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We investigate the role of external inscriptions, particularly those of a spatial or visual nature, in the
solution of probability word problems. We define a taxonomy of external visual representations used
in probability problem solving that includes pictures, spatial reorganization of the given information,
outcome listings, contingency tables, Venn diagrams, trees, and novel graphical representations. We
also propose a process model for probability problem solving (PPS) and use it as a framework to
better understand how and why external visual representations are used. In a study of 34 novice
probability problem solvers, participants worked to solve six probability word problems covering
six probability subtopics. Both written and verbal structured interview protocols were analyzed to
investigate when and how external visual representations are spontaneously used by problem solvers.
Analyses of the coded transcripts showed that participants’ probability problem-solving efforts
move through the stages of PPS in a sequential but not always linear manner, sometimes exhibiting
iterated attempts to represent the problem mathematically and to find a solution strategy. Results
showed that use of specific external visual representations was associated with specific probability
topics, and that certain choices of representation are associated with higher rates of solution success.
These findings suggest that an external visual representation can facilitate probability problem
solving, but only when an appropriate representation is chosen. Finally, we present evidence to
show that external visual representations are usually created and first used during the stages of
representing the problem mathematically and finding a solution strategy. However, pictures are
often created during the initial stage of problem text understanding, and tables are sometimes
created during computation of the solution.

Visualization has long been thought to play an important role in mathematics problem solving
(e.g., Hadamard, 1945). When mathematical problems are especially difficult, or when solutions
must be shared with others, problem solvers may externalize these visualizations by making
inscriptions on paper or other media (e.g., Clement, Lochhead, & Monk, 1981; Corter & Zahner,
2007; Latour & Woolgar, 1986; Roth & McGinn, 1998; Russell, 2000; Schreiber, 2004). In
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some areas of mathematics, such as geometry, understanding and use of pictures and diagrams is
considered to be an integral part of the domain knowledge (National Council of Teachers of
Mathematics, 2003). In other areas of mathematics, external visualizations may not be an inherent
part of the domain knowledge, but may still be frequently used as a means of solving problems
or to pursue mathematical discovery (e.g., English, 1997; Polya, 1957; Presmeg, 2006).

Probability is one particular area in which mathematics problem solvers may rely on both
internal visualizations and external sketches and diagrams. To illustrate, consider the following
problem, a version of which circulated a few years ago on an Internet discussion list concerned
with probability.

Six pieces of rope are threaded through a cardboard tube open at both ends. You randomly select
two of the rope ends sticking out of one end of the tube, and tie them together. You repeat this action
with two of the remaining rope ends, then again with the last two ends. At the other end of the tube you
go through the same procedure. What is the probability that you have created one huge loop of rope?

Problem solvers trying to read and solve this problem often report visualizing the tube and
the ropes and mentally manipulating these images to envision the knots being tied. Sometimes
external sketches or diagrams may be created by a problem solver to aid in understanding the
problem text (Corter & Zahner, 2007). Visualization can also aid the problem solver at later
stages when mathematical and probabilistic concepts are applied to find the requested probability.
At these later stages, the problem solver may again resort to using external inscriptions (e.g.,
diagrams, formulas, arithmetic calculations) to ease requirements on working memory or to
otherwise facilitate the solution process. In this paper we investigate the spontaneous
(unprompted) use of external inscriptions by problem solvers attempting probability word
problems and relate the use of these external inscriptions to specific types of problems and to
specific stages of the problem solving process.

Visual Representations and Problem Solving

Although mental imagery is widely believed to play a role in mathematical reasoning (e.g.,
Hegarty & Kozhevnikov, 1999; Lean & Clements, 1981; Polya, 1957; Presmeg, 1986, 2006;
Rival, 1987; Sfard, 1994), surprisingly little empirical evidence exists to support this idea
(Campbell, Collis, & Watson, 1995; Douville & Pugalee, 2003). Perhaps this is because of the
difficulty in studying mental imagery in a rigorous way. In contrast, considerable evidence
has accrued to show that external visual representations, especially diagrams, can facilitate
problem solving in logic, science, and mathematics (e.g., Kaufmann, 1990; Molitor,
Ballstaedt, & Mandl, 1989; Santos-Trigo, 1996; Schwartz & Martin, 2004; Stylianou & Silver,
2004; Tversky, 2001).

In studying external representations, we find it useful to distinguish between two types of
studies on the use of external visualizations for problem solving. The first type of study, by far
the most common, examines the effects on problem-solving activities and on success of dia-
grams provided by the experimenter or instructor. The visual representations investigated in
these studies ranged from diagrams that accompanied text describing systems (e.g., Hall, Bailey,
& Tillman, 1997; Mayer, 1989; Mayer & Gallini, 1990) to actual physical models of scientific
systems (e.g., Penner, Giles, Lehrer, & Schauble, 1996). A common finding of these studies was
that experimenter-provided external visuals facilitate problem-solving success. Many of the
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studies also conclude that external visual representations can aid in the development of student
understanding of physical systems and mechanisms.

The second type of study examines the effects of student-generated diagrams on problem
solving. Several previous studies have examined the effects of asking problem solvers to generate
their own diagrams (e.g., Diezmann, 1995; Lehrer, Schauble, Carpenter, & Penner, 2000;
Schwartz & Martin, 2004; Stylianou, 2002) while engaged in problem solving, usually finding a
facilitative effect. In contrast, our interests are primarily in studying the spontaneous or
unprompted creation of external visual representations by students engaged in probability
problem solving (e.g., Corter & Zahner, 2007; Zahner & Corter, 2002). Some recent studies on
the spontaneous use of external visual representations in mathematics problem solving (e.g., de
Hevia & Spelke, 2009; Edens & Potter, 2008; Uesaka, Manolo, & Ichikawa, 2007) suggest that
external representations are facilitative in the problem-solving process, although these studies
have not focused on problem-solving in probability.

We are particularly interested in probability problem solving, and in the use of external repre-
sentations that convey information in spatial terms, such as diagrams, pictures, and spatially
organized displays, rather than in external inscriptions that use formal or natural language, such
as formulas and calculations. Note that use of diagrams is generally acknowledged to be an integral
part of mathematical knowledge in topics such as geometry or functions (e.g., Koedinger &
Anderson, 1997; Nemirovsky, 1994; Sedlmeier & Gigerenzer, 2001). A number of studies have
found that the use of “Geometer’s Sketchpad,” a geometry graphing computer program, can be
helpful in developing students’ concepts and problem solving in geometry (Hannafin, Burruss,
& Little, 2001; Hannafin & Scott, 1998; Hollebrands, 2003; Weaver & Quinn, 1999). These
researchers have suggested that the tool is useful because it makes the geometric diagrams the
central focus of the problem-solving process and allows students to explore the diagrams
dynamically, altering points, lines, and arcs (Olive, 1998). In other mathematical topics, such as
probability problem solving (PPS), the use of visual representations is not always considered to
be an inherent part of the target domain knowledge; rather it may be considered more as a
general technique in the mathematician’s toolbox (e.g., Polya, 1957). Only a few prior studies
have directly addressed the role of visual strategies in PPS, thus the use of diagrams and other
external visual devices in this domain is still not thoroughly understood.

Types of External Visual Representations

In the present paper we attempt to identify the stages of processing that students go through in
solving probability word problems and relate the spontaneous generation of diagrams and other
external inscriptions to these stages and their implied subgoals. For example, to solve mathematics
word problems, the problem solver must first construct an internal representation of the problem
and build a mental model of the problem situation (Casey, 1978, cited in Clements, 1980;
Kintsch & Greeno, 1985; Mayer, 1992). Visualization may play a role in this phase of problem
solving, and external inscriptions may be used to aid in text comprehension as well as in later,
more purely mathematical steps (Corter & Zahner, 2007).

Complex calculations are often made by writing down the numbers involved and following
an algorithm for the specific type of calculation. Mathematical and arithmetic inscriptions have
been argued to have visual-spatial aspects as well as symbolic content (Kirshner & Awtry, 2004;
Landy & Goldstone, 2007; Presmeg, 1986). In the domain of statistics and data analysis, various
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types of tallies, data organization devices, and visual displays of data may be used (e.g., Tukey,
1977). In the area of probability, certain types of schematic diagrams are conventionally used to
represent important concepts (e.g., Venn diagrams for compound events, outcome trees for
sequential experiments), and students do exhibit spontaneous use of these standard diagrams in
solving problems (e.g., Corter & Zahner, 2007; Russell, 2000; Zahner & Corter, 2002). Use of
schematic diagrams, particularly the ones conventionally used in probability instruction such as
Venn diagrams, may occur mainly at the latter stages as the problem is cast in mathematical
terms and solved.

In the present investigation, we classify the external visual representations made by probability
problem solvers using a scheme developed in prior studies (Corter & Zahner, 2007; Zahner &
Corter, 2002). This scheme includes examples of schematic diagrams, pictures (iconic) repre-
sentations, and certain forms of spatial organization and tabulation of problem information. The
distinction between schematic and iconic or “pictorial” visual representations is an important
one. Schematic representations are those that depict relationships described in the problem,
while iconic (pictorial) representations are those that depict the physical appearance of the
elements described in the problem. Hegarty and Kozhevnikov (1999) found that the use of
schematic representations led to a higher rate of success in a mathematical problem-solving task,
whereas use of pictorial representations led to a lower rate of success.

To summarize, external inscriptions may be used for a variety of purposes, including summarizing
problem information, recording and reasoning about situation/story elements, offloading memory
storage, coordinating the results of intermediate calculations, representing numerical or functional
relationships via graphs, and making abstract relationships concrete (cf. Tversky, 2001).

Process Models of Mathematics Problem Solving

In the broader literature on mathematical problem solving, several different cognitive theories or
frameworks have been proposed to understand the process of mathematical problem solving.
For example, Mayer’s (1992) model of mathematical problem solving specifies five different
types of knowledge that a problem solver needs in order to solve a mathematics word problem.
These types include (1) linguistic knowledge, which is the student’s knowledge of language, i.e.,
word recognition and comprehension; (2) semantic knowledge, a student’s general knowledge of
facts about the world (including knowledge about mathematics); (3) schematic knowledge, i.e., a
student’s knowledge of the problem topic and the ability to categorize (either correctly or incor-
rectly) the problem into a particular problem type; (4) strategic knowledge, which is a student’s
knowledge of how to use the various types of available knowledge in generating, planning, and
monitoring the solution of problems, such as setting sub-goals; and (5) procedural knowledge,
or the knowledge of how to perform a sequence of mathematical operations.

Kintsch and Greeno’s (1985) model of how arithmetic and algebraic word problems are
solved involves both text processing knowledge and semantic knowledge of mathematics. The
main components of their processing model are a set of three types of knowledge structures and
a set of strategies. The required knowledge structures are a set of propositional frames, used in
translating sentences into propositions, plus schemata that represent properties and relations of
sets in general form such as counting and arithmetic operations. Specific procedural knowledge
in arithmetic is also assumed to be necessary, for example, knowledge of basic mathematical
operations such as addition and subtraction of numbers.
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Reusser (1996) proposed a stagewise processing model of mathematics problem solving that
includes five consecutive stages: (1) constructing a propositional representation of the problem,
(2) creating a situational model, (3) transforming the situation model into a formal mathematical
representations, (4) applying the operations to calculate the solution, and (5) interpreting the
solution in a meaningful way.

Some elements of these recent models have been anticipated in earlier work. For example,
Casey (1978; cited in Clements, 1980) proposed a stepwise model for the solution of mathematics
word problems. His model consists of the following steps or stages: (1) question reading,
(2) question comprehension, (3) strategy selection, (4) skills selection, and (5) skills manipulation.
In this model, the problem solver can “cycle back” to a previous stage to correct errors or try
another solution path. Our proposed model of probability problem solving (PPS) is quite similar
to Reusser’s (1996) and Casey’s (1978) models.

However, probability word problems may present certain unique challenges to the would-be
problem solver due to the difficulties people experience in probabilistic reasoning and the
abstract nature of the material (e.g., Konold, 1989; Mosteller, 1980). Perhaps because the con-
cept of probability seems so abstract to some students, many statistics textbooks emphasize
visual representations in their presentations of probability (Russell, 2000). Thus, there may be a
special role in this domain for visualization and the use of external graphical representations.

In prior studies (e.g., Corter & Zahner, 2007; O’Connell & Corter, 1993) we have provided
evidence that students move through a sequence of problem solving activities as they solve
probability word problems. Roughly, students’ initial efforts, musings, and inscriptions showed
that they are making efforts to understand the problem text and then build a mental model of the
problem. Problem solvers then attempt to cast the problem in mathematical terms and possibly
relate the current problem to familiar mathematical formulas and/or previously encountered
problems. After that, they proceed to develop a plan for solving the problem. Finally, they
execute the chosen strategy. A final sub-step that sometimes does and sometimes does not occur
is to check the solution for plausibility. These observations have led us to adopt a process model
of probability problem solving that includes the following broad stages:

1. Text Comprehension
2. Mathematical Problem Representation
3. Strategy Formulation and Selection
4. Execution of the Strategy

In the present study we analyze problem solvers’ written and verbal think-aloud protocols in
terms of these problem-solving stages. One of our goals is to investigate how self-generated
external visual representations are used by probability problem solvers. Specifically, we examine
how frequently and how appropriately these external visual representations are used and
whether they facilitate solution success. The main goal, however, is to better understand why
use of external visuals may be helpful in problem solving by relating use of specific types of
external visual devices to the specific stages of probability problem solving.

Summary of Research Goals

Mathematics problem solvers use a variety of external inscriptions to help them in their work.
Previous research in our laboratory (Corter & Zahner, 2007; Russell, 2000) has shown that
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students solving probability problems use both pictorial and schematic external visual represen-
tations in addition to formulas and calculations. Furthermore, students often use spatially orga-
nized lists and tallies (as detailed below in Methods). The present study investigates the kinds of
external visual representations that are used in probability problem solving (PPS) as well as how
and when they are used. One specific issue investigated is whether use of particular types of
visual representations is associated with certain types of probability problems (cf. Corter & Zahner,
2007). Another is whether problem complexity affects the use of external visual representations.
Two functions that external visual representations can serve are offloading memory storage and
helping to organize problem-solving strategies. If this is true, we might expect to see external
representations used more often for atypical or complex problems. To these ends, we manipulate
the specific probability subtopic and typicality/complexity of the problems and observe how
these manipulations affect use of external visual representations and solution success.

We also gather detailed process information, using spoken and written transcripts of problem-
solving activity, and use these data to relate use of specific visual representations to specific
problem solving stages. In the discussion section, we also attempt to address the question of why
external visual representations might be useful in PPS.

METHOD

Participants

Thirty-four adult students were recruited from three sections of an introductory graduate sta-
tistics course at Teachers College, Columbia University during the spring semester of 2004 to
participate in the study. The students in this course are nearly all in the social sciences with
applications in education or other education-related programs. Students have diverse back-
grounds, ranging from people who were mathematics majors as undergraduates to people who
have avoided taking any math courses since the ninth grade. The mean age of course registrants
is 28, approximately two-thirds are female, and the mean number of undergraduate math courses
taken is 1.9. Participants were volunteers; they received a payment of ten dollars. All three
sections of the course used the same textbook (Mendenhall, Beaver, & Beaver, 2003) and the
lectures for all three course sections were based on the same curriculum. Participants were
informed that they were going to participate in a study of the methods used to solve probability
problems.

Materials

A set of 18 probability problems was developed for this study, using six different probability
topics: Joint Events, Conditional Probability, Independent Events, Combinations, Fundamental
Principle of Combinatorics, and Permutations and three different variants for each problem
topic. The first three topics, Joint Events, Conditional Probability, and Independent Events, all
involve compound or joint events. The last three topics, Combinations, Fundamental Principle,
and Permutations, can be classified as combinatorics. Each topic was represented by a single
problem, instantiated in three variants: a “typical” variant, an “atypical” variant, and a “complex”
variant. The typical variant was a problem that could be solved using a straightforward application
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of a standard probability formula explicitly presented in the course curriculum (e.g., the formula
defining conditional probability). The atypical variant was a problem that was not isomorphic
to any standard problem presented in the lectures or textbook or that could not be solved using
a straightforward application of a standard probability formula. For example, an atypical prob-
lem in conditional probability might provide a conditional probability and the relevant base
rate and ask for the probability of the intersection event. The complex variant could be solved
using standard probability formulas and familiar computations; however, it was more complex
due to either more extensive calculations or because it required application of several formulas
and coordination of multiple subgoals. These manipulations of problem typicality and com-
plexity can be clarified by referring to Appendix A, which presents the six problem topics and
their variants, and to Appendix B, which presents possible solution schemas for each problem
variant.

Procedure

Participants solved probability word problems working in a paper-and-pencil format, while
simultaneously thinking aloud. As part of this interviewing method, a script was developed for
the interviewer to prompt the participants when they reached an impasse or if they lapsed into
silence while solving the problem (Table 1). Thus, the methodology collects both written and
verbal data and uses a structured or clinical interview methodology to elicit more detailed infor-
mation (Ginsburg, 1997). A single interviewer worked with all of the participants.

Each participant was given a packet that consisted of six probability problems, each pre-
sented on a separate page. An incomplete blocked design was used for this study so that each
participant only saw one instantiation of each problem topic: two typical variants, two atypical
variants, and two complex variants. The assignment of specific variants to topics was counter-
balanced, resulting in three different sets of problems (test forms) given to three different sub-
sets of participants. Each test form had six problems, one for each problem topic. The first test
form had typical variants of the first and fourth problems, atypical variants of the second and
fifth problems, and complex variants of the third and sixth problems. The second test form had
atypical first and fourth problems, complex second and fifth problems, and typical third and

TABLE 1
Interviewing Script

Verbal Protocol Issue Script

Can’t get started A. “In general, what would be a good first step in solving this kind of problem?”
B. “How would you apply it in this case?”

Pauses A. Wait
B. “What are you thinking?”
C. “How did you figure this out?”
D. Major stuck: “Let’s back up and look at this question again. How else could you solve 

this?”
Lack of detail A. “Can you explain how you arrived at this?”

B. “Can you explain what solution method you are using?”
Upon completion A. Not sufficient detail: “Can you explain all the steps you used to arrive at this answer?”

B. Sufficient detail: “If you feel you are finished, you may move onto the next problem.”
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sixth problems. The third test form had a complex first and fourth problems, typical second and
fifth problems, and typical third and sixth problems.

The following instructions were given. “Here are six probability problems we would like you
to solve. We are more interested in the process of your problem solving rather than the correct
answer. So please focus on what you are thinking while you are solving these problems and
either write down or say aloud what you are thinking. Try to describe as much of the process you
are going through while solving these problems as possible. Please read each question aloud to
start.” The interviewer was present during the entire problem solving process and stepped in
with verbal prompts if necessary, as specified in the interviewing script (Table 1).

A digital videotape recorder was used to record participants’ verbal and written behaviors.
The video portion of the tape captured their written work, including the sequence of problem-
solving steps. The paper copy of their written work was also retained for coding. The audio
portion of the digital videotape recorded their verbal accounts of their problem-solving process
along with the interviewer’s comments and questions.

Coding of the Written Protocols

The coding scheme developed for the participants’ written work was adapted from previous
research in our laboratory (Corter & Zahner, 2007; Russell, 2000; Zahner, 2005). Two aspects of the
written problem solutions were coded. The first aspect coded whether the participant gave the cor-
rect answer. This was simply coded as 0 for incorrect and 1 for correct. The second aspect coded for
the type of external visual representation used (if any) by the participant. The identified types were
spatial reorganization of the given information, outcome listings, contingency tables, Venn
diagrams, trees, novel graphical representations, and pictures. These types are defined below.

Types of External Visual Devices

An external visual representation was coded as a picture if it attempted to represent the real-world
situation conveyed in the problem in a non-symbolic, pictorial way. For example, in a problem about
selecting compact discs (CDs), any pictorial representation of a CD would count as a picture (see
Figure 1 for an example). A visual device was coded as an outcome listing if it gave a list of outcomes
in some relevant outcome space, for example: {HH, HT, TH, TT} as the outcome space for the
experiment of flipping a coin twice. A visual representation was coded as a tree diagram if the partic-
ipant attempted to organize the information from the problem into an outcome tree (e.g., Figure 2). A
visual representation was coded as a contingency table if the participant presented the information
from the problem as probabilities or frequencies in a two-way table. Use of a Venn diagram was
coded if the participant used a Venn diagram to represent set relationships (e.g., Figure 3).

FIGURE 1 A participant’s written work for the typical version of the
Combinations problem, illustrating use of a picture.
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These five types of external visual representations had been explicitly introduced to the stu-
dents in their probability lectures. Two additional coding categories were defined to cover cases
not handled by the above types. These two categories were identified in a previous study (Corter
& Zahner, 2007) of the use of external visual representations in probability problem solving.
The first is a code indicating any attempt to invent and use a “novel” schematic representation,
defined as a representation not taught in the introductory class the participants were taking nor
used frequently in standard probability texts (Russell, 2000). Note that these “novel” external
visual representations include conventional types of graphs and diagrams possibly known to the
participants through other courses and experiences; however, they are here designated as novel
because they were not taught in the probability curriculum of the participants’ course. For example,
several participants used a bipartite graph for the Independent Events problems, consisting of a
list of three factories connected by lines or arrows to probabilities (Figure 4); also, several par-
ticipants used a graph in which the cardinality of a set of paths is represented by number labels

FIGURE 2 A participant’s written work for the typical version of the
Conditional Probability problem, illustrating use of an outcome tree.

FIGURE 3 A participant’s written work for the typical version of the
Joint Events problem, illustrating the use of a Venn diagram.
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(Figure 5) for the Fundamental Principle problems. These types of graphical representations use
schematic elements (lines or arcs) to represent abstract relations in the problem and are thus
distinguished from a simple outcome listing or a picture. One exception to this neat separation of
pictures and schematic representations arises with the specific “Fundamental Principle” problem
that was used that involves different routes among physical locations. A simple abstract picture
of this problem (see the upper half of Figure 5) can also be considered to be a graph,

FIGURE 4 A participant’s written work for typical version of the
Independent Events Problem, illustrating use of a novel schematic
representation.

FIGURE 5 A participant’s written work for the complex variant of the
Fundamental Principle problem, illustrating use of another type of novel
schematic representation and a picture. Note that the diagrams here were ini-
tially coded as both a picture and a novel schematic representation, but after
discussion between the coders, the consensus was that these are not simply
pictures due to the schematic nature (lines for roads) of the representation.
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consequently, some such indeterminate instances were initially coded as both a picture and a
novel schematic representation.

The second additional coding category was defined to include any spatial reorganization of
the given information. Use of a spatial organization scheme for information is neither a formal
graphical representation nor a purely pictorial representation. However, we have included this
coding category because we have observed frequent use of spatially aligned rewriting of
information to aid in problem solving (cf. Kirshner & Awtry, 2004; Landy & Goldstone, 2007;
Presmeg, 1986). For example, in the present study many participants were observed to vertically
align related pieces of given information (e.g., conditional probabilities), creating a type of
informal table (see Figure 6). This reorganization may make it easier for novice problem solvers
to check for needed or missing information, to break down problem solution into subparts, or to
make visual associations to relevant formulas.

In order to assess the reliability of this coding scheme for external representations, a second
rater was trained and coded all participants’ written solutions. Initial reliability of the coding of
type of external visual representation, as measured by Cohen’s kappa, was equal to .98. The few
discrepancies between the two raters were all related to the novel schematic representation code
for the Fundamental Principles problem. One coder initially coded figures similar to the ones in
Figure 5 as a picture, whereas the other coder initially coded those types of figures as a novel sche-
matic representation. The two raters discussed these discrepancies and reached consensus by cod-
ing such figures as a novel schematic representation, since these diagrams can be considered to be
graphs whose arcs representing possible travel between pairs of nodes (representing destinations).

Coding of Verbal Protocols and Interviews

The coding scheme for the participants’ think-aloud verbal protocols was developed in order to
analyze problem solvers’ utterances in terms of problem-solving stages and to investigate how
and when problem solvers are using external visual representations. For this coding scheme, we
transcribed and examined the audio portion of the videotapes capturing the participants’ think-
aloud verbal protocols. First, the verbal protocols were parsed into utterances. Each utterance
was then coded to indicate the problem-solving stage in which the participant was engaged, text
comprehension, math problem representation, strategy formulation, or execution of a solution.

FIGURE 6 A participant’s written work for the atypical version of the
Joint Events problem, illustrating use of spatial reorganization of given
information.
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Because the utterances differed in length, we counted the number of words that were used within
each utterance in order to measure the approximate amount of time spent in each utterance and
by extension in each processing stage. At the level of individual utterances, the processing
stages were coded as mutually exclusive.

An utterance was coded as text comprehension if the participant was reading the words of the
probability problem and attempting to use the verbal description to build an understanding of the
real world context. For example, if a participant was reading the problem text and underlining
key words, that utterance would have been coded as text comprehension. An utterance was
coded as math problem representation if the participant was attempting to relate the real-world sit-
uation described in the problem to probability or other mathematical concepts. For example, if the
participant rewrote the statement “given that Democrat voted for H” as “P(D|H)” (probability of
D given H), this would have been coded as math problem representation. An utterance was coded
as strategy formulation if the participant was considering or developing a strategy to solve the
probability problem. For example, if the participant said, “I’m going to do the formula of this plus
this plus this minus this [formula for P(P or C)]” (Subject #5), the unit was coded as strategy for-
mulation and selection. Finally, an utterance was coded as execution of a solution if the partici-
pant was actively solving the problem, for example, instantiating a formula or doing calculations.

The video tracks of the videotapes were used to temporally match the participants’ production
of external devices with their verbal statements. In order to assess reliability of the coding of the
audio and video protocols, a second rater was trained and coded all participants’ audio and video
protocols. Initial reliability was approximately 87% (Cohen’s K = .872). After additional training,
the inter-rater reliability improved to 94% (Cohen’s K = .943). The two raters then discussed the
remaining discrepancies and the resulting consensus coding was used in all analyses reported.

RESULTS

An initial step in the analysis was to code and record how often each type of external visual rep-
resentations was used by the participants. As shown in Figure 7, for these six topics participants

FIGURE 7 Percentage of participants (N = 34) using each type of exter-
nal visual representation at least once.
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most often used spatial reorganization of the given information (by 97% of the participants), fol-
lowed by use of outcome listings (by 71% of the participants), pictures (53% of the participants),
trees (50%), novel schematic representations (44%), Venn diagrams (35%), and finally contin-
gency tables (6%). These results show that problem solvers do spontaneously create external
visual representations when solving probability problems.

Use of External Visual Representations for Different Problem Topics

If probability problem solvers use external visual representations to facilitate problem solving,
we might expect specific types of diagrams to be used for specific problem types or topics (cf.
Novick & Hurley, 2001). Thus, we coded and analyzed the relationship between topic of the
probability problem (Joint Events, Conditional Probability, Independent Events, Permuta-
tions, Fundamental Principle, and Combinations) and the type of representation (if any) that
participants chose to use. In this analysis no distinction was made between the different variants
of the problems (typical, atypical, and complex). Table 2 summarizes how often each type of
external representation was used for each problem topic.

If a given type of representation is used differentially often across problem topics, then this
should show up as an association between use of each specific external visual representation and
problem topic. For each type of external visual representation (i.e., for each row of Table 2), we
applied Cochran’s test for the homogeneity of proportions in a k by 2 table (Cochran, 1950) to
test for the use or no use of a representation across problem topics. Cochran’s Q is designed to
test for differences in a dichotomous outcome variable across k conditions in a matched-samples
design. The tests showed significant differences in the use of each external visual representation
across problem topics, with the sole exception of contingency table. However, contingency
tables were used for only two problem instances (Table 2). Venn diagrams were used only for the
Compound Events (P1 – P3) problems and not at all for the Combinatorics problems (P4 – P6).
In contrast to the Venn diagram, the use of an outcome listing was used almost exclusively for

TABLE 2
Frequency of Use of Each Type of Representation by Problem (Averaged Across Versions). Each Row Also 
Shows Results for Cochran’s Test for Homogeneity of Proportions for Use of That Representation Across the 

Six Problems (Each Cell Frequency is Based on N = 34 Problem Solutions; Cells with the Complementary 
Frequencies of Problems NOT Using the Representation Are Not Shown)

Compound Events Combinatorics

Representation
P1 Joint 
Events

P2 Cond 
Prob

P3 Ind 
Events P4 Perm

P5 Fund 
Princ

P6 
Comb

Cochran’s 
Q (df = 5) p-value

Reorganize 28 25 23 8 8 21 45.28* .000
Listings 0 0 2 17 7 12 44.42* .000
Tables 0 1 0 0 0 1 4.00 .549
Venn Diagrams 12 3 2 0 0 0 43.53* .000
Trees 0 5 6 2 10 5 15.61* .008
Novel Schematic 2 0 7 1 12 4 15.00* .010
Pictures 0 0 0 0 10 7 42.85* .000

*p < .05.
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the Combinatorics problems and by two participants for Problem 4. Other representations (for exam-
ple, trees) are used across most of the problem topics, but in differing proportions. These results indi-
cate that specific representations are used more or less often for the different problem topics.

Note that some types of representations are used for many different types of problems. For
example, we believe that reorganization of the given information is used across all problem topics
because it is a very general strategy—both in that it does not correspond to any one type of prob-
lem “schema” and because it is a strategy that can be used to reduce cognitive load and/or to help
problem solvers extract the necessary mathematical information from the given word problem.
Reorganization may aid in the abstraction of a problem schema from the text of a word problem in
part by selecting out the critical problem information from the mass of superficial story detail. It is
perhaps not a coincidence that the two problems where reorganization was used least often were
the problems (P4: Permutations & P5: Fundamental Principle) that had the least amount of text.

Trees were also used across nearly all of the problem types, with the exception of problems
involving joint events. Outcome trees can in fact be used for multiple types of problems
(e.g., for problems involving conditional probabilities or for sequential events), and appeared
frequently in the curriculum of the course. Because trees can be used for many different types of
problems involving compound events, it is interesting that they are never used for the joint
events problems. We suspect that this is because trees are conventionally used for problems that
involve temporal ordering (e.g., two sequential flips of a coin). All of the problems involved in
the present study, with the exception of joint events (P1) involve separable events that could
(although did not have to) be viewed as being ordered either temporally (P3-P6) or causally
(P2). Because the joint events problems did not involve (or admit of) temporal ordering of the
constituent events, they may not have cued retrieval of the trees schema. We return to these
speculations in the Discussion.

Problem Complexity and Representation Use

One research question raised earlier is whether external representations are used more often for
atypical or complex variants of problems. To test this idea, an analysis was conducted to check
for the homogeneity of proportions (Cochran, 1950), for the use or no use of a representation by
problem variant (typical, atypical, and complex) for each type of representation. Table 3 shows
the frequency of use of each type of external visual representation by type of problem variant. A
test of the homogeneity of proportions (use or no use of a representation across the three types of
problem variant) revealed that the use of outcome listings was significantly different for the 3
problem variants, Cochran’s Q(2) = 12.50, p = .002. It appears that outcome listings were used
less often for atypical problems. Venn diagrams tended to be used more often for the complex
problems, Cochran’s Q(2) = 6.22, p = .045. This pattern suggests that Venn diagrams may be
more often used to coordinate complex information, such as problems involving compound
events. No other significant associations were found between problem variant and use of a given
external visual representation.

Solution Success and Use of External Visual Representations

If external visual devices are indeed useful to problem solvers, then we should expect a positive
association between solution success and the specific external representation used (if any). As
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shown in Table 4, the use of certain external visual representations was associated with signifi-
cantly higher rates of solution correctness for certain problem topics (compared to baseline for
that problem topic). For the Joint Events problems, participants who used a Venn diagram had a
significantly higher rate of solution success than the average rate for these problems. For the

TABLE 3
Frequency of Use of a Particular External Visual Representation by Variant, With Cochran’s 

Test for Homogeneity of Proportions for Use of That Representation Across Three Problem Variants 
(For Each Cell, N = 34 Participants; the Cells with the Complementary Frequencies Are Not Shown)

Variant
Cochran’s 
Q (df = 2) p-valueRepresentation Typical Atypical Complex

Non-diagrammatic
Reorganization 28 30 31 2.33 .311
Outcome Listings 17 7 17 12.50* .002

Schematic Diagrams
Contingency Tables 0 0 1 2.00 .368
Venn Diagrams 6 4 10 6.22* .045
Trees 12 8 12 3.20 .202
Novel Schematics 6 9 9 1.64 .441

Iconic
Pictures 3 8 3 4.55 .103

*p < .05.

TABLE 4
Conditional Probability of a Correct Solution Given the Use of a Particular Representation, Separately 

by Problem Topic (With Number of Relevant Observations Shown in Parentheses)

Compound Events Combinatorics

Representation P1 Joint Events P2 Cond Prob P3 Ind Events P4 Perm P5 Fund Princ P6 Comb

Non-diagrammatic
Reorganize .179 (28) .480 (25) .522 (23) .625 (8) .375 (8) .286 (21)
Listings – – – .529 (17) .571 (7) .167 (12)

Schematic Diagrams
Tables – – – – – –
Venn .333* (12) – – – – –
Trees – .800* (5) .667 (6) – .700 (10) .600*(5)
Novel – – .571 (7) – .917* (12) .500 (4)

Iconic
Pictures – – – – .700 (10) .143 (7)

(Baseline)
Mean P(correct): .176 .529 .559 .559 .676 .294

* = significantly higher (p < .05) than mean performance for that problem topic, by a binomial test.
– Dashed lines indicate a cell with fewer than four uses of that representation (i.e., n ≤ 3).



192 ZAHNER AND CORTER

Conditional Probability and Combinations problems, participants using a tree had a significantly
higher rate of solution success than the mean rate for these problems. For the Fundamental Princi-
ple problems, participants who used a novel schematic representation had a significantly higher
rate of solution success than the baseline rate.

Table 4 documents a few cases in which use of an external visual representation seems to be
associated with a lower rate of solution success. However, none of these “reverse” correlations was
significant. For example, for the Combinations problems, use of pictorial or non-diagrammatic
external visual representations was associated with an apparently lower rate of solution success.
This outcome, although not significant, is consistent with the results of studies by van Garderen
and Montague (2003) and Hegarty and Kozhevnikov (1999), who found that the use of schematic
diagrams was correlated with solution success whereas use of non-schematic or pictorial diagrams
was negatively correlated with solution success. In sum, the results summarized in Table 4 suggest
that choosing an appropriate external visual representation is important in problem solving.

Stages of Probability Problem Solving

One important goal of the present project was to investigate how external visual representations
are used in the solution process. As a preliminary step, we derived an approximate measure of
the time spent in each processing stage, by counting the number of words in the utterances asso-
ciated with each stage. The results are shown in Figure 8. It can be seen that participants spent
only about 5% of their time (as measured by number of utterances) in reading and understanding
the problem text. In contrast, they spent 56% of their time in math problem representation, and
19% of their time in strategy formulation, with only 20% in execution. Of course, the number of
words is only a rough proxy for processing time; thus these results must be considered to be
merely approximate.

These stages of probability problem solving are not always followed in a strict linear order.
To explore this idea, we tabulated all transitions between two different stages as shown by the
coding of sequential utterances (Figure 9). The most typical “path” through the stages starts with
text comprehension, followed by math problem representation and strategy formulation (some-
times with “shuttling” back and forth between these two stages). Finally, the problem solver moves
to execution of a strategy, either from math problem representation or strategy formulation. The

FIGURE 8 The mean percentage of time spent in each problem-solving
stage (N = 208 problem solutions).
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observed frequent shuttling between the math problem representation stage and the strategy
formulation stage indicates that the problem-solving process is not comprised of a fixed number
of linear sequential stages, but that solving problems can involve iterated solution attempts
(cf. Casey, 1978).

Use of Different Types of External Visual Representations in Different Stages of PPS

An important goal of the present study was to investigate whether different types of external
visual representations are used to support different stages of the problem-solving process model.
If this is so, then the probability of using a particular representation during a given utterance
should differ depending on the problem-solving stage. Table 5 shows how the frequency of first
use for each type of external visual representation is distributed across stages. Note that nearly
all of the external representations have their maximal frequency of creation and use in Stage II:
Math Problem Representation. The exceptions are use of lists and trees, which show maximal
initial use in Stage III: Strategy Selection. The second-most common stage for creation and use
of each external representation also tends to be these two stages, except for tables, which are
sometimes created and used in Stage IV: Execution, and pictures, which are often created in
Stage I, Text Understanding.

To check if these differences in use of external visuals across stages are significant, a log-linear
analysis was conducted on the distribution of n = 2133 process units in the transcripts, classified
by the four problem-solving stages, the six problem topics, and the seven types of external rep-
resentation. The stage by representation interaction was significant, indicating that certain types

FIGURE 9 The four problem-solving stages, with observed transition
frequencies shown (N = 208 problem solutions; 1690 total transitions).
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of external visual representations are used more often during particular problem solving stages,
c2(18) = 219.07, p < .05. This result demonstrates that different types of external representations
have their primary uses in different processing stages.

There was also a significant association between problem-solving stage and problem topic,
c2(15) = 26.18, p < .05, indicating that participants spend differing lengths of time in a particular
problem-solving stage depending on the problem topic. Finally, there was a significant associa-
tion between problem topic and type of external visual representation, c2(30) = 432.12, p < .05,
consistent with earlier analyses (see Table 2).

DISCUSSION

Our results show, first, that students spontaneously create external inscriptions while solving
probability word problems. Presumably this is because these inscriptions are useful in solving
the problems, since participants were requested merely to “show their work” and were not
explicitly instructed to produce diagrams or other visual devices. Our analyses relating solution
success to spontaneous use of the external spatial representations also demonstrate the utility of
these representations for probability problem solvers.

The specific types of external visual representations used in probability problem solving
that we identified are (in decreasing order of frequency of use): spatial reorganization of the
given information, outcome listings, pictures, trees, novel schematic representations, Venn
diagrams, and contingency tables. These seven types of external visual representations may be
classified as being of three general types: pictures (iconic), schematic diagrams (contingency
tables, trees, novel schematic representations, and Venn diagrams) and spatially organized
but non-diagrammatic forms of tallying (spatial reorganization of the given information
and outcome listings).

Students solving mathematics problems create other types of external inscriptions as well,
most notably equations and computations. We did not systematically study such inscriptions
related to the formal language of mathematics because our primary interest was in inscriptions

TABLE 5
Frequency of Use of Each External Visual Representation by Processing Stage

I: Text II: Math III: Strategy IV: Execution

Non-diagrammatic
Reorganize 26 207 57 1
Listings 0 8 52 3

Schematic Diagrams
Tables 0 7 2 4
Venn 3 29 4 0
Trees 3 14 53 1
Novel 2 23 15 0

Iconic
Pictures 7 18 1 0
Total 41 306 184 9
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that use spatial information to code aspects of the problem. Visually based external inscriptions
presumably reflect visual reasoning processes, long believed to be important in mathematical
thought.

Additionally, the present results lend support to the idea that the process of probability
problem solving can be resolved into stages that usually but not always occur sequentially,
with repeated shuttling between some of the stages. The stages, in typical order of occur-
rence, are: text comprehension, mathematical problem representation, strategy formulation
and selection, and execution of the strategy. Shuttling back and forth between mathematical
problem representation and strategy formulation and selection is frequently observed.
These results (although primarily descriptive in nature) are consistent with previous models
of mathematics problem solving (e.g., Anderson, 1996; Casey, 1978; Kintsch & Greeno,
1985; Mayer, 1992; Reusser, 1996; Schoenfeld, 1994). Furthermore, our micro-level
analyses of problem-solving behavior results have allowed us to show associations of par-
ticular types of external visual representations with particular stages of probability problem
solving.

Limitations

Our conclusions may warrant some caution, because there are potential limitations to the meth-
odology we have employed. First, the population studied here was composed of students drawn
from an introductory statistics course at a graduate school of education; they were adults, with
diverse mathematical backgrounds. Furthermore, participants were volunteers and were com-
pensated with a modest payment, so it is not guaranteed that they are typical of all students in
this course, nor of other populations who are learning probability. Another possible objection
that might be raised to our method is that students might solve probability problems differently
in the laboratory and in the classroom due to the requirement that they think aloud while solving
problems or due to other demand characteristics of the lab setting. However, several decades of
research has supported the validity of data from think-aloud protocols in investigating mathe-
matics problem solving, even with elementary school students (e.g., Ericsson & Simon, 1993;
Robinson, 2001). Thus, we do not view these potential threats to generalizability as fatal, but
further research will be needed to ensure that our results indeed generalize to other populations
and settings.

One specific aspect of our results that may not generalize is the overall proportions of various
types of external visual representations that we observed. Not only do the frequencies of use of
these representations depend on the particular problems chosen (as shown by our results, e.g.,
Table 2), but these frequencies may also be strongly affected by the particular curriculum used
in the course in which the students were enrolled. In this curriculum, outcome listings, outcome
trees, Venn diagrams, and contingency tables were used frequently. Thus, the results we have
obtained about the frequency of use of various external visual devices may be curriculum-
dependent. However, it does not seem that participants were simply reflecting course or text-
book practices, because (for example) contingency tables, although used frequently in the text
and course, were almost never used by participants in this study. This gives us confidence that
we are seeing “signal” (i.e., students’ true predilections regarding use of specific external
inscriptions for specific problems) in the “noise” (i.e., bias due to curriculum or to the special
conditions of the laboratory study).
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Why Are External Visual Representations Useful?

The present results provide evidence suggesting that external visual representations are useful in
probability problem solving, even when these representations are spontaneously created by the
problem solver. In particular, when participants use certain types of external representations
with particular problems (presumably problem-appropriate representations), higher rates of
solution success are observed compared with using no diagram. However, use of some represen-
tations are not positively associated with solution success for some type of problems, which
implies that inappropriately chosen representations do not lead to higher rates of solution suc-
cess. This pattern of results lends support to the idea that choosing an appropriate representation
should be viewed as an important subskill in problem solving (Novick & Hmelo, 1994). Of
course, both use of diagrams and solution success are dependent variables in this study, thus
firm causal conclusions regarding the observed associations between them are not possible; it
may be that correct problem understanding by the student results in better choice of a visual
representation rather than vice-versa. However, if this latter interpretation is accepted, then the
question arises of why a student should choose to produce a diagram at all in solving the
problem. Thus, we believe that the most plausible interpretation of our results is that selection
and use of an appropriate diagram is an aid to problem solving, and that students spontaneously
produce external visual representations in problem solving because it is helpful to them.

Is there a general answer as to why diagrams and other visualizations are useful in mathemat-
ics problem solving? Visual reasoning is believed to be associated with discovery in mathemat-
ics problem solving (Hadamard, 1945; Polya, 1957). Thus, to the expert mathematician,
diagrams may be most useful for exploration of non-routine problems (Pantziara, Gagatsis, &
Elia, 2009), and inventing novel diagrammatic representations is part of the creative process. In
the present context, the probability problems encountered all had solutions obtainable using
formal methods taught in the course, and standard uses of diagrams (e.g., Venn diagrams) were
taught for such problems. In this sense, the presented problems were “routine,” although we
manipulated problem typicality and complexity to see if these factors would affect diagram use.
We did not find many differences in diagram use associated with these factors, however. Of
course, to a novice, even standard problems are not yet routine; thus, diagrams may be most
useful when the student is challenged by working near their boundary of competence, the “zone
of proximal development” (Vygotsky, 1978).

In general, we believe that what makes a diagram useful to a novice problem solver is both
appropriateness to the problem and need: that is, the problem at hand must be difficult or com-
plex enough that the diagram is needed and has a chance of having a facilitative effect. Exter-
nal inscriptions, including but not limited to pictures and diagrams, may be useful aids in
problem solving for a number of distinct reasons. First, the use of inscriptions helps to orga-
nize the given information in the problem and facilitates the building of a mental model of the
problem text. We see evidence of this happening when the participants write or draw pictures
on the page during the text comprehension stage. Problem complexity may play a role in this
and later stages, because complex problem scenarios involve understanding and manipulating
large amounts of given information and often involve the coordination of multiple subgoals
(cf. Dean, 2006; Tatsuoka, Corter, & Tatsuoka, 2004). Inscriptions are known to be useful for
offloading the results of intermediate calculations from memory, especially in complex prob-
lems (Schreiber, 2004).
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It is possible that the use of external visual representations helps the participants abstract the
problem text to just the important elements and helps them build a problem schema and solve
the problem. Inscriptions can also be useful during the math problem representation stage, in
which participants match the problem text schema to a familiar probability problem schema,
such as definitional formula for conditional probability. Exploration of this idea of diagrams as
an aid to schema matching seems a fruitful avenue for future research. Some comments and
speculations on this idea are presented in the next section.

Schematic and Non-Schematic Visual Representations

As already described, the seven types of external visual representations studied here differ in
some important ways. Four of the representations (Venn diagrams, trees, contingency tables,
and novel schematic representations) we classify as schematic diagrams. Two of the visual
representations (spatial reorganization of given information and outcome listings) can be con-
sidered forms of tabulation. The final type (pictures) refers to iconic representations of problem
elements (e.g., pictures of cars or CDs).

The first group (contingency tables, Venn diagrams, trees, and novel schematic representa-
tions) are considered as schematic because (1) the graphs have a structure or syntax, and (2)
structural aspects of the graphs symbolically represent meaningful aspects of the problem. We
classify two of the types of external representations (spatial reorganization of the given informa-
tion and outcome lists) as non-diagrammatic. In these representations spatial location is used
simply to organize lists of comparable information (e.g., list of outcomes or corresponding
pieces of information relating to multiple subgoals, as in Figure 6) Finally, pictures are
classified as iconic representations, in which spatial aspects of the inscriptions represent spatial
relationships between problem objects, and resemblance is key (cf. Goodman, 1976). Our spec-
ulations on diagram use as schema matching apply most directly to the schematic diagrams,
trees, contingency tables, Venn diagrams, and certain novel representations.

Schema-Matching in Diagram Use

Novick and co-workers (Hurley & Novick, 2010; Novick, 1990; 2002; Novick & Hmelo, 1994;
Novick & Hurley, 2001; Novick, Hurley, & Francis, 1999) have proposed specific semantic or
structural features that characterize certain types of diagrams. Novick and Hurley (2001)
proposed that different types of schematic diagrams have structural aspects or properties that
determine their range of applicability. Our results can be interpreted within this viewpoint. The
associations we have found between use of the different types of representations and specific
problem types suggest that properties of the diagrams and properties of the problem schema are
being matched (although not always successfully) by participants. For example, trees seem
naturally appropriate for sequential problems such as the results of multiple coin flips, while
contingency tables and Venn diagrams are particularly appropriate for representing joint or com-
pound events. Our model of probability problem solving is based on an assumption that applied
probability problems (and the cover stories that are built over them) are structured according to
implicit schemas. For example, providing a student with the probability of a joint event P(A∩B)
and the base rate P(B) makes it easy and natural to ask for the corresponding conditional proba-
bility of A given B. In addition to such problem text and math problem schemas, several of the
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types of external visual representations that we have examined have complex structure and thus
could be characterized as “schematic” as well. In a schematic diagram, such as a Venn diagram,
visual aspects of the representation are used to represent abstract features of the probability
problem. For example, in an outcome tree representation of a coin-flipping problem the root
node represents the first coin flip, and the two branches leading from the root node represent the
two possibilities resulting from that flip (Heads or Tails). Thus, finding an appropriate diagram-
matic representation for a problem can be seen as a schema matching process.

In our study we found little use of “novel” graphical representations (that is, of graphical rep-
resentations that are not conventionally used in probability problems; see Russell, 2000). These
were restricted mainly to scattered use of bipartite graphs and the use of general network graphs
to represent the Roads problem. These novel uses tended to be incorrect. This observation does
not mean that invention is bad; rather, it reflects the fact that the types of schematic representa-
tions typically taught in probability courses (Venn diagrams, trees, and contingency tables) are
used because they are especially appropriate to represent typical textbook problems. As an
example, outcome trees are often found in statistics texts (Russell, 2000) and are known to be
widely applicable in probability problem solving. Trees are useful for both conditional probabil-
ity problems as well as those related to sequential events (roll a die, then flip a coin). They can
be used to represent applications of the fundamental principle of combinatorics as well. Con-
sider a problem where a person has three tee-shirts and four pairs of shorts and the problem asks
for the number of outfits that can be made with this set of clothing. While a bipartite graph could
be used to represent this problem, the resulting graph is visually cluttered and does not make
salient the number of possible outcomes. The tree diagram for this problem is much more
efficient and less cluttered, and a salient aspect of the diagram, the number of leaves of the tree,
corresponds to the goal quantity of the problem, the number of outcomes; therefore, the tree is
more useful for solving this problem.

In future work we hope to explore implications of the view that just as problems have a
particular schema or structure, so do schematic diagrams. When the two schemas match well,
the visual representation may be a useful tool that facilitates problem solving, perhaps leading to
a higher rate of solution success. Ross and colleagues (Ross, 1984, 1989; Ross & Kennedy,
1990) present evidence that experts are adept at matching a problem’s structure with a solution
structure, as compared to novices, who tend to match problems based on surface structures (e.g.,
drawing five cards out of a deck). If external visual representations are useful in problem solving
and they have specific characteristics that match different schemas, then it is logical that certain
external visual representations are more appropriate for certain problem types because matching
problem elements to the schematic elements of the external visual representation would be
easier for some cases than others.

Our findings showing higher solution rates for certain problems given use of certain visual
representations suggest that instruction in probability problem solving ought to include instruc-
tion in appropriate schematic representations for probability problems. It is possible that struc-
tural aspects of these diagrams should be emphasized in order to help students develop better
intuitions about when each type of diagram may be useful. It is less clear whether performance
in solving probability or other words problems can be facilitated by encouraging problem solv-
ers to draw iconic representations of the problem text or to use spatial reorganization of the
given problem information—our results show no facilitative effects for these types of external
inscriptions. Of course, when students are allowed to make external inscriptions, they will no
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doubt as a group employ a variety of approaches and representations, and this is a good thing.
As we try to develop methods to teach appropriate use of diagrams for problem solving, we
should be careful not to discourage students from taking initiative and actively trying new repre-
sentations and new approaches.
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