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Winter A. Mason

Yahoo! Research

Andy Jones

University of North Carolina

Robert L. Goldstone

Indiana University Bloomington

A novel paradigm was developed to study the behavior of groups of networked people searching a
problem space. The authors examined how different network structures affect the propagation of
information in laboratory-created groups. Participants made numerical guesses and received scores that
were also made available to their neighbors in the network. The networks were compared on speed of
discovery and convergence on the optimal solution. One experiment showed that individuals within a
group tend to converge on similar solutions even when there is an equally valid alternative solution. Two
additional studies demonstrated that the optimal network structure depends on the problem space being
explored, with networks that incorporate spatially based cliques having an advantage for problems that
benefit from broad exploration, and networks with greater long-range connectivity having an advantage

for problems requiring less exploration.
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Human problem solving can often be seen as a search for a
solution within a large problem space. For important problems,
many individuals may be simultaneously trying to find the solution
to a problem and often are not working alone. Good, novel solu-
tions to problems—innovations—spread in waves of adoption
powered by imitation and influence. This means that every indi-
vidual must choose between adopting other persons’ solutions and
continuing his or her search for a better solution. The research
described in this article suggests that the pattern of communication
within a group—the channels an innovation can spread through—
can promote either exploitation of good solutions or exploration
for novel ones, and that this subsequently affects the efficiency of
the group taken as a whole in finding the best solution to a
problem. Our interest is in developing laboratory-controlled meth-
ods for exploring the propagation of innovations in social groups
and for studying how this propagation is affected by the social
network structure and nature of the problem to be solved.
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A large portion of the work on innovations has focused on a
population-level view of product innovation rather than the
processes at the individual level (Bass, 1969; Tarde, 1903). At
the individual level there are three factors in the process of
spreading innovations: the properties of the innovation, the
characteristics of the innovator/adopter, and the social and
environmental context (Rogers, 1962, 1995). Of particular in-
terest to psychologists are the decision making that goes into
choosing to adopt an innovation and the psychological features
of the individual that affect that decision. For instance, inno-
vativeness has been treated as a personality variable for some
time (Rogers & Shoemaker, 1971), although its validity has
been questioned (Midgley & Dowling, 1978). The central social
psychological components of innovation diffusion are imitation
and influence.

Imitation is so central to the dissemination of innovations that
the first seminal article on the spread of innovations appeared in a
book titled The Laws of Imitation (Tarde, 1903). This capacity for
imitation was termed no-trial learning by Bandura (1965), who
stressed that, by imitating one another, people perform behaviors
that they would not have otherwise considered. It has been sug-
gested that cultural identity exists only because of our tendency to
imitate results in the dissemination of concepts, beliefs, and inno-
vations (Bikhchandani, Hirshleifer, & Welsh, 1992). The adoption
of an innovation can be viewed as the adopter choosing to imitate
the innovator, or it can be viewed as the innovator influencing the
adopter. Influences have been classified into two types (Deutsch &
Gerard, 1955): normative influences, when people are influenced
because they desire to obtain social approval from others, and
informational influences, when people are influenced because they
believe others possess additional or more accurate information.
Both types can drive the propagation of innovations, but they have
different effects.
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Laughlin and Ellis (1986) describe a continuum between intel-
lective and judgmental issues. Where an issue falls on this contin-
uum depends on the demonstrability of the correctness of solu-
tions. A math problem has accepted means for showing the
correctness of a solution, so it would be considered an intellective
task. Deciding which flavor of ice cream tastes better would be a
judgmental task. Kaplan and Miller (1987) found that intellective
tasks led to more informational influence, while judgmental tasks
led to more normative influence. Developing an innovation is often
an intellective task, because the superiority of the innovation is
often demonstrable, and so the spread of the innovation is primar-
ily due to the informational influence of others. However, if there
is no discernable difference, or if the benefits of adopting an
innovation are largely due to others using it (e.g., IBM vs. Macin-
tosh or VHS vs. BetaMax), choosing to adopt the innovation is
more like a judgmental task.

For intellective issues, if there is a problem with one solution
that is clearly and demonstrably better than all other alternatives,
the search for that solution essentially becomes an optimization
problem. Kennedy, Eberhart, and Shi (2001) developed a model of
group search for optimization problems. In this model, a group of
agents searches a multidimensional space with a mathematically
defined fitness function. Each agent has information about the best
location it has encountered as determined by the fitness function,
as well as the best location any agent in the swarm has encoun-
tered. Using this information, the agents quickly find and converge
on the single best solution.

For most intellective tasks, and particularly for innovations, the
choice between relying on information from others and obtaining
information on one’s own involves a tradeoff of costs and benefits.
Seeking out information on one’s own requires time and energy but is
often more trustworthy and individually tailored than information
learned by word of mouth. On the other hand, choosing to use
information provided by others can be cost-effective, especially if past
experience suggests that the source is reliable. These two choices have
been characterized as exploration and exploitation, respectively (Hol-
land, 1975), or the choice between searching out new information and
using the best information currently available. March (1991) pre-
sented a detailed analysis of the tradeoff between the two strategies
with respect to organizations. Organizations that rely mostly on ex-
ploitation of competitors’ innovations benefit in the short run by
saving costs on research and development but may lose out in the long
run because they never lead the pack.

This individual decision, whether to imitate or explore, is also
affected by the immediate social influences. Granovetter (1978) sug-
gested that people act as though they have a threshold number of
friends (or neighbors) that must adopt a solution before they will also
adopt the solution themselves. In agreement with Midgley and Dowl-
ing (1978), he found that the people who were early in adopting a
solution (those with a low threshold) were most influential in causing
bandwagons in a population. However, if a group of innovators are
relatively isolated from the rest of the population, they may have no
global impact at all. Therefore it is important to also consider the paths
through which an innovation can spread (Chwe, 1999).

Social Network Analysis

The structure of social networks has been shown to be critically
important in determining innovation spread and is central to our

experiments. By considering the social network structure in the
propagation of innovations, not only can one be more specific
about the social context, but one also benefits from the tools
developed for network analysis. The properties of network struc-
tures have been studied in many different arenas, including neural
networks, actor collaboration networks, power grids (Watts &
Strogatz, 1998), scholarly citation practices (Newman, 2001), met-
abolic networks (Jeong, Tombor, Albert, Oltvai, & Barabadsi,
2000), Web links (Albert, Jeong, & Barabdsi, 1999), and many
more. A wide range of descriptive statistics has been developed to
describe the global properties of these networks. These properties
are usually defined in terms of nodes, which are the units or actors
in a network, and edges or ties, the connections between them. The
degree of a node is the number of edges connecting that node to
other nodes. The degree of a network is the average degree of all
nodes. The geodesic path length is the smallest number of nodes a
message needs to go through to reach another node. Average
shortest path lengths in networks—even large, randomly con-
nected networks—are oftentimes surprisingly short. This property
has been popularized as the notion of “six degrees of separation”
connecting any two people in the world and has been experimen-
tally supported (Milgram, 1967).

Erdos and Rényi (1959) were the first to thoroughly describe the
properties of random networks, in which edges between nodes are
generated such that nodes i and j are connected with some prob-
ability p. When family members draw names from a hat to decide
who will exchange gifts with whom, they create a random “giving”
network. Random networks tend to have a small average geodesic
path length. More formally, the average path length connecting
two randomly selected nodes in a random network is In(N)/In(K)
where N is the number of nodes and K is the degree of each node.
A random network lacks spatial structure.

The network structure with the most spatial structure is a com-
pletely regular network, such as a lattice or a ring, in which the
arrangement of edges form a pattern like a crystal, with distinct
local neighborhoods. Messages passed in the game of telephone
travel through a ring network, which is a kind of regular network.
In regular lattices, the average shortest path required to connect
two individuals requires going through N/2K other individuals.
Thus, the paths connecting people are much longer, on average, for
lattice than random networks.

Watts and Strogatz (1998) demonstrated that by starting with a
regular structure such as a lattice and randomly rewiring a small
number of connections, the resulting small-world network has a
low average path length but still maintains a mostly regular struc-
ture. This is because nodes that are connected to the same node
tend to be spatially close themselves, but the rewired connections
act as shortcuts. From an information-processing perspective, then,
these are attractive networks because the spatial structure of the
networks allows information search to proceed systematically, and
the shortcut paths allow the search to proceed quickly (Kleinberg,
2000).

Wilhite (2001) used a computer simulation to compare market
trading over various network structures. In one condition, all
agents were allowed to negotiate trade with any other agent. In
another, most agents could only trade locally, but a few could trade
globally (i.e., outside of the local clique). In this latter small-world
network, the market reached Pareto equilibrium (i.e., the state
where no more trades that mutually benefit both traders can be
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made) even faster than in the condition where everyone could trade
with everyone. The local structure of the network constrained the
search space, but the shortcuts allowed good trades to pass quickly
through the group. This illustrates the benefit of small-world
networks for the dissemination of information.

How these different network structures affect the propagation of
innovations is the focus of our research. As noted, the structural
properties of these networks constrain the manner and speed with
which information can spread through them. Kennedy et al.,
(2001) created a variation of their particle swarm model where the
agents were connected in a network, and the information about the
best location encountered by each agent was shared only over the
network ties. They compared a circle topology, in which the agents
were connected in a ring, to a wheel topology, in which one agent
was a hub and all other agents were spokes, connected only to the
hub. In their model the hub in the wheel actually slows down the
transmission of information, because if multiple spokes have
roughly similar solutions, only one of those is chosen by the hub
and shared with the other spokes. They found that in most problem
spaces the circle topology found the best solution the fastest, but in
a problem space with many local maxima and only one global
maximum (the Rastrigin function), the wheel performed the best.
Their explanation was that the wheel configuration increased ex-
ploration because of the slow communication of solutions between
agents. They also noted that the fully connected topology per-
formed best or nearly best on all of the functions, although the
agents did not explore multiple regions simultaneously when fully
connected.

There are few studies that use actual human behavior in groups
while manipulating the communication network. Latané and col-
leagues (Latané & Bourgeois, 1996; Latané & L’Herrou, 1996)
have studied the spread of influence through social networks
passing information through e-mails. Latané and colleagues’ work
focuses exclusively on purely judgmental issues. Bavelas (1950)
and Leavitt (1951) were two of the first researchers to study group
performance in networks, noting that the communication structure
of a group could aid or inhibit the ability of the group to find a
solution to a problem. In the tasks they studied, the group was
working cooperatively on a problem. With innovations, however,
each individual is typically trying to find his or her own best
solution to a problem, and then subsequently individuals can
choose to imitate good previous solutions.

The studies reported in this article tie together research on the
diffusion of innovation in real groups (e.g., Burt, 1987; Ryan &
Gross, 1943), social psychological research on imitation and in-
fluence (Cialdini & Goldstein, 2004; Sherif, 1935), computational
models of group behavior (Axelrod, 1997; Kennedy et al., 2001;
Nowak, Szamrej, & Latané, 1990), and research on the flow of
information through networks (Kleinberg, 2000; Latané &
L’Herrou, 1996). By comparing the effect of the communication
network structure on the propagation of information when humans
are faced with the decision to explore the problem space or exploit
good solutions to different problems, we hope to integrate and
extend these diverse areas of research.

Our Paradigm

In choosing a paradigm for studying information dissemination,
we sought to find a case with (a) a problem to solve with answers

that varied continuously on a quantitative measure of quality, (b)
a problem search space that was sufficiently large that no individ-
ual could cover it all in a reasonable amount of time, and (c) simple
communications between participants who would be amenable to
computational modeling. We settled upon a minimal search task in
which participants guess numbers between 0 and 100 and the
computer tells them how many points were obtained from the
guess. There was a continuous function that related the guesses to
the points earned, but this function was not revealed to the partic-
ipants. Additionally, random noise was added to the points earned,
so that repeated sampling was necessary to accurately determine
the underlying points obtainable from a guess. The participants
received information on their own guesses and earned points, as
well as obtained information on their neighbors’ guesses and
outcomes. In this way guesses are like solutions to a problem, and
good solutions—innovations—can be roughly imitated for
roughly similar results.

Examples for a group of 10 participants in each of the network
structures that we compared are shown in Figure 1. Circles indicate
participants, and lines connect participants who directly exchange
information. Notice that three of the networks have a total of 12
connections between participants. Thus, if there is a difference in
information dissemination in these networks, then it must be due to
the topology, not density, of the connections. We also tested, in
addition to these three network structures, a fully connected net-
work (also called a “complete graph” in graph theory), in which
everyone had access to the guesses and scores of everyone else.

In a series of three experiments, we compared the different
network structures’ performance on different kinds of problem
spaces. In the first study, we present participants with two equally
good solutions and examine the amount of bandwagoning—the
degree to which participants imitate each other’s solutions—in the
different networks. We predict the fully connected network, with
immediate transfer of information and a greater amount of infor-
mation than in the other networks, will have more bandwagoning

Regular Lattice

Fully Connected

Random Small World

Figure 1. Examples of the different network structures for groups of 10
participants. Circles represent participants, and lines indicate communica-
tion channels.
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than the other networks. In the following two studies, we focus on
the ability of the groups to find the best solution in problem spaces
that varied in difficulty. We hypothesize that the most efficient
network structure will depend on the difficulty of finding the best
solution because of the different information diffusion properties
of the different networks. We expect groups in fully connected
networks, because of the immediate spread of information, to
outperform groups in the other networks on problems with a
single, easy-to-find solution. For harder problems, with locally
good but globally suboptimal solutions, we predict a need for a
balance between the fast spread of information and local structure,
so we expect the small-world network will outperform the other
networks. For very difficult problems, with particularly hard-to-
find solutions, we expect continued exploration to be necessary,
and therefore the lattice network (similar to the circle topology
used in Kennedy et al., 2001), with its slow spread of information,
may be the best network for the problem solvers.

We examined several measures of search performance to com-
pare the different network structures on the different payout func-
tions. The functions we used in all studies were based on a
multimodal Gaussian function, so that approximations to the best
solution earned close to the best payouts. A person guessing within
0.5 SD of the best solution was considered sufficiently close to be
“within” the maximum. To illustrate, in a unimodal payout func-
tion with a maximum of 40 and standard deviation of 12, a
participant can be said to have reached the maximum if he or she
guessed between 37 and 43. On the basis of this criterion of
success, we could then look at how quickly group members found
the best solution, the average proportion of participants guessing in
the maximum, and (for Study 1, described later) the amount of
bandwagoning in the various networks. We also were interested in
how tightly clustered the group members’ guesses were, as an
indication of whether participants were making similar guesses,
and how volatile the group members’ guesses were, as an indica-
tion of how much participants were exploring the problem space.
The measures we used and their purposes are listed in Table 1.

Study 1

Before comparing the effect of network structure on group
performance, it seems reasonable to consider how much confor-
mity would be evidenced independent of the quality of solutions.
Completely rational beings could engage in bandwagon behavior
even where there is no objective difference between solutions
(Banerjee, 1992), but it is not known how network structure could
affect this behavior. To this end, we created a bimodal payout
function with two equal maxima (see Figure 2) to see if and when
participants would largely converge on the same solution even
though there is no advantage for either maximum over the other.

Table 1
Dependent Measures and Their Meanings

We expect the most bandwagoning to happen with networks that
allow rapid dissemination of information. These are the networks
with the shortest average path length—the fully connected net-
work—followed by the small-world and random networks.

Method

One hundred sixty-four Indiana University undergraduate stu-
dents participated for partial course credit. There were 13 groups
that ranged in size from 5 to 17 people (depending on the number
of students signing up for each session) with a median of 10 people
per group. Due to a programming error, when a participant acci-
dentally exited the program in the middle of a session, the gener-
ation of the remaining networks was corrupted, making all of the
data for these groups unusable. The number of participants and
groups reported in each study do not include these groups with
corrupted data. Each session was run in a computer laboratory with
20 client computers used by the participants and one server oper-
ated by the experimenter. Participants signed on to their computer
and gave themselves a handle or were assigned an ID. Once all
participants had signed on, the experimenter started the session and
the following instructions appeared to each of the participants:

Thank you for participating in this experiment on how ideas move
from person to person in a social group. Your task is to try to
accumulate as many points as possible. On each trial, you will type in
a number between 0 and 100, and the computer will tell you how
many points your number receives. There is a systematic relationship
between the number you put in, and the points you receive, but the
relationship will often be difficult for you to understand. Every time
you type in the same number, it will be worth about the same number
of points, but there may also be a bit of randomness added in to the
earned points. Usually, numbers that are close to each other will
receive similar points. At the end of each block of trials, you will be
told how many points you earned, and how many points people earned
in general.

In addition to telling you how many points your guess was worth,
after each round of guesses, the computer will show you what num-
bers other people guessed, and how many points those guesses earned.
You can use this information to help you decide what number to guess
on the next round. Other people will also see the number that you
entered, and how many points you received.

After participants read this, the controlling program created the
network structure for the first of eight problems. Each problem
consisted of 15 rounds in which participants had 20 s to guess a
number between 0 and 100. When a round ended, the guesses were
sent to the server, which would calculate each participant’s score
(which was always between 0 and 50), add normally distributed
noise with a mean of 0 and standard deviation of 5, and return the
feedback. This began the next round, and participants now had

Dependent measure

Meaning

Average steps to guess in global maximum

Average proportion of group guessing in global maximum

Relative entropy (Kullback—Leibler)
Volatility

Average speed of finding best solution
Overall convergence on best solution
Clustering of guesses over range
Amount of exploration
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Figure 2. Study 1: An example of the equal bimodal payout function.

available their guess and score from the previous round as well as
a list of their neighbors’ IDs, guesses, and scores while they
decided on their next guess (see Figure 3). At the end of the 15th
round, participants were given feedback on their score and a
message indicating the next problem would begin shortly. After
15 s, the server created a new network structure and began the next
problem. We generated a fixed random ordering of the payout
functions and network structures (see Table 2) that was counter-
balanced with the reverse order between groups. Thus, the order-
ing of the payouts and networks was partially balanced, but due to
the small number of groups we were not able to adequately assess
the effects of the ordering. Participants searched, in addition to the
bimodal payout function, a problem space with an easy-to-find
local maximum and a hard-to-find global maximum (see Table 2).
The results from this exponential problem space are not reported
here because the global maximum was too hard to find—no one
found it in any of the groups. The payout functions were all based
on a multimodal Gaussian function', and the positions of the
maxima were different for each problem. The network structure for
each problem was either full, lattice, small world, or random,
similar to those in Figure 1 but constructed for the different sized
groups as explained below.

To create a network, the server takes all of the client computers
and treats each as a node. For the random network, the server
creates a number of edges equal to 1.3 times the number of nodes.
These edges connect randomly selected nodes under the constraint
that a path exists between every node (i.e., that the graph is
connected). This is conceptually equivalent to the algorithm pro-
posed by Molloy and Reed (1995) for generating random networks
with a predefined degree distribution. For the lattice network, the
server connects the clients in a ring and then randomly picks 30%
of the nodes and connects each of these nodes to a neighbor two
steps away. For the small-world network, the server begins by
placing the clients in a ring and then picks 30% of the nodes
randomly and adds a connection to another random node under the
restriction that the connected nodes are at least three nodes apart
following the lattice path. These probabilities ensure that the
average degree is equivalent for all of these network structures. For
the fully connected network, the server created edges to connect
each of the nodes to all other nodes, for a total of N(N-1)/2 edges.

Therefore each participant had access to more information in the
fully connected network than in the other three networks.

Our small-world networks are comparable to those generated in
Ahmed and Abdusalam’s (2000) study of percolation in networks.
Our method for generating the small-world networks—unlike
those used to create traditional small-world networks (e.g., Watts
& Strogatz, 1998)—resulted in less clustering because neighbors
of a node were not more likely to be neighbors of each other.
However, they still had a small average geodesic path length and
maintained the regularity of the lattice network. This regularity is
evidenced by the similarly small variance in the degree (the count
of each node’s neighbors) in the small-world (SD = 0.68) and
lattice networks (SD = 0.82) relative to the variance in the random
networks (SD = 1.14).

Analysis

In these studies, the unit of analysis is the group, not the
participants within the group. Therefore we had 13 “subjects,” and
the analyses were four-level (network type) repeated measures
analyses of variance (ANOVAs). We did not include between-
subjects variables such as group size or counterbalance order in the
analysis because there were not enough groups to make the tests
meaningful.

We compared the amount of imitation within a group by using
three measures. First, to measure how clustered the guesses were
on each round, we compared the spread of guesses to a uniform
distribution by using the relative entropy (or Kullback-Leibler?)
statistic. The less the guesses are uniformly spread across the total
possible range of guesses, the higher the relative entropy. If there
is more convergence to a single peak, the guesses will be more
clustered around each other and thus will have higher relative
entropy.

To see if participants were remaining in one peak or were
flipping between the two peaks, we looked at the volatility of the
guesses, which we define to be the average difference in guesses
between rounds for each participant. Higher volatility indicates

! The formula we used to create the payout functions had the following
form:

f(x) — ale*[bulrcl)Jz+aze*[bz(-¥*<‘2)12+a3€*[bwlrt‘x)Jz

where a represents the height of a maximum, b represents the inverse of the
variance around a maximum, and c¢ represents the location of a maximum
in the range of guesses between 0 and 100. For the unimodal function, a,
and a; = 0, and for the needle and equal functions, a; = 0.

2 The Kullback-Liebler is

N
pi

where p; is the actual frequency and g; is the expected frequency of guesses
in each “bin” summed from i = 0 to N, the number of bins that segment
the range of guesses. For our purposes we divided the range of guesses
from 0 to 100 into 20 bins of 5 points each. Thus, if one participant guesses
in each of the 20 bins, the relative entropy will be minimized. If all of the
participants guess in one bin, the relative entropy will be maximized.
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Time remaining: 13

[ | &

ID Guess Score
me 45 36.12
Player 1 39 45.69
Player 2 95 4.17

Player 3 52 29.02

Figure 3. Participant’s view of the experiment after making a guess.

more exploration, so as participants converge on a solution, vol-
atility is expected to decrease.

Our third measure of imitation is the difference in the number
of participants guessing within 0.5 SD of each of the maxima.
As it was possible for some group members to be guessing
outside of either maximum, this difference was normalized by
the total number of people guessing within both of the peaks.
With this measure of bandwagoning, if there were an equal
number of participants in each of the maxima, the difference
would be zero. However, if participants were following the
crowd and mostly guessing in one of the maxima, this statistic
would be close to one. When there were no participants guess-
ing in either peak, we set the value to zero (this occurred in only
five cases).

Results

The first measure of conformity we report is relative entropy.
There was a significant effect of the network structure, F(3, 36) =
3.18, p < .05, on entropy. The fully connected network was the
most clustered (M = 1.71, SD = 0.42), followed by the lattice
network (M = 1.67, SD = 0.41), with the random (M = 1.53,
SD = 0.43) and small-world (M = 1.48, SD = 0.44) networks
being the least clustered. Our hypothesis was that the fully con-
nected network would be most clustered because of the instanta-
neous transmission of information and because of the additional
available information. It is unclear why the lattice network also
had a high degree of clustering.

Contrary to expectations, the volatility did not differ signifi-
cantly between networks. As a reminder, the volatility is the

average difference between individuals’ guesses across all rounds
for each group. The small-world network had the greatest amount
of volatility (M = 6.46, SD = 2.31), and the lattice network had
the least (M = 4.26, SD = 1.56), with the fully connected and
random networks having roughly equivalent volatility (full: M =
5.32, SD = 3.33; random: M = 5.34, SD = 1.53).

Finally, we looked at our measure of conformity, the bandwag-
oning measure. The differences between networks was very reli-
able, F(3, 36) = 4.62, p < .01. As predicted, the fully connected
network had a much higher degree of bandwagoning (M= 0.76,
SD = 0.30) than did the other networks (lattice: M = 0.59, SD=
0.34; random: M = 0.53, SD= 0.34; small world: M = 0.50, SD=
0.33). We submitted these differences to post hoc comparisons
with Tukey’s HSD adjustment and found the fully connected
network was significantly different from the small-world network,
1(13) = 3.81, p < .05, and none of the other networks were
different from each other.

Discussion

There are many reasons why participants would converge on
the same maximum when there are other equivalent solutions.
People could be conforming due to normative pressures (Deutsch &
Gerard, 1955), although this experimental paradigm minimizes
their influence, especially in the sparse network structures in which
participants received feedback from only a few neighbors. In this
case, participants most likely latched onto each other’s solutions
because of the perceived advantage. Once one of the two maxima
had a number of participants in it, the probability increased that
one of the participants would get a higher score due to noise, so
other participants were more likely to see that high score and
imitate the solution. In the fully connected network, because
everyone had the same information, people tended to converge
rapidly to whatever solution was found to have the highest score
first. For the small-world network, the highly regular spatial struc-
ture and short path lengths more often led to different subgroups
guessing in each of the maxima. The random noise added to the
scores on each guess led to more switching between the solutions
for the small-world network (as evidenced by the higher volatility
and low bandwagoning) because the occasional higher score from
one subgroup could quickly pass to another subgroup.

Table 2
Order of Network and Payout Functions in Studies 1-3
Study 1 Study 2 Study 3

Order Network Function Network Function Network Function
1 Lattice Exponential Lattice Unimodal Small world High noise
2 Small world Equal Small world Multimodal Lattice Needle
3 Random Equal Random Multimodal Small world Low noise
4 Full Exponential Full Unimodal Full High noise
5 Random Exponential Random Unimodal Full Needle
6 Lattice Equal Lattice Multimodal Random Needle
7 Small world Exponential Small world Unimodal Full Low noise
8 Full Equal Full Multimodal Small world Needle

Note. The order for half of all groups was the reverse of the order shown here. Cells with bold text are problem spaces not reported in this article.
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Study 2

In this study, we compared two payout functions. The unimodal
function has a single best solution that could be found with a
hill-climbing method (for example, see Figure 4a). This is like
searching for the best guitar to buy in a town with only one guitar
shop. The multimodal function (having multiple local maxima, or
modes) increased the difficulty of the search by introducing local
maxima. A local maximum is a solution that is better than all of its
immediate neighboring solutions yet is not the best solution pos-
sible. Thus, a simple hill-climbing method might not find the best
possible solution. In a town with more than one guitar shop, one
might find the best guitar in one of the stores, but there might be
another shop that has an even better guitar. Figure 4b shows one of
the multimodal functions used; it has three peaks, but one of the
peaks is somewhat higher than the other two.

The participants were reminded that they were to maximize their
points over the rounds. So while exploration might lead to a higher
payoff, the search might also lead to lower points, imposing a cost
in deviating from the best solution found so far. The basic predic-
tion is that this tradeoff in exploration and exploitation will predict
which network will be optimal for which problem space. In the
unimodal problem space there is no benefit to increased explora-
tion after one has found the locally best solution, because the
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Figure 4. Study 2: Examples of the (a) unimodal and (b) multimodal
payout functions.

locally best solution is also the globally best solution. Therefore,
those networks that have the fastest dissemination of information
are expected to perform best. These are the ones with the shortest
path length—the fully connected network, followed by the small-
world and random networks. However, in the multimodal problem
space, too much reliance on the currently best available informa-
tion could cause premature convergence on a local maximum. For
this reason we predict the small-world networks will be best fit to
this type of problem space, as they have fast transmission of
information but also local structure that encourages hill-climbing
search and prevents bandwagoning behavior, as shown in Study 1.

Method

One hundred fifty Indiana University undergraduate students
participated for partial course credit in nine groups ranging in size
from 7 to 18 people, with a median of 10 people per group. The
procedure was the same as in Study 1, except that participants
searched both unimodal and multimodal problem spaces. Again, a
fixed random ordering of the payout functions and network struc-
tures was counterbalanced with the reverse ordering between
groups (see Table 2). In this study we directly compared perfor-
mance between networks and problem spaces. The design of this
experiment was a 4 (network structure; within-subjects) X 2
(problem space; within-subjects) repeated measures design.

Results

Our first performance metric is the speed of convergence, de-
fined as the average number of rounds that group members took to
guess within 0.5 SD of the global maximum (this was set to 15, the
number of rounds, if the participant never guessed within the
maximum). The repeated-measures ANOVA revealed that there
was a main effect of the problem space, F(1,24) = 30.4, p < .001,
such that individuals were much faster at finding the global max-
imum in the unimodal problem space (M = 3.89, SD = 1.62) than
in the multimodal problem space (M = 6.44, SD = 3.04). This is
to be expected, as the unimodal function was designed to be an
easier search problem than was the multimodal function. There
was also a main effect of the network, F(3, 24) = 3.91, p < .05,
indicating that the structure of the network affected the speed of
convergence. Post hoc comparisons with Bonferroni correction
showed that individuals took marginally significantly longer on
average to find the global maximum in the lattice network (M =
6.65, SD = 3.88) than they did in the fully connected network
(M = 4.46, SD = 2.25), #(8) = 2.95, p < .06, and the small-world
network (M = 4.43, SD = 1.6), #(8) = 2.98, p < .06.

Most importantly, the within-subjects analysis showed an inter-
action between the network type and problem space on the time to
find the global maximum, F(3, 24) = 3.98, p < .05, shown in
Table 3. It is interesting that in the unimodal problem space,
individuals in the fully connected network were the fastest to
discover the global maximum, while in the multimodal problem
space, those in the small-world network were the fastest on aver-
age to find the global maximum. Post hoc comparisons with
Bonferroni corrections showed that in the unimodal problem
space, only the fully connected network was marginally signifi-
cantly faster than the slowest (lattice) network, #8) = 2.91, p <
.06, while in the multimodal problem space, only the small-world
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Table 3
Comparison of Group Performance in Unimodal and
Multimodal Problem Spaces

Average rounds to find
global maximum (SD)

Average percent in
maximum (SD)

Network Unimodal ~ Multimodal Unimodal Multimodal
Full 3.08 (1.07) 5.83(2.32) 74.9(10.66) 50.6(16.51)
Lattice 479 (2.26)  8.51(4.38) 56.77(22.9) 38.8(29.24)
Small world  4.18 (1.64)  4.69 (1.61) 70.25 (13.35) 55.94 (17.54)
Random 3.51(0.81) 6.73(2.10) 72.05(9.77)  42.08 (18.83)

network was significantly faster than the slowest (lattice) network,
#(8) = 3.4, p < .05.

Our second performance metric was the average proportion of
individuals guessing in the global maximum over all rounds. This
measure is higher when the group members not only find the
maximum quickly, but also continue to guess within the global
maximum. This requires the participants to diminish or extinguish
their exploration of the space after finding the global maximum.
The repeated-measures ANOVA of this variable revealed the ex-
pected main effect of problem space, F(1, 24) = 37.3, p < .001,
where the proportion of individuals guessing in the global maxi-
mum on average in the unimodal problem space (M = 0.685, SD=
0.161) was significantly more than those in the multimodal prob-
lem space (M= 0.469, SD= 0.213). Additionally, there was a main
effect of network on the average percent in the global maximum,
F(3,24) = 4.55, p < .05. As with the speed of convergence, post
hoc comparisons with Bonferroni correction showed that a smaller
proportion of people in the lattice network guessed in the global
maximum on average (M= 0.478, SD= 0.271) than in the fully
connected network (M = 0.627, SD = 0.184), #(8) = 3.15, p <
.05, and the small-world network (M = 0.63, SD = 0.168), #(8) =
3.23, p < .05.

Most importantly, there was a marginally significant interaction
between the network and the problem space, F(3,24) = 2.81,p <
.07, also shown in Table 3. The analysis of the proportion guessing
in the global maximum corroborates the analysis of the average
number of rounds to find the global maximum. In the unimodal
problem space, the fully connected network had the highest pro-
portion guessing in the global maximum, while in the multimodal
problem space, the small-world network had the highest propor-
tion. Post hoc comparisons reveal that in the unimodal problem
space, the lattice network had a significantly smaller proportion of
participants guessing in the global maximum than did all three
other networks: full: #8) = 3.98, p < .02; random: #8) = 3.35,
p < .03; small world: #8) = 2.957, p < .06. In the multimodal
problem space, however, only the small-world network had a
marginally significantly greater proportion of participants guessing
in the global maximum than did the lattice network, #8) = 2.67,
p < .09.

The effects of network and problem space on speed of conver-
gence and proportion guessing in the maximum can be visualized
with a plot of the proportion guessing in the global maximum over
rounds (see Figures 5a and 5b). In the unimodal problem space
(see Figure 5a), all networks except the lattice converge quickly on
the maximum. In the multimodal problem space (see Figure 5b), it

takes longer for all networks to find the maximum and the overall
convergence is less, but the small-world network is faster than all
of the other networks.

We were also interested in the degree of clustering in the
different networks and problem spaces. The relative entropy
largely mirrored the speed of convergence and percent guessing in
the maximum. There was a main effect of the problem space on
relative entropy, F(1, 24) = 20.18, p < .005, such that the
clustering was much higher in the unimodal problem space (M =
1.71, SD = 0.33) than in the multimodal problem space (M = 1.49,
SD = 0.37). This was expected, as people had an easier time
finding the maximum and converged more in the unimodal prob-
lem space than in the multimodal problem space. There was also
a marginally significant main effect of network on relative entropy,
F(1, 24) = 2.56, p < .08. The lattice network had less clustering
(M = 1.51, SD = 0.4) than did the other networks, with the fully
connected network having the highest clustering (M = 1.65, SD =
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Figure 5. Study 2: Percent of participants within 1 SD of the global
maximum on each round in the (a) unimodal and (b) multimodal payout
function.
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0.34), followed by the small-world network (M = 1.62, SD =
0.36) and the random network (M = 1.6, SD = 0.36).

There was also a significant interaction between the problem
space and the network on relative entropy, F(3, 24) = 5.72, p <
.005. In the unimodal problem space, the fully connected network
had the most clustering (M = 1.81, SD = 0.29) and the lattice
network had the least (M = 1.5, SD = 0.39), with little difference
between the small-world (M = 1.76, SD = 0.31) and the random
networks (M = 1.76, SD = 0.27). In the multimodal problem
space, however, there was almost no difference between the net-
works. The lattice network had the highest relative entropy (M =
1.53, SD = 0.44), followed by the fully connected (M = 1.50,
SD = 0.32) and the small-world network (M = 1.48, SD = 0.37),
with the random network having the lowest relative entropy (M =
1.45, SD = 0.39).

There were no main effects of network or problem space on the
volatility of guesses, but there was a significant interaction be-
tween the two, F(3,24) = 6.93, p < .005. In the unimodal problem
space, the fully connected network had the lowest volatility (M =
3.73, SD = 1.43), followed by the random network (M = 5.19,
SD = 0.85) and the small-world network (M = 6.0, SD = 1.44),
with the lattice having the highest volatility (M = 7.82, SD =
4.14). In the multimodal problem space, the pattern was very
different: The lattice had the lowest volatility (M = 4.43, SD =
1.44), followed by the small-world network (M = 4.98, SD =
1.87) and random network (M = 5.12, SD = 1.36), with the fully
connected having the highest volatility (M = 6.28, SD = 1.4).

Discussion

When there was only one good solution—when the payout
function was unimodal—there was a direct relationship between
the average shortest path length and the speed with which the
group converged on the best solution. In this case, the fully
connected network converged more quickly than did the other
three networks. The lattice network took longer to converge on the
best solution because the advantageous innovations had to work
their way through longer chains of people, and only about half of
the group members converged on the maximum.

When the problem space had multiple good solutions that were
nonetheless suboptimal, the story was different. In this case the
small-world network groups tended to find the best solution faster
and converged on the global maximum more robustly than did
every other network—even the fully connected network, in which
everyone had complete information about every other participant’s
guesses and scores. As there is no reason to expect the decision-
making processes of the individuals to change from one network
type to the next, and the type of information presented to them was
the same (neighbors’ guesses and scores), the differences between
the network types must be due to the information transmission
properties of the networks. The advantage of the small-world over
the fully connected network is akin to a novel group-based form of
the “less is more” effect reported in individual decision-making
literature (Gigerenzer & Todd, 1999).

This somewhat counterintuitive result—that limiting the avail-
able information might actually improve a group’s perfor-
mance—is a result of the way the groups were searching the
problem space. In the fully connected network, participants would
often latch onto the first good solution that was found, and this was

the best solution only one third of the time. When the group
converged prematurely on a local maximum, it took longer for an
adventurous (or bored) participant to explore and find the globally
best solution. In the small-world network, however, the partici-
pants were segregated by the regular, latticelike connections, but
the information could travel quickly through “shortcuts,” allowing
for different locally connected groups to explore different regions
of the problem space. Thus, while one locally connected group
might latch onto a local maximum, the small-world topology
decreased the probability that everyone would follow their lead
before another subgroup found the global maximum.

Study 3

In Study 2, the global maximum was just as easy to find as either
of the two local maxima. However, in some cases the best solution is
harder to find than other solutions. For instance, the most exclusive
and best restaurant might not be located near any other restaurants or
even have a sign outside! In these cases, prolonged exploration of the
problem space can result in a higher payoff than does rapid conver-
gence on an easy-to-find but suboptimal solution. As with the multi-
modal payout function, networks with a well-defined spatial structure
will allow continued exploration. However, with a hard-to-find prob-
lem, even more exploration may be necessary before groups con-
verge, and so networks with long path lengths (such as the lattice
networks) may be more successful in finding the best solution than
would the other networks. To examine this situation, we created a
bimodal payout function (hereafter referred to as the “needle” func-
tion) with one wide local maximum and one thin, hard-to-find global
maximum (see Figure 6).

Method

One hundred fifty-seven Indiana University undergraduate stu-
dents participated for partial course credit in 10 groups ranging in
size from 7 to 19 people, with a median of 12.5 people per group.
The procedure was the same as in Study 1 and Study 2, except for
using the needle payout function instead of the bimodal, unimodal,
or multimodal functions. As in Study 1 the experiment was a
four-level (network structure), within-subjects design. In addition,
these groups searched a bimodal problem space with a global
maximum in which we varied the random error on the feedback
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Figure 6. Study 3: An example of the “needle” payout function.
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(see Table 2), not reported here. All analyses were repeated-
measures ANOVAs unless otherwise reported.

Results

In the needle payout function, the global maximum has a small
range (guesses in the neighborhood of the global maximum
yielded a positive score only when within two guesses of the
maximum), so the longer that participants explore, the more likely
one of them is to find it. Unfortunately, this also means that
participants may be unlikely to find it at all, which limits the power
of the analyses. In fact, the number of groups in which any
participants found the maximum was small. In the lattice network,
7 of the 10 groups had at least one participant who found the
maximum, while in the fully connected and random networks only
4 of the 10 groups found it, and in the small-world network only
3 of the 10 groups found it. Thus, it is difficult to make strong
statistical conclusions on the basis of the limited number of groups
that successfully found the needle in the problem space.

We predicted that the more spatially segregated networks would
be more likely to find the needle, and that seems to be the case, as
the groups in the lattice network were more likely to find the
maximum. This can also be seen in the average proportion of
participants in the global maximum over all rounds. The lattice
network had the highest average (M = 0.21, SD= 0.25), followed
by the fully connected network (M= 0.17, SD= 0.23), with the
small-world (M= 0.1, SD= 0.17) and random (M= 0.08, SD=
0.18) networks trailing behind. Because of the small number of
participants who found the maximum at all, however, this differ-
ence was not significant, F(3, 27) = 0.85.

This pattern is even more dramatic when focusing on the final
proportion of participants in the global maximum. In the last
round, groups in the lattice network had on average 41.9% of
participants in the global maximum (SD = 37.3), compared with
just 27.5% in the fully connected network (SD = 36.5), 19.5% in
the small-world network (SD = 31.6), and a mere 14.8% in the
random network (SD = 31.1). Unfortunately, even this large
difference was not statistically reliable, F(3, 27) = 1.48. Looking
at the progression over time, we concluded that the lattice network
clearly has the predicted advantage. As can be seen in Figure 7a,
the proportion of participants in the lattice network guessing in the
global maximum is steadily increasing over rounds, and at a faster
rate than that of any other network. The picture is even sharper
when looking at the proportion guessing in the local maximum
(see Figure 7b). Most participants in the lattice network guess in
the local maximum initially, but over time the proportion is
steadily decreasing, unlike with the other networks. This could
suggest that over time the likelihood of an individual finding the
global maximum increases and that the information about the
location of that maximum slowly percolates through the network.

The difference in the clustering of the guesses was reliably
different between networks, F(3, 27) = 10.41, p < .001. The fully
connected and lattice networks had much higher relative entropy
(M = 1.8, SD = 0.29, and M = 1.72, SD = 0.34, respectively)
compared with the small-world network (M = 1.48, SD = 0.18) or
the random network (M = 1.27, SD = 0.4). This indicates that the
fully connected and lattice networks had higher clustering, but
when taken together with the results of the proportion guessing in
the global versus local maxima, it indicates that the lattice network
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Figure 7. Study 3: Percent of participants within 0.5 SD of (a) the global
maximum (the “needle”) and (b) the local maximum.

was more often clustered in the global maximum rather than in the
local maximum.

Discussion

The payout function used in Study 3 represents situations in
which a problem has (a) a precise best solution that is not easily
approximated and (b) a lesser solution that is easy to roughly
imitate. In this study, neither the fully connected nor small-world
network performed best. In fact, there was a trend for the lattice to
be the best performing network. This is surprising because the
lattice network was the worst performing network for the easier
problem spaces. The pattern of results could suggest this is due to
the increased exploration engendered by the long path lengths and
local, spatial neighborhoods preserved in the lattice networks, or
conversely, the increased probability of the other networks to
converge on the suboptimal local maximum.
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General Discussion

In these studies, participants searched a problem space as a
group, sharing information about solutions by way of various
social network structures. The work reported here provides addi-
tional evidence that diffusion of innovation in groups is strongly
affected by the structure of the communication channels available
to members of the group. More importantly, it shows that different
network structures are best fit to different problem spaces.

As expected from previous research, participants tended to
converge on a single solution in a problem space with two equally
good solutions, indicating a tendency to bandwagon even when
there are two optimal solutions. This bandwagoning behavior
occurs even when normative social influence is minimized by
providing anonymity and eliminating communication outside of
the guesses and scores. Network type moderated this effect; fully
connected networks had the most bandwagoning, and small-world
networks had the least.

In a unimodal problem space, where there is a single best
solution that is better than all similar solutions, the best network
structure is one in which information about good solutions travels
as quickly as possible in a systematic way. Among the networks
we studied, this was achieved to the greatest extent in the fully
connected networks, followed by the small-world networks.

The needle problem space—in which there are two locally
optimal solutions, one of which is easy to find but not as good as
the other, more difficult-to-find solution—showed a different pat-
tern. In this case, a high degree of exploration of the problem space
is beneficial, because it increases the chances that some individual
in the group will find the needle. The network structure with a long
average geodesic path length and highly regular structure will be
slowest to converge on a groupwide solution and therefore will
continue to have group members exploring the problem space.
Although it wasn’t significant, in our study the lattice network
tended to outperform the other networks in the needle problem
space, which was in stark contrast to its poor performance in the
other problem spaces.

In a multimodal problem space, however, neither the lattice nor
the fully connected network performed optimally. In these problem
spaces, there were three solutions that were better than all other
solutions, but only one was globally the best. In this case, rapid
convergence as seen in the fully connected network can lead to a
locally good but globally suboptimal solution, but prolonged ex-
ploration as found in the lattice network only reduces the speed
and extent of convergence of the group. In this case, the best
performance tended to be in the small-world network, which
possesses both preserved spatial neighborhoods and long-distance
connections.

It appears as though the fit between a given network structure
and a problem space depends on the amount of exploration re-
quired by the network. For the network structures we studied, the
lattice promotes the most exploration, followed by the small-world
and random networks, with the fully connected network producing
the least exploration. The needle payout function requires the most
exploration to find the global maximum, followed by the multi-
modal and then the unimodal. Given the tradeoff between explo-
ration of a problem space and exploitation of good solutions
(Holland, 1975; March, 1991), this tradeoff seems to be highly
relevant to the ability of a group to succeed at our task.

Lazer and Friedman (2005) used an agent-based computational
model to compare the performance of various networks when
group members are searching different problem spaces for the
globally optimal solution. In this case, the agents are searching an
“NK” problem space, in which each digit in a string of N numbers
is dependent on K other digits for computing the contribution of
that digit to the score of the string. In this way, by varying K
relative to N, the “ruggedness” of the problem space can be
manipulated. When K is zero, the problem space has a single
maximum. When K = N — 1, the performance of any single
solution offers no information about adjacent solutions. In between
these values of K, there is a gradient between adjacent solutions,
but the entire problem space has local maxima as well as a global
maximum. In their simulation, agents started out with a random
string and either imitated their neighbors in the network if their
neighbors’ scores were better or mutated their string by a digit if
the mutation would result in a higher score.

Lazer and Friedman (2005) then compared the performance of
the group as whole with respect to convergence on the global
maximum, varying the communication network structure between
agents and the ruggedness of the problem space. As expected, they
found that on simple problem spaces with little or no local max-
ima, networks with smaller average path lengths, such as fully
connected networks and small-world networks, converged on the
globally optimum solution most quickly. They also found that
networks with slow transmission of information, such as lattice
networks, engendered more exploration and therefore in the long
run ended up outperforming the fully connected and small-world
networks in more “rugged” problem spaces by finding and con-
verging on a better solution, supporting our conclusions.

One possible extension of this work is to model the decision
strategies that individuals within the groups are using when ap-
proaching the task. We expect that participants have essentially
four pieces of information that could be influencing their guesses:
their last guess, their best guess, their neighbors’ last best guess,
and their neighbors’ best guess. By categorizing participants’
guesses as falling within a certain range of each of these sources of
information, we can estimate the relative influence of each of these
sources, and when a guess falls outside the range of any of these
sources of influence, we can say the participant is exploring.
However, there is also ambiguity in the data, as a single guess may
be categorized as influenced by multiple sources of information,
which makes it difficult to differentiate the strategies. Nonetheless,
a preliminary analysis shows that, as would be expected, the
amount of exploring decreases as time proceeds, and this varies
according to the network and problem space. Future computational
modeling could have agents using these different strategies in
different networks to compare against the observed distribution of
guesses and performance of the networks in the different problem
spaces.

Research on the benefits of network structure on the flow of
information has often focused on the positive properties of small-
world networks, such as the spatial structure and short path lengths
(Kleinberg, 2000; Wilhite, 2001). The results of our research cast
this view in the wider perspective of fit between network structure
and problem space, highlighting the importance of exploration
versus imitation. Broadly speaking, these results have implications
for many different areas of study. For research on group perfor-
mance and organizational psychology, this highlights the impor-
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tance of the communication patterns within a group with respect to
the type of problem being approached by the group. For example,
when working on solving a problem for which the solution is
presumably difficult to find, research and development programs
in organizations may benefit by limiting the communication be-
tween researchers. For sociology and cultural psychology, the
different amount of bandwagoning with respect to network struc-
ture and size is important. Additionally, the results speak loosely to
the advantages and disadvantages inherent in the increased infor-
mation transmission afforded by the Internet. While good ideas
may spread quickly through the broad Internet network, it may
result in too little diversity in ideas, or in the rapid spread of
suboptimal ideas.

Ultimately, the paradigm developed here can be used to study
the problem-solving abilities of groups under a wide range of
conditions. For instance, different communication structures—
such as scale-free networks, which are increasingly observed in a
wide range of real networks (Barabdsi & Albert, 1999), or hierar-
chies, which are interesting because they are a typical organiza-
tional structure—could be tested. Additionally, different problem
spaces—including multidimensional and dynamically evolving
problem spaces—remain to be explored. It seems reasonable to
predict that a network structure that permits a group to quickly
converge upon a solution may be less fit when the problem space
changes.
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