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Abstract 

This paper explores the hypothesis that schematic 
abstraction—rule following—is partially implemented 
through processes and knowledge used to understand motion. 
Two experiments explore the mechanisms used by reasoners 
solving simple linear equations with one variable. Participants 
solved problems displayed against a background that moved 
rightward or leftward. Solving was facilitated when the 
background motion moved in the direction of the numeric 
transposition required to solve for the unknown variable. 
Previous theorizing has usually assumed that such formal 
problems are solved through the repeated application of 
abstract transformation patterns (rules) to equations, 
replicating the steps produced in typical worked solutions. 
However, the current results suggest that in addition to such 
strategies, advanced reasoners often employ a mental motion 
strategy when manipulating algebraic forms: elements of the 
problem are “picked up” and “moved” across the equation 
line. This demonstration supports the suggestion that 
genuinely schematic reasoning could be implemented in 
perceptual-motor systems through the simulated 
transformation of referential (but physical) symbol systems. 
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Introduction 
Reasoning over abstractions—schemas, rules with variables, 
or hard to perceive generalities—is a skill which seems on 
its face to require specialized cognitive structures 
(Anderson, 2005; Markman & Dietrich, 2000; Sloman, 
1996). One common conception of this specialized 
architecture is that the human mind operates over a set of 
internal symbols and variables much like external formal 
languages (Anderson, 2007; Fodor, 1975; Marcus, 2001). 
On this perspective, mental structures that perform symbolic 
manipulations are precursors to and ingredients of 
cognition. A frequently articulated alternative to this view is 
that schematic rules may be implemented via non-symbolic 
or incompletely symbolic perceptual manipulations and 
simulations (Barsalou, 1999; Clark, 1998; Dennett, 1994).  

Often, such perceptual symbol systems have been 
conceptualized as simulations of semantic situations picked 
out by a symbolic form or formalism (Barsalou 2008). 
Under this conceptualization, symbol systems such as 
natural or formal languages can play either of two roles. 
First, they might provide the seeds for a perceptual 
simulation of the situation referred to in an utterance (e.g., 

simulating an eagle when reading the word “eagle”, Zwaan 
et al, 2004). The present paper explores a second possible 
mechanism for implementing symbolic reasoning in 
perceptual-motor action that rely on simulating the 
perceptual-motor environment associated with the physical 
form of the notation itself. Recently, it has been suggested 
that formal languages, and mathematical languages in 
particular, often serve as diagrams whose analog physical 
structure relates systematically to mathematical or formal 
truths. Therefore, treating the formal notations as images 
directly suitable for perceptual-motor processing provides a 
way to implement abstract cognition in perceptual-motor 
systems (Dörfler, 2002; Landy & Goldstone, 2007a). 
Naturally, the results of such processes must then be 
translated into the appropriate referent situation. 
Furthermore, symbolic reasoning achieved via the 
perception and manipulation of physical notations must 
respect the constraints of systems which may differ 
substantially from those that would be expected from a 
Language of Thought (Endress, et al, 2005; Landy and 
Goldstone, 2007b; Novick and Catley, 2007; Pothos, 2006). 
In this work, we argue that proofs are often physically 
designed so that they appeal to processing systems typically 
used for dynamic events, and we evaluate one possible 
strategy for solving a standard class of algebra problems 
(“solve for x”) involving simulating the motion of the 
elements of the notation used to express these problems. 

Ways to solve single-variable equations 
Table 1 displays a standard demonstration that the equation 
y*3+2=8 has solution y=2. The justification for lines 2 and 
4 comes from the Euclidean notion that things done to like 
things yield like things, and therefore that if an equation 
  

� 

X =Y  is valid, then the equation   

� 

X  A =Y  A is also 
valid, for any operation   

� 

  or value 

� 

A . 
How are such processes carried out by human reasoners? 

Conceptually, there are (at least) two good strategies for 
solving such problems. In an algebraic solution, a reasoner 
constructs the solved equation shown at the bottom of table 
1, and then uses straightforward arithmetic to generate the 
answer. In the unwind strategy, one starts by finding the 
isolated constant, identifies the next available operation on 
the variable side (+2 in this case), inverts the operation, and 
solves the resulting problem (8-2). One then uses this 
number as the starting point, identifies the next available 
operations on the left, and repeats.  



It is possible to capture both of these processes using 
rewrite rules—essentially an internal resource which mirrors 
our formal understanding of proof. Such a rule specifies that 
if the current expression matches a particular pattern, then a 
particular result may be produced. Such a rule might be 
written as   

� 

X =Y  X + A =Y + A. Rewrite laws are highly 
general constructs, capable of representing any inferential 
system (including simple algebra), represented in any 
physical format. In such an approach to reasoning, learning 
how to solve problems is a largely matter of learning which 
rewrite transformations are legal and appropriate to a 
particular situation. Learning systems that depend on rewrite 
laws operate in a manner that does not depend much on the 
particular representation language a rule is expressed in. 
Such strategies have been employed in attempts to capture 
the axioms of legal mathematical syntax; a similar approach 
has successfully captured many interesting components of 
equation solution (Anderson et al. 2005; note that ACT-R 
uses a production system, rather than a rewrite system. 
Production systems are more general than rewrite systems; 
however, ACT-R models of algebra have employed rewrite-
like productions, so the difference here is minimal). 

A second way to implement an algebraic equation 
solution is to make use of the actual, analog, visual 
properties of the mathematical language rather than the 
abstract formalism (Dörfler, 2002; Landy & Goldstone, 
2007b). Transformations, on this conceptualization, involve 
applying processes used to understand physical space to 
understand mathematical derivations.  Learning the practice 
of mathematical proof is a matter, then, of learning physical 
constraints on the way parts of an equation can move and 
transform, akin to learning physical constraints on the 
motion of real objects. Such strategies will here be referred 
to as “flipbook strategies,” because they assume that the 
cognitive processes that connect and animate successive 
pages of a flipbook also connect successive proof lines. A 
natural flipbook strategy for accomplishing the isolation of 
the variable term in an equation is to treat terms as moving 
across the equation line to the other side. This strategy is 
suggested by the metaphorical contraction of Steps 2 and 3 
in Table 1 as “moving the 2 from the left to right side of the 
equal sign.” We suggest that this strategic language reflects 
literal truth about the resources used to solve such problems; 
these resources might be identical to low-level perceptual or 
motor processes involved in perceiving, imagining, and 

causing real motion in the world, or alternatively they might 
comprise the metaphorical application of high-level 
knowledge about motion events to notational mathematical 
forms (Casasanto and Boroditsky, 2008). These two 
possibilities will not be distinguished in this paper, but will 
both be captured under the general label, “motion strategy.” 
An alternative flipbook strategy is to consider lines as paired 
creation/destruction events. Euclid’s law, in this framing, 
demands that (top-level) creation events be paired across 
equation lines. 

It is worth noticing that different operations create 
different burdens in the unwind strategy. In the equation in 
Table 1, one must remember to subtract 2 from 8 (and not 8 
from 2). In the equation y-3=6, however, one must merely 
remember to add 3 and 6 (regardless of order). The need to 
maintain operand order on problems which display 
commutative operations (and therefore involve the 
computation of non-commutative operations) should make 
the shortcut strategy more difficult on such problems, 
encouraging motion and Euclidean strategies. The operation 
  

� 

  is commutative if A   

� 

  B always equals B   

� 

  A. This is 
compatible with Barsalou’s argument that people only resort 
to perceptual simulations when they are given difficult 
problems that cannot be solved using simple cognitive 
shortcuts based on unstructured association. By both 
accounts, perceptually grounded simulations are employed 
when structure-sensitive responses are required. Perceptual 
processes, in this view, underlie sophisticated, not 
superficial, reasoning. 

If reasoners using formal notations commonly use 
flipbook strategies, this has substantial practical 
implications for our conception of formal reasoning. The 
primary purpose of this paper is not to explore those 
implications in depth, but to lay the groundwork by 
investigating a prediction made by such transformative 
strategies. The question is not whether people 
metaphorically describe formal proofs as temporal events—
they patently do; rather the question is whether that 
metaphorical language affects or reflects actual cognitive 
processes sometimes directly involved in equation solution. 
In this paper, we attempt to selectively interfere with (and 
facilitate) motion strategies by asking participants to solve 
problems presented against a moving background. There is 
no particular reason to expect either the Euclidean or the 
unwind shortcut to be affected by background motion. 

Table 1: Using Euclid’s axioms of equality to isolate y 
Statement Reason 

 Given 

 Subtract 2 from both sides 

 Arithmetic Simplification 

 
Divide both sides by 3 

 
Arithmetic Simplification 

 

 
Figure 1: Illustration of the motion strategy, in 

which the objects in an equation are rearranged via 
continous movements, rather than the sequential 
application of rules. 

 



However, given that motion strategies share processing 
resources with motion recognition, they should be 
selectively affected by actual perceived motion. Motion in 
the same direction as the motion of the variable would be 
expected to facilitate equation solving, while motion in the 
opposite direction should interfere with equation solving 
using the motion strategy. Thus, a moving background can 
be used to reveal the kinds of situations (if any) in which 
people utilize resources dedicated to processing motion, to 
manipulate mathematical expressions. 

Experiment 1 

Method 
Seventy-two undergraduates attending Indiana University 
received partial course credit in exchange for participation. 
One participant was removed from the analysis due to 
extremely poor performance. 

Materials and Procedure: Stimuli consisted of single-
operation algebra problems, expressed in standard 
mathematical notation. In each, one side consisted of a 
single number, between 1 and 36, selected so that there 
would be a wide and relatively uniform range, and so that 
the eventual solution would always be an integer. The other 
side consisted of an expression of the form  

� 

y M , where   

� 

  
was one of the four basic operations (“+”, “-“, “*”, or “/”), 
and M was an integer between 1 and 6. The problems were 
constructed so that the solutions were always positive 
integers. Each participant solved 140 such problems, equally 
divided across operations. In half of each set of problems, 
the variable appeared on the left side of the equation; in 
half, it appeared on the right. Finally, each of these 
conditions appeared equally often across 7 levels of 
background motion horizontal velocity.  

The background was generated with 200 small black 
circles which were position above and below the equation 

line. The circles moved with velocity v = X + C, where X 
was a uniformly distributed random variable in two 
dimensions (ranging from -10 to 10 cm/s), and C was a 
condition-dependent constant horizontal velocity. Seven 
uniformly spaced levels of C were chosen, ranging 
uniformly between strongly leftward (-12 cm/s) to strongly 
rightward (+12cm/s). The overall mean speed of the circle 
motions produced by this equation is not constant; the balls 
moved more quickly when C was very different from 0. 

Participants were given brief written instructions. These 
instructions asked the participants to “solve for y” by 
moving symbols until y was isolated, and to respond by 
typing the resulting value of y into the keyboard. Motion 
language was deliberately used, both because this is a 
standard description of the problem solution, and because 
our goal here was to see whether people employed motion 
resources literally under any circumstances. Future research 
will explore whether instruction priming is necessary to 
induce motion affects.  

Results 
The effect of compatibility of background motion on 
operations of differing commutativity was analyzed with a 
repeated-measures analysis of covariance (ANCOVA) with 
operation and variable side as independent variables and 
expected mean background velocity as the covariate. The 
analysis revealed a marginally significant interaction 
between background motion and variable side (F(1, 
67)=3.98, p<=.05), such that more errors were made when 
the background moved toward the variable, rather than away 
from it. Furthermore, there was a significant three-way 
interaction between variable side, commutativity, and 
background motion, such that the effect of motion 
compatibility was greater for equations displaying 
commutative rather than non-commutative operations 
(F(1,67)=5.75, p<.05; see Figure 2).  

      
Figure 2: Interaction between variable side and background motion, for equations displaying commutative (left) and non-
commutative (right) operations. Lefthand panels display error proportions for each group; the righthand bars display 95% 
confidence intervals of the interaction contrast (calculated from the outer four points of each graph). 

 



 
Figure 3: Results from Experiment 2. Error proportion is 
plotted across the interaction between variable side and 
background motion for equations displaying 2 (top), 1 
(middle) or 0 commutative operations. Lefthand panels display 
error proportions for each group; the righthand bars display 
95% oonfidence intervals of the within-participants interaction 
contrast (calculated from the outer four points of each graph).  
 
 
 
 

 
 

Discussion 
Solutions to single operation arithmetic equations contained 
fewer errors when the perceived movement of the grating 
was congruent with the imagined motion specified by the 
motion strategy, particularly on problems requiring the 
participant to make non-commutative computations, 
suggesting that participants use the motion strategy 
particularly when the order of items matters.  

Experiment 1 suggests that reasoners typically use 
imagery of or knowledge about dynamic, continuous motion 
to guide sequential computation; however, participants were 
tested only on very simple equations of only four types. 
Furthermore, participants’ mathematical expertise was not 
investigated, and so it is not clear whether motion strategies 
dominate among novices, mathematical experts, or both. 
Experiment 2 addresses both of these issues. 

Experiment 2 

Method 
Participants Fifty-eight undergraduates attending either the 
University of Illinois, or Indiana University received partial 
course credit in exchange for participation. 
Materials and Procedure Participants sat at a comfortable 
distance from a computer monitor (roughly 50cm). Stimuli 
consisted of 80 two-step algebra problems, expressed in 
standard mathematical notation. In each problem, one side 
consisted of a single number, between 1 and 63. The other 
side was an expression with the pattern   

� 

y M  N , where   

� 

  
was either multiplication (“*”) or division (“/”),   

� 

  was 
either addition or subtraction, and M and N were integers. 
M and N had values between 1 and 18, and were selected so 
that each step of the typical solution path of a problem 
involved only positive integers. The symbols were were 
displayed with a medium gray color. Participants solved 
each of the 80 equation three times: once with each 
background state. Thus, participants solved a total of 240 
equations.  

Each problem had two versions. In one, the variable 
appeared on the left; in the other, it appeared on the right; 
thus, there were 40 formally distinct problems. Problems 
were coded by whether they contained zero, one, or two 
commutative operations in their representation (remember 
that problems containing more commutative operations in 
their representation contain fewer commutative calculations 
in their solution). 10 problems contained no commutative 
operations, 20 contained one, and 10 contained two 
commutative operations. 

Apparent background motion was produced using a 
moving sinusoidal grating. The grating occupied the entire 
screen, and had a spatial frequency of .53 cycles per 
centimeter. Gratings were oriented orthogonal to their 
movement, which was either leftward, rightward, or upward 
at a speed of 1.5Hz. Screen luminance was not controlled 
across monitors; the color of the symbols was medium gray; 
background color ranged from light gray to nearly white. 



Information about participants’ level of mathematical 
background was collected after completion of the 
experiment. The least ambiguous criterion proved to be 
whether the student had taken a calculus course, so that 
measure was used to roughly partition the subjects into 
“mathematically experienced” and “mathematically 
inexperienced” groups. 41 participants had taken calculus, 
while 17 had not. Participant instructions were identical to 
those in Experiment 1. 

Results 
As in Experiment 1, there was a significant three-way 
interaction between variable side, direction of background 
motion, and number of commutative operations, according 
to a 4-way ANOVA which included mathematical 
experience as a between-participants factor (F(1, 56)=6.03, 
p<.05, see Figure 3); as in Experiment 1, problems with two 
commutative operations were more affected by motion 
compatibility than those with one or zero commutative 
operations. Additionally, problems displaying fewer 
commutative operations were substantially more difficult 
for participants to solve (F(1, 56)=13.84, p<.001). The 2-
way interaction between variable side and background 
motion was not significant (F(1,56)=0.124, p~.76). 

Participants reporting taking a calculus course were more 
accurate across problem types (error rate for experienced 
participants, M = .1, for inexperienced M = .27, F(1, 
56)=7.9, p<.01). Experienced participants were also 
marginally more affected by the compatibility of variable 
side and background motion (F(1,56)=3.91, p<=.05). Within 
problems featuring only commutative operations (those 
predicted to be most affected by background motion), 
motion compatible problems were solved more accurately 
than incompatible problems (F(1, 56)=4.78, p<.05); the 3-
way interaction between math ability, background motion, 
and variable side was also significant (F(1, 56)=4.85, p<.05; 
see Figure 4). Thus, participants who had taken a calculus 
course were more affected by the compatibility of the 

background than students without calculus experience. A 
planned comparison of the levels of operation 
commutability revealed that the 2-way effect of background 
motion and variable side differed significantly between 
problems of the y*N+M format and those with even a single 
non-commutative operation (F(1,56)=4.77, p<.05); while 
the two-way interaction of variable side and background 
motion was significant with all commutable-operation 
problems F(1,56)=8.0, p<.01), it was completely eliminated 
for problems containing just a single non-commutable 
operation (F(1,56)=0168, p=.89). 

Discussion 
Experiment 2 replicated the major results of Experiment 1, 
in that formally irrelevant background motion affected error 
rates, but did not affect response times. As in Experiment 1, 
this was primarily true for problems involving additions and 
multiplications. Beyond showing that the influence of 
motion on algebraic problem solving generalizes to slightly 
more complex problems and to different kinds of 
backgrounds, Experiment 2 extends the results of 
Experiment 1 in two ways. First, it might have been 
expected from Experiment 1 that problems involving a 
single addition or multiplication operation would show 
some effect of background motion compatibility; instead, 
we found that only problems with all commutable 
operations showed such a compatibility effect.  

Second, Experiment 2 revealed that participants with 
more experience with calculus were more affected by 
background motion than those without calculus experience. 
One might expect that students with higher mathematical 
skill would be more able to focus on mathematically 
relevant aspects of a problem, and ignore irrelevant 
components such as the moving background. Our 
interpretation is that the imagined motion strategy is an 
advanced strategy that students come to adopt through 
experience with formal notations, rather than a strategy that 
students initially use while learning, and then abandon as 

   
Figure 4: Results from Experiment 2. The left figure displays the error rate across motion and equation types for students 

who had taken at least one calculus course, the right figure for those who had not taken calculus. 



their sophistication increases. This makes sense, under the 
flip-book hypothesis: the motion strategy results from 
perceived creation, destruction, and motion events in static 
mathematical forms, which becomes available as a result of 
repeated exposure to forms which afford that animation. 

General Discussion 
Two experiments demonstrated that visual background 
motion interacts with mathematical operations in a rich and 
intricate manner. Reasoners solving a variety of one-
operation and two-operation single-variable equations were 
affected by background motion presented simultaneously 
with equations. The effect was non-uniform: solving was 
facilitated when the motion was in the direction required by 
the imagined spatial transposition event, and impaired in the 
opposite direction. The effect was strongest when the 
operations to be performed were order-sensitive, and when 
the solver had a relatively high mathematical background.   

The influence of real motion on the execution of algebraic 
transformations suggests that cognitive capacities related to 
real motion processing are being employed online to solve 
algebraic problems. One interpretation is that the 
construction of the appropriate algebraic solution is 
implemented via the continuous reconfiguring of the literal 
problem components.  Another, less dramatic but still 
striking possibility is consistent with this evidence: the 
existence of the motion metaphor may prime sensitivity in 
rules which do not themselves derive from motion 
reasoning.  That is, the rules may in some sense have started 
as abstractions, but acquired over use connections to 
physical motion.  Such de-abstracted rewrite rules would 
have broadly the same properties as the application of 
motion-specific processes to mathematical symbols. 

Flipbook strategies and abstract rewrite laws create 
similar mathematical systems from the formal perspective, 
but they differ in the way they individuate particulars in a 
proof; there is a gap between common language for solving 
for x and the formal rewrite laws that justify the steps. The 
latter do not specify token-token identity relationship 
between elements on successive proof lines. Consider the 
rewrite law   

� 

X + X =Y  X + X =Y  2 + 2 . Rewrite 
rules cannot capture the intuition that the left X goes with 
the left X on successive lines; it treats all four as distinct 
tokens of the same type. Rewrite laws individuate particular 
symbols or expressions on the basis of their formal 
identicality rather than a history of transformations. 

Flipbook strategies, on the other hand, naturally lend 
themselves to the historical individuation of particular 
elements.; two sub-expressions in successive equation lines 
are “the same thing” if one was built out of the other, 
regardless of whether they have the same literal form.  

Most approaches to modeling mathematical reasoning 
presuppose a translation of the physical notation elements to 
a symbolic tree or proposition representation, and proceed to 
apply rules of transformation to those forms. Our results 
suggest that people frequently do what they intuitively think 
they do—move around notational elements in space. 
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