
It is clear that mathematical equations written in mod-
ern notation are, in general, visual forms and that they 
share some properties with diagrammatic or imagistic 
displays. Equations and mathematical expressions are 
often set off from the main text, use nonstandard char-
acters and shapes, and deviate substantially from linear 
symbol placement. Furthermore, evidence indicates that 
at least some mathematical processing is sensitive to the 
particular visual form of its presentation notation (Cam-
bell, 1999; McNeil & Alibali, 2004, 2005). Despite these 
facts, notational mathematical representation is typically 
considered sentential and is placed in opposition to dia-
grammatic representations in fields as diverse as education 
(Stylianou, 2002; Zazkis, 1996), philosophy of science 
(Galison, 1997; Perini, 2006), computer science (Iverson, 
1980), and cognitive modeling and problem solving (An-
derson, 2005; Stenning, 2002).

The standard conception of mathematical notation is 
best understood via Palmer’s (1978) classic distinction 
between intrinsic and extrinsic representational schemes. 
A representation is intrinsic “whenever a representing 
relation has the same inherent constraints as its repre-
sented relation” (p. 271). For example, Line A’s being 
shorter than Line B can be intrinsically represented by 
the representational element that corresponds to A’s being 
shorter, taller, brighter, or larger than the element rep-
resenting B—in other words, by any relation that is in-
herently asymmetric and transitive. Representations are 
extrinsic when their inherent structure is arbitrary. They 
model the represented world by explicitly building the 
structure that is needed to conform to the world. Palmer 
argued that analog representations are intrinsic, in that 

correspondences and inferences between represented 
and representing worlds come for free because of their 
shared intrinsic structure. Propositional representations, 
including language, logic, and mathematics, are extrin-
sic and hence come to represent objects by explicitly es-
tablishing relations with whatever structure is needed. 
The only intrinsic relation necessary to propositions is 
the left–right concatenation of basic symbols. Although 
representations in mathematics and logic are traditionally 
understood as extrinsic, it is possible that they nonethe-
less possess intrinsic and analog properties, and it is this 
possibility that we empirically pursue here. In a separate 
study (Landy, Havas, Glenberg, & Goldstone, 2007), we 
consider the case for language.

Stenning (2002) tried to characterize the apparent dis-
tinction between diagrams on the one hand and formal 
equations and language on the other while also recog-
nizing that both are frequently visual and schematic/ab-
stract representational formats. Stenning proposed that 
diagrams represent relational structures directly, whereas 
notations—formal or otherwise—have structural infor-
mation mediated via rules governing individual elements. 
That is, assuming that the represented domain consists 
of relation r governing objects in a set {a} in a directly 
represented (diagrammatic) representation schema, there 
is a metric property of the representation R (such as spatial 
proximity) such that R and r act in direct proportion. In 
an indirectly represented language, r does not correspond 
to any metric feature of the representation. Instead, r(a1, 
a2) is expressed via a set of rules governing concatenative 
strings, in which the only relevant property of a display is 
the order in which terms appear.
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tial and visual structures. If so, then people might also 
respond spatially to the syntax of internally represented 
expressions, leading symbolic productions to reflect syn-
tactic structure—that is, the more tightly two mental terms 
are bound syntactically, the closer together people will 
tend to place them physically. A relationship between spa-
tial and syntactic proximity would at best be unexplained 
if space is not part of how we represent formal syntax. 
Models of formal reasoning do not generally relate spatial 
properties and syntax (indeed, most definitions of formal 
reasoning overtly exclude visuospatial relations) and do 
not predict any correspondence between physical space 
and syntax (see in particular Anderson, 2005; Johnson-
Laird, 1983). Nevertheless, if, as we suggest, understand-
ing formal symbol structures typically involves spatial 
resources, then symbolic productions might be expected 
to reflect syntactic structure: The less tightly two adjacent 
terms are bound syntactically, the farther apart they should 
be placed physically. Experiment 1 directly examines our 
proposal by measuring physical interoperand spacing in 
handwritten equations constructed by participants from 
presented word equations.

Experiment 1

In this experiment, participants were asked to write out 
simple equations by hand. If, as we propose, formal nota-
tions automatically encode spatial relations corresponding 
to structural relations, then spacing in handwritten equa-
tions should reflect the formal structure of the equation. 
In particular, spacing around equality signs should be very 
large, since such signs denote, in all cases, the broadest 
partition of the sentence. Within the two-operator side of 
each equation, spacing should depend on the structure of 
the expression. In mixed expressions, the middle term is 
syntactically bound to the higher order multiplication sign, 
and so the spacing around that sign should be compressed 
(or that around the lower order addition sign expanded) 
relative to how it is spaced in unmixed expressions. Thus, 
we expect operator spacing to depend on the interaction 
between operator and context.

Although traditional sentential accounts of notational 
reasoning provide no reason to expect operator spacing to 
ever be nonuniform, experience with typeset or handwrit-
ten equations might drive some kinds of spacing regulari-
ties. Typeset equations are generally not of a fixed width, 
and multiplication symbols are generally narrower than 
addition signs. Experience with typeset equations could 
lead equation writers to generally space multiplicands 
more narrowly than addends. However, no prominent 
equation typesetter adjusts the spacing of terms on the 
basis of syntax (and if one did, we would regard this as 
evidence favoring our view). Therefore, although either 
the spatial encoding or the amodal perspective might pre-
dict a main effect of operator, neither the width of the op-
erators themselves nor experience with typeset equations 
could lead to the predicted interaction. Thus, the principle 
theoretical measure is the interaction between operator 
sign and mixed versus unmixed structure.

Specifically, we propose that formal notations are dia-
grammatic as well as sentential and that the property con-
ventionally described as syntactic structure is cognitively 
mediated, in part, by spatial information. Elements of 
expressions are bound together through perceptual group-
ing, often induced by simple spatial proximity. Thus, our 
claim is that mathematical formalizations of syntax are 
not themselves the direct cognitive mechanisms typically 
employed in processing that syntax. The former really 
are concatenative, but we propose that people use space 
and spatial relationships in representational schemas to 
facilitate the processing of syntax. We are not claiming 
here that the execution of each individual step in a proof 
or computation is inherently spatial or processed exclu-
sively using sensorimotor mechanisms. We do suggest 
that spatial reasoning with regard to the physical layout of 
notational forms is common in reasoning with formal lan-
guages and that spacing practices play a significant role in 
human reasoning using notations.

We have argued previously that a broadly similar inter-
ference of metric (non-order-related) spatial properties 
on syntactic judgments provides evidence that spatial 
processes and representations implement syntax in typi-
cal human judgments (Landy & Goldstone, 2007; see 
also Kirshner, 1989; Kirshner & Awtry, 2004). To study 
the influence of perceptual grouping on mathematical 
reasoning, we tasked undergraduate participants with 
judging whether an algebraic equality was necessarily 
true. The equalities were designed to test the students’ 
abilities to apply the order of precedence of operations 
rules (e.g., the rule that multiplication precedes addi-
tion). Although our participants knew these rules, we 
were interested in whether perceptual and form-based 
groupings would be able to override their general knowl-
edge of the order of precedence rules. We tested this by 
having grouping factors either consistent or inconsis-
tent with order of precedence. For example, a partici-
pant might be asked whether n*w  y*b was necessarily 
equal to y*b  n*w. In this example, the physical spac-
ing around the operators was consistent with the order 
of operators, with more space around the plus symbols 
than the multiplication symbols. On other trials, the 
spacings were inconsistent. For instance, participants 
might be asked to judge whether mp * eg was equal 
to eg * mp. (It was not.) When physical spacing was 
inconsistent with order of precedence rules, six times as 
many errors were made compared with when the spacing 
was consistent (neutral spacing trials were intermedi-
ate in accuracy). Participants continued to show large 
influences of spatial grouping on equation verification 
even though they received trial-by-trial feedback. This 
suggests that sensitivity to grouping is automatic or at 
least resistant to strategic, feedback-dependent control 
processes. Even for algebra, one of the clearest cases of 
widespread symbolic reasoning, spacing exerts a strong 
and lasting influence.

The fact that people are sensitive to small changes in 
the physical spacing of formal expressions suggests that 
symbol systems themselves are grounded, in part, in spa-
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other errors were dropped from the analysis. Then, the interoperand 
spacing between the symbols in the equations was measured using 
Adobe Photoshop.

We use operand throughout this article to refer to the two numer-
als on either side on an operator, regardless of operator precedence. 
Thus, in the expression 1  2  3, 1 and 2 are, for our purposes, the 
operands of the addition (the addends), even though normal math-
ematical usage would make 1 and 2  3 the operands. In addition, we 
will occasionally use the neologism equalands to refer to the numer-
als on either side of an equals sign. Although the equals sign is not 
usually thought of as an operator, it marks the highest level division 
of an equation, and so for our purposes serves a syntactic role akin 
to a very low order operation.

Results
For each participant, spacing was averaged across the 

stimuli in each condition. The mean values across partici-
pants for each context are shown in Table 1. The relation-
ship between multiplications and additions was analyzed 
using a 2  2 within-participants ANOVA with distance as 
a dependent measure and operator and expression structure 
as independent variables. As predicted by the typesetting 
hypothesis, the ANOVA revealed a main effect of opera-
tor type [F(1,23)  7.89, MSe  3.35, p  .001]. The in-
teraction between operator type and expression structure 
was also significant [F(1,23)  4.73, MSe  1.28, p  
.05]. The compression of multiplicands relative to ad-
dends was greater in the mixed- than in the single-operator 
condition.

The relationship between equaland spacing and the 
spacing of other operators was explored using two in-
dependent t tests. Both contrasts were quite significant: 
Equalands were spaced more widely than multiplicands 
[t(23)  10.4, p  .0001) and addends [t(23)  9.5, p  
.0001]. (A full 2  3 ANOVA including equalands veri-
fied the predicted effects but did not suggest any other 
significant interactions.)

Discussion
The most immediate conclusion that can be drawn from 

Experiment 1 is that syntax in arithmetic equations is pro-
cessed automatically. The simple transcription task partic-
ipants performed in this experiment required no consider-
ation of syntax at all, but the results show a modulation of 
productions in response to syntactic structure. This result 
is somewhat outside our main focus but is interesting in 
its own right.

More interesting for our purposes is that the participants 
were not swayed arbitrarily by syntax—they constructed 
spatial properties that matched their own perceptual bi-
ases. Terms were spaced more narrowly when they were 

Method
Participants. Twenty four Indiana University undergraduates 

participated in the experiment as partial fulfillment of a course re-
quirement. The experiment lasted about 25 min.

Procedure. Word equations were presented one at a time on a com-
puter screen; the participants wrote out corresponding equations using 
standard mathematical symbols. The participants were instructed to 
use only standard Arabic numerals and formal operator symbols (, 
, and ) and were explicitly asked not to use any parentheses. The 
participants were not asked to solve or evaluate the correctness of any 
equation, nor were they reminded of the correct order of operations.

For each participant, 10 sets comprising three numbers between 
2 and 9 were randomly generated (because 1 is much narrower than 
other numbers, it was excluded from this experiment).

Syntactic binding between terms was systematically manipulated 
by altering the operator of equations. Each set of three numbers ap-
peared in four different equations, one each with the operator struc-
tures plus–plus, plus–times, times–plus, and times–times, making 
40 translations in all. One side of the equation contained the three 
numbers with two operators, and the other side of the equation con-
tained the same expression, but with the first operation completed. 
Thus, if the set of numbers was {2, 4, 9}, the equations, in symbolic 
form, would be 6  9  2  4  9; 2  36  2  4  9; 8  9  
2  4  9; and 8  9  2  4  9. The middle two equations are 
labeled mixed operator conditions, whereas the first and last are 
termed unmixed operator conditions (since there is no particular 
hierarchical structure on either side of the equation). In 5 of the 10 
equation sets, the expression containing three numbers and two op-
erators appeared on the right side of the equation (as in the examples 
above), and in the other 5, it appeared on the left. This procedure 
eliminated any interference of particular number choices, since each 
production was compared with productions that were identical ex-
cept for operator context.

Each participant received a different, randomly generated stimu-
lus set. Word equations were presented one at a time on a computer 
screen and remained on the screen while participants wrote the 
corresponding symbolic equation in a printed box (1.1-cm high  
10.4-cm wide; see Figure 1) on a piece of paper. Word equations em-
ployed number words along with the words times, plus, and equals. 
For instance, if the word equation probe was “six plus five times 
four equals two plus nine times three,” participants would respond 
by writing “6  5  4  2  9  3.” Each participant viewed 
and responded to 40 equations in total. The paper responses were 
scanned, and responses that were left blank, contained parenthe-
ses or other extraneous marks, or contained crossed-out values or 

Figure 1: Sample stimuli from Experiment 1. The first and 
second stimuli are mixed examples; the third and fourth are un-
mixed. Each set of operands appeared in all four operator con-
texts. For this experiment, the distance between operands on the 
single-operator side was ignored.

Table 1 
Mean Spacing (in Millimeters) by Measurement Condition 

in Experiment 1

Unmixed 
Operators

Mixed 
Operators

 
Overall

Operator  M  SE  M  SE  M  SE

Addition   9.52 0.48   9.77 0.48   9.65 0.48
Multiplication   9.38 0.50   9.16 0.53   9.27 0.51
Equality  12.38  0.59  12.13  0.57  12.25  0.58



2036        Landy and Goldstone

teractive Web site designed for use with the Logic Primer textbook 
by Allen and Hand (2001). Students can use this Web site to tackle 
exercises found in the textbook as well as additional problems of 
the same type. For our analysis, we chose to focus on the transla-
tion exercises that require students to render sentences of English 
into the formal system described in chapters 1 (propositional) and 
3 (predicate logic) of Logic Primer. In these exercises, students are 
presented with up to five English sentences; under each sentence 
is a standard Web form single-line text input field. Students freely 
type a response for one or more of the sentences and click a submit 
button. For instance, Problem 9 from problem section 1.3 (in chap-
ter 1) states that “If Mary dances although John is not happy, Bill 
will dance.” Instructions state that “Q,” “S,” and “R” are to be used 
to denote the atomic sentences “Mary dances,” “John is happy,” and 
“Bill dances,” respectively. Participants then enter a formal sentence 
corresponding to this sentiment. [One correct response would be 
“((Q & ~S) - R).”]

Each string of characters submitted in this way is checked first to 
see whether it represents a well-formed formula (WFF) according to 
the specifications of the formal system. Although the textbook uses 
non-ASCII characters, the character strings are mapped to ASCII 
strings for keyboard input. Specifically, the single arrow is repre-
sented with “-” (dash, greater than), the double arrow with “-” 
(less than, dash, greater than), the upside-down A of universal quan-
tification with “@,” and the backward E of existential quantification 
with “$.” The WFF formation rules specify the use of parentheses 
around binary sentential connectives: “&” (and), “v” (or), “-” (if  
. . . then), and “-” (if and only if). Some of these parentheses 
may also be omitted following a formal convention that is defined in 
chapter 1 of the text. The parenthesis-dropping conventions follow 
the specified order of operations: “&” and “v” precede “-,” and 
“-” precedes “-.” Any string that passes the WFF test is next 
checked for correctness with respect to the particular translation 
problem attempted (i.e., it is checked for logical equivalency to a 
stored answer). Both the WFF check and the correctness check are 
indifferent to any white space introduced by the student, and when 
problems are returned to students with feedback, any introduced 
spaces have been removed.

It is worth noting that although interface, formal system, physi-
cal situation, and participant pool and motivation were different in 
Experiment 1, the task is quite similar: In both cases, participants 
were asked to take a natural language statement and translate it into 
a formal system.

Analysis. A total of 129,526 submissions to the translation veri-
fication interface (Exercises 1.3 and 3.2) submitted between May 5, 
2005, and April 4, 2006, were collected and analyzed. These raw 
submissions were reduced in several ways. First, the initial interface 
prompts a user to submit several translations at once; as a result, 
many users submit the same response to a single problem many 
times, because they continue to revise other problem responses on 
the same page. In order to eliminate repeated entries, repetitions of 
literally identical responses submitted from a single IP address on a 
particular day were eliminated. Also, many responses violated rules 
of the formal system that were neither syntactic nor semantic—by, 
for example, using incorrect symbols (“” instead of “-,” “and” 
instead of “&,” or “V” instead of “v”), failing to translate by simply 
retyping the English text prompt, and so forth. Since our overriding 
interest was in the relationship between syntax and space, submis-
sions with invalid operator symbols were eliminated. Finally, many 
submissions were simply junk, such as “asdf,” “dfdfdfdf.” These were 
also eliminated. After all of these reductions, 48,131 statements from 
595 unique IP address–time stamp combinations remained.

The translation verification interface automatically determines 
how well formed an expression that follows the formal syntax is. If 
the expression is well formed, the interface then determines whether it 
forms a correct answer to that problem. Both of these pieces of infor-
mation are provided to the submitter, who then has the option to revise 
the submission. The same verification system used to provide submis-
sion feedback was used to categorize submissions for our analysis.

grouped more closely. Historical interactions with typeset 
equations do not predict these effects, nor do traditional 
symbolic accounts of mathematical competence. Thus, of 
the hypotheses considered earlier, this result is compatible 
only with the suggestion that people systematically vary 
spacing according to the particular syntactic structure of 
the current equation. Because this behavior presumably 
generalizes to the population at large, including the teach-
ers and parents of our particular participants, historical 
interactions with other handwritten equations could ac-
count for the results—participants in our task might have 
been sensitive to syntax because their teachers and parents 
were, and therefore, sensitivity to the spacing of syntax 
formed part of the participants’ training. That is, our par-
ticipants may have received training with mathematical 
expressions in which the spacing was more often consis-
tent with the syntactic structure than inconsistent with it. 
However, this explanation does not provide any additional 
insight into why this spacing convention has been adopted 
in the first place. For that, the most parsimonious account 
for the environmental regularity is, once again, that spatial 
processes are involved in the representation of mathemati-
cal syntax in the normal course of algebraic reasoning.

There is a plausible alternative to the spatial informa-
tion hypothesis: It might be that syntax processing me-
diates (somehow) access to the lexicographic forms for 
numbers and symbols. If syntactically bound items are 
chunked in memory, for instance, then accessing terms 
within a chunk may be quicker than accessing terms 
across chunks (Cheng & Rojas-Anaya, 2006). If so, and 
if horizontal pen movement between characters correlates 
with access time (if, for instance, the pen is moved at some 
more or less fixed velocity while the lexical form is being 
accessed), then a memory delay could produce increased 
spacing. Experiment 2 addressed this possibility by ex-
ploring spacing behavior on a typed input task.

Experiment 2

A limitation of Experiment 1 was that the formal system 
used was a small (though important) one: prealgebra using 
equality, addition, and multiplication. Although this system 
is convenient in that it is widely known and studied, such a 
small system, with several idiosyncratic features, makes it 
difficult to generalize the results. Experiment 2 broadened 
the scope of our examinations by exploring a very different 
notational system: formal propositional (quantified and un-
quantified propositional) logic. In addition, Experiment 2 
used a very different experimental format and a very differ-
ent response generation system for the participants. Instead 
of asking participants to write unused and useless pseudo
equations in a laboratory setting, Experiment 2 involved a 
corpus analysis of expressions generated by participants 
interacting with a Web-based teaching tool designed and 
maintained by Colin Allen and Chris Menzel and based on 
an accompanying textbook (Allen & Hand, 2001).

Method
Materials. The current analysis is based on Logic Daemon and 

Quizmaster (Allen & Menzel, 2006, http://logic.tamu.edu/), an in-

http://logic.tamu.edu/
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spaced submissions were also more likely than either in-
consistently spaced or unspaced expressions to be correct: 
53% of consistent equations were correct, compared with 
only 37% of inconsistently spaced and 50% of unspaced 
equations.

In order to test the structure sensitivity of consistent 
spacing, we divided the data set according to whether or 
not a problem required syntax resolution (that is, whether 
it had two or more connectives; see Table 2). Participants 
did indeed space more frequently on multioperator prob-
lems (9.2% of multioperator problems were consistently 
spaced vs. 6.8% of few-operator problems). Furthermore, 
accuracy was highest (53%) when expressions were con-
sistently spaced and lowest (37%) when they were in-
consistently spaced (50.1% of all unspaced expressions 
were correct). This difference was larger on multioperator 
expressions. On few-operator problems, 52% of consis-
tently spaced, 42% of inconsistently spaced, and 52% of 
unspaced submissions were correct. However, the number 
of such problems was very small (only 26 inconsistently 
spaced few-operator problems were submitted in all).

We also tested the theory that more training would 
reduce the need for formally extraneous spacing. Trans-
lation problems appear in two sections of the textbook: 
chapter 1 (propositional logic) and chapter 3 (predicate 
logic). We divided the full data set into these two catego-
ries and measured spacing frequency across these two 
categories (see Table 2). Both consistent and inconsistent 
spacings were more frequent on propositional problems 
(13.1% and 2.4%, respectively) than on predicate logic 
problems (6.7% and 1.6%, respectively).

Discussion
Despite being formally unnecessary and informally dis-

couraged, spaces were frequently inserted into typed sen-
tences of formal logic. These spacings were nearly always 
consistent with the operations they abutted; submissions 
with consistent spacing were also slightly more likely to be 
correct than unspaced submissions. Together with Experi-
ment 1, Experiment 2 establishes that people working in 
two very different domains systematically spaced formal 
systems that formally do not require differential spacing.

Because the participants in this experiment were typing 
on a keyboard, a chunking account that predicts differen-
tial spacing on handwritten equations as a result of dif-
ferential chunking in memory cannot account for spacing 

We distinguished three physical spacing conditions: spacing con-
sistent with the operator structure, spacing inconsistent with opera-
tor structure, and no spacing at all (unspaced). An expression was 
considered consistent when the space around every operator in the 
expression was appropriate: Spaces around conjunction, disjunc-
tion, conditional, and biconditional signs should have been even, and 
spaces should have been inserted only to the left of negation signs 
and quantifiers. If any spacing violated these constraints, then the 
expression was flagged as inconsistent.

Our predictions were as follows: First, we predicted that since 
representations of space play a role in the way that reasoners process 
syntax, participants using the site would at least occasionally in-
sert spaces. Although random insertion of spaces would be far more 
likely to produce inconsistent than consistent spacings, we predicted 
that spacing would primarily be consistent and that only consistent 
spacing would improve performance.

Experiment 1 indicated that spacing is modulated in the presence 
of hierarchical syntax. On this basis, we predicted that participants 
would be more likely to produce spaces in responses containing 
more than one operator. Because more skilled reasoners are less 
likely to be dependent on perceptual support (Chi, Feltovich, & Gla-
ser, 1981), we also predicted that more advanced participants would 
be less likely to space expressions at all. The problems studied came 
from two sections of the book, one on propositional logic and one 
on predicate logic. Our prediction was that spacing would be more 
common in responses to problems in the first, more elementary 
section. Finally, because the spatial representation theory implies 
that consistent spacing is indicative of deep syntactic processing, 
we predicted that accuracy would be higher on consistently spaced 
statements than on other statements, whenever structure mattered 
(i.e., whenever there were two or more operators).

In analyzing these data, we did not attempt to evaluate the statisti-
cal significance of our results for two reasons: First, the breakdown 
of submissions by unique IP address and date did not adequately di-
vide submissions into independent samples. Since we had no way to 
determine unique individuals, and furthermore no way to determine 
the relationship between individuals, statistical tests based on the 
assumption of independent samples were inappropriate. Second, the 
large size of the sample guaranteed that standard statistical measures 
would indicate significance (all of the contrasts considered here are 
highly significant by standard measures), regardless of the underly-
ing mechanisms. For these reasons, we report frequencies without 
invalid statistical measures.

Results
Table 2 presents the frequencies of submissions broken 

down by spacing, number of operators, and logic type. 
As expected, participants frequently spaced expressions: 
10.8% of all expressions submitted contained some spac-
ing. When expressions were spaced, moreover, most were 
consistently spaced: 82.6% of all spaced equations were 
spaced consistently with operator syntax. Consistently 

Table 2 
Use of Spacing in Typed Formal Translations in Experiment 2

Logic Type

Propositional First Order

  Unspaced Consistent Inconsistent Unspaced Consistant Inconsistent

Single Operation
  Correct 1,344 160 11 1,187 12 0
  Incorrect 1,592 145 15 735 9 0

Multiple Operations
  Correct 6,175 1,058 159 12,899 10,441 65
  Incorrect  5,182  844  213  13,817  10,113  39

Note—Entries represent the number of submissions in each category.
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& Reisman, 2006), we do not advocate drawing a sharp 
division between perceptual and formal routes to math-
ematical understanding. We believe that formal routes to 
mathematical understanding are perceptual.

Space has been proposed as a mediating metaphor 
for metric properties such as time (Boroditsky, 2000; 
Casasanto & Boroditsky, 2003), numerosity (Dehaene, 
Bossini, & Giraux, 1993; Fischer, 2001, 2003; Lakoff & 
Nuñez, 2000), pitch (Casasanto, Philips, & Boroditsky, 
2003), and many others (Casasanto & Lozano, 2006). 
Behavioral evidence typically taken as evidence for the 
spatial processing of temporal reasoning has included 
priming effects of spatial experience on temporal in-
terpretations of spatial/temporal language (Boroditsky, 
2000). Another traditional source of evidence for the role 
of spatial representations is the spontaneous production 
of systematic spatial behaviors that are not task appropri-
ate. For instance, Casasanto and Lozano (2006) observed 
participants as they told preconstructed stories about 
events that contained nonspatial concepts for which spa-
tial metaphors were common—for example, the concept 
of a stock’s increase in value being expressed as “going 
up.” Even when the language that the participants used 
did not contain a spatial metaphor, they often used spatial 
gestures that were compatible with the typical metaphor, 
indicating that the spatial metaphor was mediating their 
explanations. One possible explanation of our results is 
that representations of syntax are typically derived meta-
phorically from representations of space, just as those of 
time or numerosity seem to be. We are not certain that the 
data support such a strong conclusion. Our primary claim 
is that the rule systems that govern the interpretation of 
formal systems carry functional spatial information—in 
other words, they are diagrammatic. Metaphorical spatial 
derivations are, however, one plausible potential account 
of spatial representations of syntax.

That spacing facilitates syntax is important for our un-
derstanding of mathematics and mathematical learning, 
but it is also important for education and cognitive psy-
chology more generally. For education, our results suggest 
that increased sensitivity to the physical features of how 
mathematics is presented to students and how the students 
in turn present mathematics to their teachers may be ben-
eficial. Physical properties such as spacing may be used to 
give students a perceptual scaffold for the rules underlying 
algebra. Further research is necessary to know whether 
these scaffolds, when removed, help students to continue 
to obey the appropriate mathematical rules or if they act 
as crutches that thwart rule development. Reciprocally, by 
examining students’ spacings of their own productions, we 
may be able to diagnose their misunderstandings. In the 
same way that manual gestures are sensitive indicators of 
inchoate explicit mathematical understandings (Alibali & 
Goldin-Meadow, 1993; Goldin-Meadow, Wein, & Chang, 
1992), production spacing may indicate the beginnings, or 
lack thereof, of knowledge for order of precedence.

One possible source of the influence of syntax on space 
is that mental representations of formal syntax are inter-
nally spatial. Another possibility is that internal represen-
tations really are amodal and that the differential spatial 

here. The most plausible theory that predicts systematic 
spacing in both of these domains is that syntax processing 
is bound up with spatial representation.

Other accounts of the results of Experiment 2 are pos-
sible, however. For instance, other formal systems, such as 
programming languages, are often taught with explicit in-
structions to space logical terms; participants might have 
been transferring this practice from programming experi-
ence. This possibility cannot be definitively eliminated 
(although why spacing is common in programming is still 
mysterious), but the fact that more experienced reasoners 
spaced less, not more, seems incompatible with the idea 
that spacing appropriately is an acquired skill.

General Discussion

In both typed logic and handwritten arithmetic transla-
tion tasks, participants created formally irrelevant spatial 
relationships in stimuli. In both cases, these relationships 
aligned with the syntactic structure of the formal statement 
being expressed. The kinds of regularities produced in Ex-
periment 1 have been shown to benefit correct syntactic 
interpretation (Landy & Goldstone, 2007), and those of 
Experiment 2 seem at least to be correlated with more ac-
curate submissions. People seem to spontaneously create 
alignments of space and syntax that, when perceived, help 
them reason formally.

Although behavioral evidence cannot conclusively es-
tablish that syntactic structure in mathematics is gener-
ally represented using spatial representational systems, 
it does establish a processing connection between space 
and syntax that is difficult to otherwise explain. Regard-
less of the internal structure of syntactic representations, 
the evident relationship between metric spatial proper-
ties and syntactic behavior indicates that the latter is, in 
Stenning’s (2002) sense, a directly interpreted property of 
mathematical equations. Mathematical and logical forms 
often literally function as diagrams, serving to ground the 
abstract relationships they express in more immediately 
available sensorimotor relationships. In the normal course 
of events, spatial grounding of syntax guarantees spatial 
alignment with the judgments that purely concatenative 
rules demand.

Our claim is that external representations of syntactic 
systems carry formal information in their spatial proper-
ties. This is the converse of other arguments that hold that 
mathematical reasoning involves visuospatial processing 
rather than formal operations. For example, Hadamard 
(1949) complained that the true heart of a mathematical 
proof—the intuitive, often visual conceptualization—is 
ignored in the formal description of the proof steps them-
selves. The mismatch between how mathematics is formally 
presented and how it is concretely conceived by practitio-
ners has been often noted (Lakoff & Nuñez, 2000). Our 
claim complements these analyses because both they and 
our approach seek to integrate perceptual processing and 
mathematical reasoning. However, our claim is that even 
when we consider symbolic transformations, visuospatial 
processes are still pertinent and strongly influential. Thus, 
unlike some proponents of embodied cognition (Wilensky 
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their physical equations because doing so helps them 
obey the formally sanctioned rules of mathematics. Even 
when these physical adaptations are discouraged (Experi-
ment 2), they still persist, because people either learn by 
trial and error or intuit, via a metacognitive understanding 
of their own math skill, that formalisms that incorporate 
spacing end up serving their needs better.

Most fundamentally, our results challenge conceptions 
of symbols as amodal and divorced from analog, spatial 
information. In this respect, we offer a reinterpretation of 
Newell and Simon’s (1963, 1976) influential physical sym-
bol system hypothesis, which held that physical symbol 
systems had the necessary and sufficient means for pro-
ducing intelligent action. A symbol system includes both 
physical symbols, such as marks on paper or punches on 
a computer tape, and the explicit rules for manipulating 
these tokens. In action, all of the physical symbols used in 
Newell and Simon’s studies were distantly related to their 
worldly referents and were digital and discrete entities such 
as the strings “P ⊃ Q” and “GOAL 7 TRANSFORM L3 
INTO LO.” The arbitrary nature of these entities was by de-
sign, because Newell and Simon wanted the symbols they 
used to be capable of designating any expression whatso-
ever without any a priori prescriptions or limitations.

We concur with Newell and Simon’s emphasis on phys-
ical symbols and believe in paying even more attention to 
symbols’ physical attributes involving space, shape, and 
perceptual grouping. Accordingly, our revised physical 
symbol systems hypothesis is that symbols are not ar-
bitrary, unconstrained tokens but rather are represented 
and processed using space and perceptually organized 
groups. This conception of physical symbols makes them 
far more constrained than those underlying Newell and 
Simon’s General Problem Solver, but these constraints are 
not only limiters, but permitters as well. For specific prob-
lem solvers who are humans, it is good policy to design 
symbols that can be processed efficiently, given what we 
know about perceptual and cognitive mechanisms. From 
this perspective, it is hardly surprising if the symbols we 
write look a lot like symbols we are good at reading, and 
if the symbols we think with are a lot like symbols we are 
good at thinking.
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