials, and altogether, there were 16 training
blocks.

Subjects in the consistent interpretation groups (n = 12 per group)
made lexical decisions or pronunciation decisions throughout the train-
ing phase. Subjects in the varied interpretation groups alternated be-
tween lexical decisions and pronunciation decisions each block
throughout training, one half beginning with lexical decisions and one
half beginning with pronunciation decisions. Because of the way the
blocks were structured, subjects interpreted each stimulus in one way
on odd-numbered presentations and the other way on even-numbered
presentations, regardless of the total number of presentations each stim-

ulus received.
In the transfer phase, subjects saw the stimuli they were presented

with in the training phase randomly intermixed with 16 new words, 16

new pronouncible nonwords, and 16 new unpronouncible nonwords.
The stimuli were presented one at a time in the center of the CRT for
500 ms, and subjects gave verbal estimates of the frequency with which
they were presented in the training phase. The experimenter sat in the

room with the subject and typed each frequency estimate into the com-
puter. Subjects were told that some stimuli were new and some had been
presented 16 times, so their frequency estimates should range between
0 and 16.

Results

Training phase. ANOVAS were performed on the benefit scores. Two
separate analyses were performed, one for lexical decision subjects (i.e.,

the consistent lexical decision group and the varied interpretation group
that began with lexical decisions) and one for the pronunciation decision
subjects (i.e., the consistent pronunciation group and the varied inter-
pretation group that began with pronunciation decisions). Each analysis
involved consistent versus varied interpretation as a between-subjects
factor, and stimulus type (word vs. pronouncible nonword vs. unpro-
nouncible nonword) and number of presentations (3, 5, 7, 9, 11, 13,
and 15) as within-subjects factors. The number-of-presentations factor
included only the odd-numbered presentations, for which the same de-

cision was made in each group.
For lexical decision subjects, the main effect of consistent versus var-

ied interpretation was significant, W, 22) = 10.79, p < .01, MS, =
44,573.09, as was the main effect of stimulus type, F(2,44) = 5.71, p <

.01, MS, = 11,068.67, and the main effect of number of presentations,
F(6,132) = 4.28, p < .01, MS, = 3,297.74. There were significant inter-
actions between presentations and stimulus type, P( 12,264) = 1.80, p <

.05, MS, = 1,590.09, and between presentations, stimulus type, and
consistent versus varied interpretation, f(l2, 264) = 1.85, p < .05,

MS,= 1,590.09.
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Tabled
Error Rates for Lexical Decision and Pronunciation Tasks in Experiment 5

Lexical decision Pronunciation

Consistent Varied Consistent Varied

Presentation WORD PRNW UPNW WORD PRNW UPNW WORD PRNW UPNW WORD PRNW UPNW

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

.11

.06

.04

.04

.04

.04

.03

.04

.01

.02

.08

.03

.05

.04

.01

.05

.15

.16

.16

.14

.15

.13

.13

.13

.16

.18

.16

.16

.16

.16

.15

.12

.02

.01

.01

.02

.02

.02

.01

.00

.01

.00

.00

.00

.00

.01

.00

.00

.04

.00

.00

.02

.01

.01

.00

.05

.12

.20

.15

.18

.04

.02

.18

.19

.00

.00

.00

.01

.05

.03

.03

.00

.10

.06

.04

.05

.03

.03

.05

.04

.01

.02

.06

.02

.03

.03

.01

.05

.16

.18

.17

.15

.16

.15

.15

.14

.18

.19

.18

.18

.18

.18

.14

.09

.02

.01

.01

.02

.03

.02

.01

.00

.01

.00

.00

.01

.00

.01

.00

.00

.03

.00

.01

.01

.00

.03

.01

.01

.12

.09

.06

.07

.07

.07

.05

.07

.02

.02

.03

.04

.04

.03

.04

.04

Note. PRNW = pronouncible nonword; UPNW = unpronouncible nonword.

For pronunciation subjects, the main effect of consistent versus varied
interpretation was not significant, F(l, 22) < 1, MSf = 61,977.54, but
the main effect of stimulus type was significant, F\2, 44) = 13.91, p <
.01, MS, = 18,579.01. No other effects were significant.

The error rates are presented in Table C1. No statistical analyses were
performed on the error rates.

Transfer phase. ANOVAS were performed on the frequency estimates.
As before, one analysis was performed on the lexical decision groups
and one on the pronunciation decision groups. For lexical decision sub-
jects, there were no effects of consistent versus varied interpretation;
neither the main effect, F\l, 22) = 2.99,p < .10, MS, = 41.608, nor the
interactions were significant. However, there were significant effects of
number of presentations, F(5, 110) - 109.65, p < .01, MS, = 4.696;
stimulus type, f\2,44) = 10.96, p < .01, MS, = 5.861; and the interac-

tion between presentations and stimulus type, /*i(10, 220) = 15.93, p <
.Ol,MS,= 1.418.

For pronunciation subjects, there were no significant effects of consis-
tent versus varied interpretation; neither main effect, F(\, 22) < 1,
MS, = 26.433, nor interactions. There were significant effects of presen-
tations, F(5, 110) = 220.20, p < .01, MS, = 2.817; Presentations X
StimulusType,^10,220)= 14.62,p<.01, MS,= 1.189; and Group X
Presentations X Stimulus Type, F(10, 220) = 3.25, p < .01, MS,=
1.189.

Received February 3, 1987

Revision received November 10, 1987

Accepted December 16, 1987


