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Computational models of human collective behavior 
offer promise in providing quantitative and empirically 
verifiable accounts of how individual decisions lead to 
the emergence of group-level organizations. Agent-
based models (ABMs) describe interactions among 
individual agents and their environment, and provide a 
process-oriented alternative to descriptive mathemat-

ical models. Recent ABMs provide compelling accounts 
of group pattern formation, contagion and cooperation, 
and can be used to predict, manipulate and improve 
upon collective behavior. ABMs overcome an assump-

tion that underlies much of cognitive science – that the 
individual is the crucial unit of cognition. The alternative 
advocated here is that individuals participate in collec-
tive organizations that they might not understand or 
even perceive, and that these organizations affect and 
are affected by individual behavior. 
Introduction 
Cognitive scientists tend to focus on the behavior of single 
individuals thinking and perceiving on their own. 
However, interacting groups of people also create emer-
gent organizations at a higher level than the individual. 
Interacting ants create colony architectures that no single 
ant intends. Populations of neurons create structured 
thought, permanent memories and adaptive responses 
that no neuron can comprehend by itself. Similarly, people 
create group-level behaviors that are beyond the ken of 
any single person. The emergence of higher-level organ-
izations from the interactions of lower-level units is 
surprising in the case of group behavior because we are 
the lower-level units, and the higher-level organizations 
typically emerge spontaneously, without our knowledge. 
Social phenomena such as rumors, the emergence of a 
standard currency, transport systems, the World Wide 
Web, resource harvesting, crowds, and scientific establish-
ments arise because of individuals’ beliefs and goals, but 
the eventual form that these phenomena take is rarely 
dictated by any individual. 

There is a growing realization across the social sciences 
that one of the best ways to build useful theories of group 
phenomena is to create working computational models of 
social units (e.g. individuals, households, firms or nations) 
and their interactions, and to observe the global struc-
tures that these interactions produce. In the past few 
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years, the use of computational models of collective 
behavior has grown tremendously in sociology [1], 
economics [2], psychology [3,4], and anthropology [5]. 
This approach is relevant to cognitive science because it 
integrates computational modeling and understanding of 
human behavior. This relevance is timely because these 
models provide balance to cognitive science’s bias to view 
cognition as a property of an individual mind rather than 
as resulting from interactions among people and their 
environments [6]. 

We will focus on computational models called Agent-
Based Models (ABMs), which build social structures from 
the ‘bottom-up’, by simulating individuals by virtual 
agents, and creating emergent organizations out of the 
operation of rules that govern interactions among agents 
[7,8]. ABMs have several attractive features that sup-
plement traditional methods for exploring group behavior. 
First, they are expressed with unambiguous mathematical 
and computational formalisms so that once they have been 
fully described, their predictions are clear, quantitative 
and objective. Second, they provide true bridging expla-
nations that link two distinct levels of analysis: the 
properties of individual agents (e.g. their attributes and 
interactions), and the emergent group-level behavior. 
When successful, agent-based models are particularly 
satisfying models because they show how coherent, group-
level structures can spontaneously emerge without 
leaders ordering the organization, and sometimes despite 
leaders’ effort. Third, because the models are typically 
either simple or informed by real-world data, they are 
appropriately constrained and cannot fit any conceivable 
pattern of data. The self-organization process itself exerts 
strong constraints on the kinds of patterns likely to be 
observed [9]. In this review of ABMs, we will characterize 
the approach; describe crucial decisions that a modeler 
must make; present case studies of ABMs from literatures 
on organization, contagion and cooperation, and assess 
the future opportunities and challenges for ABMs. 
Characteristics of agent-based models 
ABMs tend to possess four characteristics: 
Computational description at the level of agents 
ABMs consists of a large number of interacting agents, 
operating within an environment. Each agent’s behavior 
is governed by rules triggered by their local condition 
rather than global information [10]. High-level summary 
descriptions emerge from the unfolding agent interactions, 
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but they are not explicitly programmed (see also Supple-
mentary data online). 

Stigmergic interactions 
Agents act on and are influenced by their local environ-
ment. Stigmergy is a form of indirect communication 
between agents that is achieved by agents modifying their 
environment and also responding to these modifications 
[11], for example, ants following pheremone trails left by 
other ants [12]. Analogous stigmeric effects are achieved 
by ‘swarms’ of humans that make a terrain more 
attractive to others by creating paths with their own 
steps [13,14], book recommendations on Amazon.com 
based upon similar readers’ buying habits, or robots that 
create large-scale architectural structures even though 
they cannot directly communicate, by reacting to and 
building upon structures left by others [15]. 

Autonomy of agents 
Each agent is capable of autonomous behavior, and 
possesses individual, albeit frequently simplified, repre-
sentations of beliefs, goals and strategies [16]. Agents 
typically do not calculate optimal or rational courses of 
action, but rather use heuristics [17,18], reinforcement 
learning [19], opportunistic adaptation [20], or cross-
generational evolution [21] to change their strategies. 

Spatially distributed populations of agents 
ABMs often consist only of agents and a 2D or 3D land-
scape of environmental ‘patches,’ both of which may have 
several attributes [10]. The visuo-spatial and animated 
nature of the resulting simulations makes the most of 
people’s natural aptitude for visual pattern recognition. 

Idealized and detailed models 
The most fundamental decision an ABM researcher makes 
is how detailed their model will be. Many researchers 
purposefully choose to create highly idealized models that 
boil down a collective phenomenon to its functional 
essence. Researchers pursuing idealized models are 
typically motivated to describe domain-general mechan-
isms with a wide sphere of application. A good example of 
this strategy is Robert Axelrod’s Culture Model [22]. The 
goal of this model is to explain how beliefs or attitudes 
converge or diverge in a population over time. Agents are 
placed at fixed locations within a 2D grid, and initially 
have random trait values on each of several features. The 
likelihood of neighboring agents interacting with one 
another is proportional to their similarity across all 
features. When two agents interact, one of the trait values 
of one of the agents is copied to the other agent, in a 
process that simulates cultural imitation or social 
influence. Over time, spatial clusters of like-minded 
agents develop, although some diversity of opinion is 
often maintained as dissimilar agents are unlikely to 
interact even if they are neighbors (see Figure 1). This 
simple model can explain (i) the spatial clustering of 
opinions, (ii) bandwagon effects, and (iii) the spontaneous 
division of a culture into sub-cultures. 

The ‘similarity begets even more similarity’ dynamic 
has applications to the spread of smoking in teenagers [23] 
www.sciencedirect.com 
and geospatial political patterns [24], to take just two 
examples. The original Culture Model has given rise to 
follow-up simulations showing how the Culture Model can 
be extended to disseminating solutions to objective 
problems rather than opinions [25], incorporating global 
media rather than only neighbor-to-neighbor interactions 
[26], and also analyzed to show rapid phase transitions 
from disordered to ordered configurations of opinions [27]. 
The Culture Model may be too simplified to fully explain 
any specific real-world pattern of opinion spread, but it 
also formally captures an essential commonality of many 
situations in which homogeneity within cliques co-exists 
with striking heterogeneity across cliques. 

Other ABMs are intimately tied to a specific domain 
because they include a considerable amount of detail 
derived from real world datasets and their goal is 
answering a specific real-world question. One such 
question is, ‘Why did the Anasazi people of southwestern 
United States abandon their homeland around 1350 AD?’ 
To find the answer, research teams [28,29] have developed 
ABMs that incorporate features grounded in historical 
records: maize production levels, ground water reserves, 
the 3D geography of the Anasazi’s Long House Valley 
homeland, populations established from archeological 
digs, and social trends regarding childbirth age, the 
average age of children leaving home, and food consump-
tion needs, all based upon recent maize-growing societies 
of Pueblo Indians descended from the Anasazi. Specific 
runs from the eventual model [29] (see Figure 2) capture 
aspects of the rise and fall of the Anasazi population for 
more than a millennium period from AD 200–1300, 
although the modeling would have been even more 
impressive if it had been systematically compared to 
alternative models. 

The juxtaposition of these models allows us to critically 
assess the costs and benefits of idealized and detailed 
models. When successful in isolating a universal pattern, 
idealized models have widespread application to many 
real-world domains, and generate comprehensible expla-
natory accounts by focusing on only a few crucial causal 
elements. Revealing idealized models have been formu-
lated for the diffusion of innovations [30], collective action 
[31], the transmission of cultural elements over gener-
ations [32], the development of social conventions [33], 
and language change [34,35]. The downsides of these 
idealized models are that without extensive tailoring, they 
might not map onto any actual case study, and they can 
oversimplify to the point of leaving out crucial details [36]. 
By contrast, detailed models hold the promise of making 
faithful predictions by being grounded in a case’s 
particular data. There are ABMs that effectively incor-
porate considerable detail about university tenure 
systems [37], electricity markets in England [38], and 
hunting behavior in eastern Cameroon [39]. The downside 
of detailed models is that they may be able to predict too 
many possible outcomes if they have many parameters 
that are insufficiently constrained. If the models become 
too detailed, they may become as complex as the modeled 
phenomenon itself, and hence serve as poor explanatory 
aids. Given these considerations, it is best to choose the 
level of model detail based on the (1) importance of 
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Figure 1. Four simulations of Axelrod’s Culture Model [22]. Each agent is represented by a color that represents their entire set of features (e.g. hobby) and trait values 

(e.g. chess, badminton, violin). Agents with identical colors have identical traits. (a) an initial, randomly generated population of agents, each possessing two traits (TZ2) on 

each of two features (FZ2). (b) The same population after 4000 generations of interactions in which neighboring agents copy each others’ traits, with the probability of 

interaction proportional to the agents’ similarity. The population is frozen because the red and green agents have no traits in common and hence will never interact. (c) After 

4000 generations, a simulation starting with agents characterized by two trait values (TZ2) along 15 features (FZ15). Increasing the number of features increases the 

probability of a homogeneous, like-minded population emerging. (d) When FZ3 and TZ15, the population quickly becomes frozen into small cliques that have no cross-

group interactions. Increasing the number of traits per feature decreases the size of cliques. (A web-based simulation of the Culture Model can be found at http://www-

personal.umich.edu/waxe/) 
predicting future behavior in a particular case study 
(advocating detail), (2) importance of generalizing the 
model’s behavior to new scenarios (advocating idealiz-
ation), (3) difficulty in assessing what elements of a case 
study are crucial versus inconsequential in determining 
the global behavior (advocating detail), and (4) desire for a 
concise and comprehensible explanatory account (advo-
cating idealization). 

ABMs and aggregate models 
The ABMs described above all work by synthetically 
constructing virtual versions of social phenomena from 
low-level descriptions of the individual agents. This 
approach is in contrast to descriptive models, which use 
equations to describe aggregate level phenomena. To 
create tractable descriptive equations it is often necessary 
to make misleading assumptions that fail to capture 
essential aspects of natural phenomena. One example is 
the Mean Field Approximation, according to which all 
individuals in a group are assumed to be in the same 
location and experience the same local environment. 
ABMs that incorporate space and local variability 
frequently produce much more realistic models. For 
www.sciencedirect.com 
example, giving agents unique rather than aggregate 
positions has proven invaluable in modeling the continued 
stability of host-pathogen populations [40] the genetic 
diversity in a population [41], and preserved pockets of 
cooperation surrounded by defectors [42,43]. More gener-
ally, ABMs often provide more satisfying accounts than 
purely descriptive approaches because they posit mechan-
isms by which aggregate qualities emerge. 

Three core themes for agent-based models 
Three prevalent themes for computational models of 
collective behavior have been spatial and temporal 
patterns, social contagion and cooperation. The human 
agents in these models are represented by a wide range in 
complexity, from particles to simple rule-following devices 
to rich cognitive architectures. 

Patterns and organization 
Political economist Thomas Schelling is one of the 
founders of computational models of collective behavior 
in the social sciences, although his original experiments 
on segregation were done by hand with dimes and pennies 
[44]. Schelling created agents belonging to two classes 
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Figure 2. Simulated (a) and historical (b) patterns of settlement for the Anasazi in the Long House Valley around AD 1125. Red circles indicate settlements, and the shade of 

blue depicts the annual groundwater level for a location. Figure adapted by Rowan Johnston from [29] with permission from the author and publisher. 

 

(his dimes and pennies) that are reasonably tolerant of 
diversity and only move when they find themselves in a 
clear minority within their neighborhood, following a rule 
like ‘If fewer than 30% of my neighbors belong to my class, 
then I will move’. The agents still divide themselves into 
sharply segregated groups after a short time, even though 
no individual is motivated to live in such a highly 
segregated world. The work of Schelling stimulated the 
development of other models of sorting where micro-
motives lead to surprising macrobehavior, especially 
within political economic processes [43,45]. 

Recently, several physicists have used simulation 
models to study patterns that can emerge when many 
humans interact, including human trails [13], traffic jams 
[46], Mexican waves [47] and panic behavior of pedes-
trians [48]. In these models humans are represented as 
particles with variation in speeds or position, and without 
any requirement of cognition for the agents. In some 
applications of financial markets, agents are explicitly 
called ‘zero intelligence agents’ to show that full ration-
ality is not required to explain observed patterns in 
economic statistics [49]. These simple reactive agent-
based simulation models have often provided surprisingly 
apt accounts of empirically observed behavior. 
Contagion 
Social contagion is the spread of an entity or influence 
between individuals in a population via interactions 
between agents. Examples are the spreading of fads, 
rumors and riots. Computational approaches to simulate 
social contagion are based on thresholds models [50]. Each 
agent has a threshold that, when exceeded, leads the 
agent to adopt an activity. This threshold represents the 
number of other agents in the population or local 
neighborhood following that particular activity. Threshold 
www.sciencedirect.com 
models can be either deterministic [51] or stochastic [51]. 
Recent work in this area assumes that thresholds are 
applied to the adoption rate within a local neighborhood, 
rather than the whole population [52,53]. This has led to 
the study of the impact of different social network 
configurations on contagion [54,55]. 
Cooperation 
A social dilemma is a situation where sub-optimal group 
outcomes are achieved if all agents do the action that is 
optimal for themselves. If self-centered rational agents do 
not cooperate in social dilemmas why do we often find 
cooperation in actual case studies? From an ABM 
perspective, are the roots of cooperation in the model of 
the individual, environmental conditions, or information 
exchange between agents? Robert Axelrod pioneered the 
use of computational models by showing that strategies 
which lead to conditionally cooperative behavior are 
effective in a tournament of repeated prisoner dilemma 
games, giving better overall performance than uncoopera-
tive strategies even though in head-to-head competition 
with non-cooperative strategies, the non-cooperative 
strategies prevail [56]. This work led to a large literature 
on  extensions  of  the original models to include  the
addition of space [57], indirect reciprocity [58], and more 
complex strategies [59]. Most of this work uses simple 
reactive agents. Some recent studies [60,61] focus on more 
cognitively sophisticated agents with designs informed by 
psychological theories, such as social comparison and 
bounded rationality. 
The future of computational models of collective 
behavior 
These early explorations have given us enough data to 
make some prescriptions for the development of the next 
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generation of ABMs. Broadly speaking, there are several 
limitations with the current crop of ABM models from a 
cognitive science perspective. We have four recommen-
dations for realizing the promise of ABMs: 

Genuine predictiveness 
If the first generation of ABMs can be characterized as 
generally ‘post-dicting’ existing data, the next generation 
should aspire to genuinely predicting the outcome of 
future patterns of collective behavior. 

Create a computational lingua franca 
Early work with ABMs has been somewhat unsystematic, 
with different researchers developing idiosyncratic 
systems. One result has been the lack of replicability of 
some ABM results. For example, early demonstrations of 
the persistence of cooperation in a spatial Prisoner’s 
Dilemma game [57] have been shown to hinge crucially on 
the unstated assumption of agents that update synchro-
nously (e.g. all at the same time) rather than asynchro-
nously [62]. If ABM modelers all use the same simulation 
environments, then interesting differences between 
models can be missed [63], but establishing common 
modeling methods will promote comparison between 
models, improve replicability of results, and facilitate 
researchers’ efforts to build upon prior work. 

Greater synthesis between experiments and models 
When ABMs have been compared to empirical data, they 
have often been applied to case studies. A problem with 
case studies is that they are not genuinely replicable 
events, although role-playing games can sometimes 
capture their major elements. Instead, we would recom-
mend validating ABMs against data obtained from 
experiments. Ideally, laboratory experiments, field obser-
vations and computational models will not only be 
integrated, but they will inform and improve one another 
over several iterative cycles. Relatively simple laboratory 
situations can be constructed to involve groups of people 
interacting in idealized environments according to easily 
stated game rules. Experiments can bridge the often-
noted [36] gap between computational models and group 
behavior because the assumptions underlying the experi-
ments can be tailored to correspond almost exactly to 
the assumptions of the computational models, and so the 
models can be aptly applied without sacrificing the 
concision of their explanatory accounts. 

Greater sophistication of internal representations of 
agents 
The majority of current ABMs incorporate rather 
impoverished representations of agents. Often, each 
individual is represented by a single, albeit time-varying, 
number (e.g. ‘Probability of cooperationZ0.8’) [3]. In more 
complicated models, agents are represented by a vector of 
independent values across a set of dimensions [22]. Actual 
knowledge has much richer structures than either of these 
representations. For example, an evolutionary theorist 
has concepts about natural selection, sexual reproduction 
and genetic variability within a population, but these 
concepts are not independent elements,  but rather
www.sciencedirect.com 
support and contextualize one another. Concepts gain 
their meaning by their relations to other concepts [64]. 
Finding a good balance between incorporating these 
influences and achieving constrained and elegant models 
is an excellent challenge for ABMs. If each person is to be 
modeled as a conceptual network, then a social group is to 
be modeled as network of networks. From a modeling 
perspective, the intellectual interest is in the study of how 
these two levels of networks interact [65]. Communicating 
is not simply transmitting individual concepts. Communi-
cation involves aligning the conceptual systems of agents 
[33]. One implication of this alignment process is that as 
concepts migrate across people, they will be systematically 
altered to fit their owners’ conceptual network. 

Opportunities 
Despite these challenges to current ABMs, the future 
looks bright for computational modeling of collective 
behavior. We highlight three opportunities for future 
modeling efforts. 

Modeling large-scale collectives 
Recently, there has been a phenomenal increase in 
archival data on groups. Archival data available from 
on-line news groups, blogs, social network services, chat 
groups and topical communities can effectively be used to 
explore naturally occurring coalition formation, idea 
spread and group evolution [66]. 

Computational models as test-beds 
Computational models of collective behavior can explore 
in advance the possible consequences of public policy 
changes. ABMs can be used to address ‘what if ’ scenarios 
like ‘What is the consequence of the spread of HIV if 
policies are implemented to affect stigmatization of HIV 
infected persons?’ and ‘What would be the impact on world 
demographics if parents can choose the sex of their child?’ 
As computational simulations become increasingly real-
istic, they will serve as increasingly useful test-beds for 
exploring potential consequences of public policies that 
have complex, non-linear dynamics. 

Group control through indirect manipulation rather than 
explicit rules 
Perhaps the most common method of crowd control is 
through direct orders or laws. If we wish to direct pedes-
trian traffic, for example, we may institute rules or 
physical barriers that prohibit certain movements. The 
cost of such prohibitions is decreased pedestrian morale 
and the perception of excluded possibilities [67]. ABMs 
suggest an alternative method of crowd control by 
changing the structure of the environment such that 
certain behaviors are facilitated and others are indirectly 
hindered without instituting physical or abstract barriers. 
Small changes in environments can often have a major 
change on the flow because of the positive feedback 
involved in individuals following other individuals. The 
need for direct force is reduced by this approach. As we 
gain confidence in our computational models, they will 
provide useful advice not only for predicting but also for 
controlling collective behavior (see also Box 1). 

http://www.sciencedirect.com


429 Review TRENDS in Cognitive Sciences Vol.9 No.9 September 2005 

Box 1. Questions for future research 

† What are the mechanisms by which individuals within groups 

learn to cooperate, compete, spontaneously specialize and divide 

labor, form coalitions, distribute resources, propagate innovations, 

create social networks and coordinate complex activities? 

† How is the gulf between the real-world complexities of social 

interaction and the relative simplicity of ABMs best bridged: by 

creating simplified experimental environments that constrain 

human interaction, by incorporating as much real-world data into 

ABMs as possible, or by identifying crucial real-world elements and 

selectively incorporating only these into ABMs? 

† When can models inspired from physics be effectively used to 

explain collective behavior, and when must the ‘humans-as-

particles’ idealization be enriched to incorporate people’s beliefs, 

memories, plans, strategies and creativity? 

† Can ABMs be successfully used to advise organizational design or 

public policy, for example, by predicting the implications of new 

voting or auction rules before they are publicly implemented? 
Conclusion 
There are exciting opportunities for recent efforts in ABMs 
to both benefit from, and inform, cognitive science. ABMs 
can benefit from the advanced statistical tools and empirical 
methods that cognitive scientists have developed for 
assessing the quality of the fit between computational 
models and the world. The emphases of cognitive science on 
neural and cognitive constraints, replicability, comparison 
between models, laboratory-controlled validation and rea-
listic cognitive processes of individual decision makers are 
much needed insights for the ABM community. Conversely, 
ABM methods advance cognitive science by providing a 
generative, proof-by-construction approach to understand-
ing social behavior. Cognitive scientists often act as though 
individuals are the sole loci of organized thought, but ABMs 
remind us that organized behavior can be described at 
multiple levels, and that our thoughts both depend upon and 
determine the social structures that contain us as elements 
within those structures. 
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